
July 9 Math 3260 sec. 51 Summer 2025
Chapter 5 Linear Transformations

We want to consider a special class of functions called linear
transformations. (We haven’t defined what this means yet.)

Recall that for a function

f : D → C (read “f ” maps D into C)

▶ D is the domain and C is the codomain,
▶ an image is an output, e.g., y = f (x), or a set of outputs, e.g.,

f (S) = {f (x) | x ∈ S},
▶ the range is the set of all outputs—i.e., the image of D under f ,
▶ f is called onto if f (D) = C—i.e., the range equals the codomain,
▶ f is one to one if f (x) = f (y) ⇐⇒ x = y ,
▶ and f is invertible if f is onto and one to one (in which case there’s an

inverse function f−1).

July 9, 2025 1 / 92



Remark on “Onto”

If a function is not onto, it’s always possible to define a new function
that is onto.

Case in point: Recall the function P : R2 → R2 be defined by

P(x⃗) = Bx⃗ where B =

[
0 0
0 1

]
.

We saw that the range of P is the set Span{⟨0,1⟩}, so P is not onto.
But we could define the related function

P̂ : R2 → Span{⟨0,1⟩}, P(x⃗) =
[

0 0
0 1

]
x⃗ .

This is a version of the same function that is onto.

July 9, 2025 2 / 92



5.2 Linear Transformations for Rn to Rm

Linear Transformation

A linear transformation from Rn to Rm is a function T : Rn →
Rm such that for each pair of vectors x⃗ and y⃗ in Rn and for any
scalar c

1. T (x⃗ + y⃗) = T (x⃗) + T (y⃗), and
2. T (cx⃗) = cT (x⃗).

A function having vector spaces as a domain and codomain are called
transformations.

The two properties in this definition are what we mean by linear or
linearity. Functions that don’t have these properties are called
nonlinear.
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Example

Let T : R2 → R3 be defined by T (⟨x1, x2⟩) = ⟨x1x2,0, x1 + x2⟩.

Find the images of ⟨0,0⟩, ⟨1,0⟩, ⟨0,1⟩, ⟨1,1⟩ and ⟨2,2⟩.

1. T (⟨0,0⟩) =

2. T (⟨1,0⟩) =

3. T (⟨0,1⟩) =

4. T (⟨1,1⟩) =

5. T (⟨2,2⟩) =
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T : R2 → R3 T (⟨x1, x2⟩) = ⟨x1x2,0, x1 + x2⟩

1. Is T (⟨1,0⟩+ ⟨0,1⟩) = T (⟨1,0⟩) + T (⟨0,1⟩)?

2. Is T (2⟨1,1⟩) = 2T (⟨1,1⟩)?
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Example
Let T : R3 → R2 be defined by T (⟨x1, x2, x3⟩) = ⟨x1 − x2, x2 − x3⟩.
Show that T is a linear transformation.
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T : R3 → R2 T (⟨x1, x2, x3⟩) = ⟨x1 − x2, x2 − x3⟩
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Recall Properties of Matrix-Vector Product
If A is an m × n matrix, x⃗ and y⃗ are vectors in Rn, and c is a scalar,
then
▶ Ax⃗ is a vector in Rm.
▶ A(x⃗ + y⃗) = Ax⃗ + Ay⃗ , and
▶ A(cx⃗) = cAx⃗ .

Lemma

If A is an m × n matrix and T : Rn → Rm is defined by T (x⃗) = Ax⃗ , then
T is a linear transformation.

Not only does the matrix-vector product define a linear transformation.
Turns out, every linear transformation from Rn to Rm is a matrix-vector
product!
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Theorem

Suppose that T : Rn → Rm is a linear transformation. Then there is a
unique m × n matrix A, such that T (x⃗) = Ax⃗ for all x⃗ ∈ Rn.

Furthermore, the matrixa A is the matrix whose column vectors are

Colj (A) = T
(
e⃗j
)

where E =
{

e⃗1, e⃗2, . . . , e⃗n
}

is the standard basis for Rn.

aWe’ll call A the standard matrix for the transformation T .

The columns of A are the images of the standard unit vectors.

A is unique if we are considering inputs and outputs relative to the standard
basis E .
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Example
Find the standard matrix for the linear transformation T : R2 → R3

given by
T (⟨x1, x2⟩) = ⟨x1 + 3x2,2x1 + 4x2,−2x2⟩.
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T (⟨x1, x2⟩) = ⟨x1 + 3x2,2x1 + 4x2,−2x2⟩.



Theorem

If T : Rn → Rm is a linear transformation, then

T (0⃗n) = 0⃗m.

Remark: This can be used as a test to rule out that something is a
linear transformation. That is, if for some T : Rn → Rm, T (0⃗n) ̸= 0⃗m,
then T can’t be a linear transformation.

Caveat: This doesn’t say that T (0⃗n) = 0⃗m by itself guarantees
linearity.
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Fundamental Subspaces: Range and Kernel

Let T : Rn → Rm be a linear transformation, and let A be its standard
matrix. The range of T is defined by

range(T ) = {T (x⃗) | x⃗ ∈ Rn} .

and the kernel of T , denoted ker(T ) is defined by

ker(T ) =
{

x⃗ ∈ Rn | T (x⃗) = 0⃗m

}
.

Moreover, range(T ) is a subspace of Rm, ker(T ) is a subspace of Rn,
and

range(T ) = CS(A), and ker(T ) = N (A).

It follows from the FTLA that

dim
(
range(T )

)
+ dim

(
ker(T )

)
= n.
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Example
Identify the range and kernel of T : R3 → R2 given by

T (⟨x1, x2, x3⟩) = ⟨2x1 + x2 − 2x3,2x1 + 3x2 + 6x3⟩.
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T (⟨x1, x2, x3⟩) = ⟨2x1 + x2 − 2x3,2x1 + 3x2 + 6x3⟩.
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T (⟨x1, x2, x3⟩) = ⟨2x1 + x2 − 2x3,2x1 + 3x2 + 6x3⟩.

1. Is T onto?

2. Is T one to one?

3. Is T invertible?
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Range & Kernel Dimensions
Onto & One to One Indicators

Theorem

Let T : Rn → Rm be a linear transformation. Then

1. T is onto if and only if dim(range(T )) = m, and

2. T is one-to-one if and only if dim(ker(T )) = 0.

The second statement can be rephrased as saying that T is
one-to-one if and only if

T (x⃗) = 0⃗m

has only the trivial solution, x⃗ = 0⃗n.
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Onto, One-to-One & Standard Matrix

Suppose T : Rn → Rm is a linear transformation with standard matrix
A.

Since range(T ) = CS(A), T is onto if and only if A has a pivot in
every row.

Since ker(T ) = N (A), T is one-to-one if and only if all columns
of A are pivot columns.

Note that since dim
(
range(T )

)
+ dim

(
ker(T )

)
= n, the only way for T to

be both onto and one-to-one is for m = n. That is, T : Rn → Rn and A
is a square matrix.
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Invertible Linear Transformations

Inverse of a Linear Transformation

Let T : Rn → Rn be a linear transformation with standard matrix
A. Then T is invertible if and only if A is an invertible matrix. In
this case,

T−1(x⃗) = A−1x⃗

for each x⃗ in Rn.

The standard matrix for T−1 is the inverse of the standard matrix for T .
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5.3 Visualizing Linear Transformations

We want to consider certain linear mappings from R2 to R2 that
correspond to geometric transformations.

Figure: Scaling, shearing, rotations, reflections
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Scaling Transformation

Let r > 0 and define T : R2 −→ R2 by T (x⃗) = r x⃗ .
T is a dilation if r > 1 and a contraction if 0 < r < 1.

Find the standard matrix of T .
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The Geometry of Dilation/Contraction

Figure: The 2 × 2 square in the plane under the dilation x⃗ 7→ 2x⃗ (top) and the
contraction x⃗ 7→ 1

2 x⃗ (bottom). Each includes an example of a single vector
and its image.
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A Shear Transformation on R2

Find the standard matrix for the linear transformation from R2 → R2

that maps e⃗2 to e⃗1 + e⃗2 and leaves e⃗1 unchanged.
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A Shear Transformation on R2

For the shear transformation with standard matrix
[

1 1
0 1

]
find the

images of the vectors

x⃗1 = ⟨0,−1⟩, x⃗2 = ⟨1,−1⟩, and x⃗3 = ⟨1,1⟩

July 9, 2025 24 / 92



A Shear Transformation on R2

Figure: The letter “E” from line segments connecting select points from
{(0,−1), (0,0), (0,1), (1,−1), (1,0), (1,1)}.
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A Shear Transformation on R2

Figure: Letter “E” mapped under the shear transformation x⃗ 7→
[

1 1
0 1

]
x⃗ .
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Shearing Transformations
The matrix for a shearing transformation looks like one of[

1 k
0 1

]
︸ ︷︷ ︸

horizontal shear

or
[

1 0
k 1

]
︸ ︷︷ ︸
vertical shear

(A shear matrix is what you get from I2 by doing one row replacement: kRi + Rj → Rj .)

Figure: Sheared Sheep (Top) Horizontal Shear (right k > 0 and left k < 0), (Bottom) Vertical
Shear (up k > 0 and down k < 0).
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A Rotation on R2

Let Rθ : R2 −→ R2 be the rotation transformation that rotates each
point in R2 counter clockwise about the origin through an angle θ. Find
the standard matrix for Rθ.
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A Rotation in R2

Figure: The letter “A” under a rotation transformation R90◦ .

The standard matrix

A90◦ =

[
cos90◦ − sin90◦

sin90◦ cos90◦

]
=

[
0 −1
1 0

]
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Rotation in Animation
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Rotation in Animation
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Rotation in Curve Generation

Figure: The curve y = sin(x) plotted as a vector valued function along with a
version rotated through and angle θ = π

6 .
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Example

Show that Rθ is invertible by showing that R−θ = R−1
θ .
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Reflection Through Axis

Figure: The matrix to reflect through the x1-axis (left) or x2-axis (right).

Px1 : R2 → R2 Px1(⟨x1, x2⟩) = ⟨x1,−x2⟩

Px2 : R2 → R2 Px2(⟨x1, x2⟩) = ⟨−x1, x2⟩
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Summary of Geometric Transformations on R2

▶ Scaling: x⃗ 7→ rI2x⃗ , is a dilation if r > 0 and contraction if 0 < r < 1.

▶ Shear: x⃗ 7→ Ax⃗ where A =

[
1 k
0 1

]
or A =

[
1 0
k 1

]
for constant k .

▶ Rotation (counter clockwise about the originthrough angle θ): x⃗ 7→ Aθx⃗

where Aθ =

[
cos θ − sin θ
sin θ cos θ

]
▶ Reflection (through an axis):

Px1(⟨x1, x2⟩) =
[

1 0
0 −1

]
⟨x1, x2⟩ = ⟨x1,−x2⟩, or

Px2(⟨x1, x2⟩) =
[

−1 0
0 1

]
⟨x1, x2⟩ = ⟨−x1, x2⟩.

We can combine these with the composition of transformations.
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5.4 Linear Transformation of Lines

One way of distinguishing linear transformations from Rn to Rm is that
a linear transformation

maps a line to a line or to a point.

We first need to determine how to characterize a line using vectors in
Rn. Generally speaking, we will do this with a point (some point on the
line) and a direction vector (a vector parallel to the line).

Let’s consider the case in R2. We have some point P = (p1,p2) on our
line, and the line is parallel to some vector d⃗ = ⟨d1,d2⟩ (with at least
one of d1 or d2 nonzero).
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Figure: The point P = (p1,p2) is on the line that is parallel to the vector
d⃗ = ⟨d1,d2⟩. We want an equation for some arbitrary point X = (x1, x2) on the
line L.
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Figure: The vector x⃗ = ⟨x1, x2⟩ will be the vector p⃗ = ⟨p1,p2⟩ plus some scalar
multiple of d⃗ . We can get all of the points on L by letting the scalar t vary.
That is L is described by the equation x⃗ = p⃗ + t d⃗ , −∞ < t < ∞.
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A Line in R2

If P = (p1,p2) is any point on the line L that is parallel to the nonzero
vector d⃗ = ⟨d1,d2⟩, then the line L is the collection of points corre-
sponding to the vector

x⃗ = p⃗ + t d⃗ , −∞ < t < ∞. (1)

Equation (1) is called a vector parametric equation or a vector equa-
tion of the line L. The set of component equations

x1 = p1 + td1
x2 = p2 + td2

, −∞ < t < ∞

are called parametric equations for the line L.

We can similarly consider a line in Rn containing the point P = (p1,p2, . . . ,pn)

and parallel to the nonzero vector d⃗ = ⟨d1,d2, . . . ,dn⟩. The line is described
by the vector equation

x⃗ = p⃗ + t d⃗ , −∞ < t < ∞.
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Example
Let T : R2 → R2 be defined by T (x⃗) = Ax⃗ where A =

[
1 3
2 6

]
. Let L1

be the line through the point P = (1,1) and parallel to the vector
d⃗ = ⟨−1,1⟩, and let L2 be the line through P and parallel to the vector
g⃗ = ⟨−3,1⟩.

1. Find the vector parametric equations for L1 and L2.
2. Find T (L1) and T (L2), the images of L1 and L2 under T .
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A =

[
1 3
2 6

]
.

lel to the vecto
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T maps L 1 to a line, but it maps L 2 to a 
single point. The direction vector for L 2

has image <0,0> (i.e., it is in the 
kernel of T).



Figure: L1 and its image T (L1) under T . The image of the line is a line.
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Figure: L2 and its image T (L2) under T . The image of this line is a point.
Note that we got a single point because the direction vector g⃗ for L2 is in the
kernel of T .
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Theorem

Suppose that T : Rn → Rm is a linear transformation and suppose that
L is a line in Rn. Specifically, suppose that

L : x⃗ = p⃗ + t d⃗ (2)

where d⃗ ̸= 0⃗n.
Then T (L) is either a point or a line in Rm. Specifically,

1. If d⃗ /∈ ker (T ), then T (L) is a line in Rm.

2. If d⃗ ∈ ker (T ), then T (L) is a point in Rm.

A consequence is that if L1 and L2 are parallel lines (i.e., have the same
direction vector d⃗), then either T (L1) and T (L2) is a pair of parallel lines
(d⃗ /∈ ker (T )) or is a pair of points.
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