July 9 Math 3260 sec. 51 Summer 2025

Chapter 5 Linear Transformations

We want to consider a special class of functions called **linear transformations**. (We haven't defined what this means yet.)

Recall that for a function

$$f: D \rightarrow C$$
 (read "f" maps D into C)

- D is the domain and C is the codomain,
- ▶ an **image** is an output, e.g., y = f(x), or a set of outputs, e.g., $f(S) = \{f(x) \mid x \in S\}$,
- ▶ the range is the set of all outputs—i.e., the image of D under f,
- f is called **onto** if f(D) = C—i.e., the range equals the codomain,
- ▶ f is one to one if $f(x) = f(y) \iff x = y$,
- ▶ and f is **invertible** if f is onto and one to one (in which case there's an inverse function f^{-1}).



Remark on "Onto"

If a function is not onto, it's always possible to define a new function that is onto.

Case in point: Recall the function $P: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$P(\vec{x}) = B\vec{x} \text{ where } B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$
 $\langle \times, \times_z \rangle \longleftrightarrow \langle \circ, \times_z \rangle$

We saw that the range of P is the set $Span\{\langle 0,1\rangle\}$, so P is not onto. But we could define the related function

$$\hat{P}: R^2 \to \operatorname{Span}\{\langle 0, 1 \rangle\}, \quad P(\vec{x}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{x}.$$

This is a *version* of the same function that is onto.

5.2 Linear Transformations for \mathbb{R}^n to \mathbb{R}^m

Linear Transformation

A **linear transformation** from R^n to R^m is a function $T: R^n \to R^m$ such that for each pair of vectors \vec{x} and \vec{y} in R^n and for any scalar c

- 1. $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$, and
- $2. T(c\vec{x}) = cT(\vec{x}).$

A function having vector spaces as a domain and codomain are called **transformations**.

The two properties in this definition are what we mean by **linear** or **linearity**. Functions that don't have these properties are called nonlinear.

Example

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(\langle x_1, x_2 \rangle) = \langle x_1 x_2, 0, x_1 + x_2 \rangle$.

Find the images of $\langle 0, 0 \rangle$, $\langle 1, 0 \rangle$, $\langle 0, 1 \rangle$, $\langle 1, 1 \rangle$ and $\langle 2, 2 \rangle$.

1.
$$T(\langle 0,0\rangle) = \langle 0(0),0,0+0 \rangle = \langle 0,0,0 \rangle$$

2.
$$T(\langle 1,0\rangle) = \langle 1(0),0,1+0\rangle = \langle 0,0,1\rangle$$

3.
$$T(\langle 0,1\rangle) = \langle 0,0\rangle, \langle 0,0\rangle = \langle 0,0\rangle$$

4.
$$T(\langle 1,1\rangle) = \langle 1(1), 0, 1+1 \rangle = \langle 1, 0, 2 \rangle$$

5.
$$T(\langle 2,2\rangle) = \langle 2(2), 0, 2+2\rangle = \langle 4,0,4\rangle$$

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 $T(\langle x_1, x_2 \rangle) = \langle x_1 x_2, 0, x_1 + x_2 \rangle$

1. Is
$$T(\langle 1,0\rangle + \langle 0,1\rangle) = T(\langle 1,0\rangle) + T(\langle 0,1\rangle)$$
? No
$$T(\langle 1,0\rangle + \langle 0,1\rangle) = T(\langle 1,0\rangle) = \langle 1,0,2\rangle$$

$$T(\langle 1,0\rangle + T(\langle 0,1\rangle) = \langle 0,0,1\rangle + \langle 0,0\rangle, 1\rangle = \langle 0,0,2\rangle$$

2. Is
$$T(2\langle 1, 1 \rangle) = 2T(\langle 1, 1 \rangle)$$
? \mathbb{N}^{0}

$$T(z\langle 1, 1 \rangle) = T(\langle 2, 2 \rangle) = \langle 4, 0, 4 \rangle$$

Tis not a linear transformation

□ ▶ ◀ 🗗 ▶ ◀ 🖹 ▶ ◀ 🖹 ▶ ♀ ○ · July 9, 2025 5/92

Example

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(\langle x_1, x_2, x_3 \rangle) = \langle x_1 - x_2, x_2 - x_3 \rangle$. Show that T is a linear transformation.

Le need to show that
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$

and $T(k\vec{x})=kT(\vec{x})$ for all $\vec{x},\vec{y}\in\mathbb{R}^3$ and $k\in\mathbb{R}$,
but $\vec{x}=(a,b,c)$ and $\vec{y}=(d,e,f)$ and $k\in\mathbb{R}$

$$T(x)=T(\langle a,b,c\rangle)=\langle a-b,b-c\rangle$$

 $T(z)=T(\langle d,e;f\rangle)=\langle d-e,e-f\rangle$

$$\vec{\chi} + \vec{y} = \langle a + d, b + e, (+f) \rangle$$

$$T(\vec{\chi} + \vec{y}) = T(\langle a + d, b + e, c + f \rangle) = \langle (a + d) - \langle b + e \rangle, (b + e) - \langle c + f \rangle)$$

$$\frac{1}{2} (a + d, b + e, c + f \rangle) = \langle (a + d) - \langle b + e \rangle, (b + e) - \langle c + f \rangle$$

$$T: \mathbb{R}^3 \to \mathbb{R}^2 \quad T(\langle x_1, x_2, x_3 \rangle) = \langle x_1 - x_2, x_2 - x_3 \rangle$$

$$T(\vec{x}+\vec{b}) = (a+d-b-e, b+e-c-f)$$

= $(a-b+d-e, b-c+e-f)$
= $(a-b, b-c) + (d-e, e-f)$
= $T(\vec{x}) + T(\vec{y})$

$$T(k\vec{x}) = T(k(a, b, c)) = T((ka, kb, kc))$$

is a linear transformation.

7/92

Recall Properties of Matrix-Vector Product

If A is an $m \times n$ matrix, \vec{x} and \vec{y} are vectors in \mathbb{R}^n , and c is a scalar, then

- $ightharpoonup A\vec{x}$ is a vector in R^m .
- $ightharpoonup A(\vec{x}+\vec{y})=A\vec{x}+A\vec{y},$ and
- $ightharpoonup A(c\vec{x}) = cA\vec{x}.$

Lemma

If *A* is an $m \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T(\vec{x}) = A\vec{x}$, then *T* is a linear transformation.

Not only does the matrix-vector product define a linear transformation. Turns out, **every** linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix-vector product!

Theorem

Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Then there is a unique $m \times n$ matrix A, such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Furthermore, the matrix^a A is the matrix whose column vectors are

$$Col_{j}(A) = T(\vec{e}_{j})$$

where $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is the standard basis for R^n .

The **columns** of *A* are the images of the standard unit vectors.

A is *unique* if we are considering inputs and outputs relative to the standard basis \mathcal{E} .

^aWe'll call A the **standard matrix** for the transformation T.

Example

Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T(\langle x_1,x_2\rangle)=\langle x_1+3x_2,2x_1+4x_2,-2x_2\rangle.$$

Leti call the notice A. The column of

A will be
$$T(\vec{e}_1)$$
 as $T(\vec{e}_2)$.

$$T(\vec{e},) = T(\langle 1,0 \rangle) = \langle 1,2,0 \rangle$$

 $T(\vec{e},) = T(\langle 1,0 \rangle) = \langle 3,4 \rangle$

$$T(\vec{e}_z) = T(\langle 0, 1 \rangle) = \langle 3, 4, -2 \rangle$$

$$T(\langle x_1,x_2\rangle)=\langle x_1+3x_2,2x_1+4x_2,-2x_2\rangle.$$

Chech:
$$\overrightarrow{AX} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \langle x_1, x_2 \rangle$$

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then

$$T(\vec{0}_n) = \vec{0}_m.$$

Remark: This can be used as a test to rule out that something is a linear transformation. That is, if for some $T: \mathbb{R}^n \to \mathbb{R}^m$, $T(\vec{0}_n) \neq \vec{0}_m$, then T can't be a linear transformation.

Caveat: This doesn't say that $T(\vec{0}_n) = \vec{0}_m$ by itself guarantees linearity.

Fundamental Subspaces: Range and Kernel

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be its standard matrix. The **range** of T is defined by

$$\mathsf{range}(T) = \{ T(\vec{x}) \mid \vec{x} \in R^n \} .$$

and the **kernel** of T, denoted ker(T) is defined by

$$\ker(T) = \left\{ \vec{x} \in R^n \mid T(\vec{x}) = \vec{0}_m \right\}.$$

Moreover, range(T) is a subspace of R^m , ker(T) is a subspace of R^n , and

$$range(T) = CS(A)$$
, and $ker(T) = N(A)$.

It follows from the FTLA that

$$\dim(\operatorname{range}(T)) + \dim(\ker(T)) = n.$$

Example

Identify the range and kernel of $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2 - 2x_3, 2x_1 + 3x_2 + 6x_3 \rangle.$$

Let's find the standard notice A. We need

$$T(\vec{e}_1), T(\vec{e}_2), T(\vec{e}_3).$$

$$T(\vec{e}_1) = T(\langle 1,0,0\rangle) = \langle 2,2\rangle$$

$$T(\tilde{e}_z) = T(\langle 0, 1, 0 \rangle) = \langle 1, 3 \rangle$$

$$T(\vec{e}_3) = T(\langle 0, 0, ... \rangle = \langle -2, 6 \rangle$$

$$A = \begin{bmatrix} 2 & 1 & -2 \\ 2 & 3 & 6 \end{bmatrix}$$

$$T(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2 - 2x_3, 2x_1 + 3x_2 + 6x_3 \rangle.$$

$$Touge (T) = CS(A) \quad \text{ad} \quad \ker(T) = \mathcal{N}(A)$$

$$\text{Let} \quad f. \quad 1 \quad \text{ref} \quad (A)$$

$$A \quad \text{ref} \quad \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 4 \end{bmatrix} \qquad \text{for } \begin{cases} 5e^{\frac{1}{2}} \\ 6e^{-\frac{1}{2}} \\ 6e^{-\frac{1}{2}} \end{cases}$$

$$Touge (T) = Span \quad \{(2, 2), (1, 3)\}$$

$$A^* : O_2 \Rightarrow X_1 = 3x_3, \quad X_1 = -4x_3, \quad X_3 : f \text{ for } \end{cases}$$

$$\text{Let} (T) = Span \quad \{(3, -4, 1)\}.$$

$$\text{Let} (T) = Span \quad \{(3, -4, 1)\}.$$

$$T(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2 - 2x_3, 2x_1 + 3x_2 + 6x_3 \rangle.$$

1. Is Tonto? Is
$$T(\vec{x}) = \vec{y}$$
 consistent for all $\vec{y} \in \mathbb{R}^{2}$?

[A 1 \vec{y}) $\xrightarrow{\text{ref}}$ [10-3/2] always consistent

[A 1 \vec{y}] $\xrightarrow{\text{ref}}$ [01-4/22] $\xrightarrow{\text{T}}$ is onto.

2. Is *T* one to one?

$$T(\tilde{o}_3) = T((3,-4,1)) = \tilde{o}_2$$

 T is not one to one.

3. Is *T* invertible?

4□ > 4□ > 4□ > 4 = > 4 = > 1 = 900

Range & Kernel Dimensions

Onto & One to One Indicators

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

- 1. T is onto if and only if dim(range(T)) = m, and
- 2. T is one-to-one if and only if dim(ker(T)) = 0.

The second statement can be rephrased as saying that T is one-to-one if and only if

$$T(\vec{x}) = \vec{0}_m$$

has only the trivial solution, $\vec{x} = \vec{0}_n$.

Onto, One-to-One & Standard Matrix

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation with standard matrix A.

Since range(T) = CS(A), T is onto if and only if A has a pivot in every row.

Since $ker(T) = \mathcal{N}(A)$, T is one-to-one if and only if all columns of A are pivot columns.

Note that since $\dim(\operatorname{range}(T)) + \dim(\ker(T)) = n$, the only way for T to be both onto and one-to-one is for m = n. That is, $T : R^n \to R^n$ and A is a square matrix.

July 9, 2025 18/92

Invertible Linear Transformations

Inverse of a Linear Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. In this case,

$$T^{-1}(\vec{x}) = A^{-1}\vec{x}$$

for each \vec{x} in \mathbb{R}^n .

The standard matrix for T^{-1} is the inverse of the standard matrix for T.

5.3 Visualizing Linear Transformations

We want to consider certain linear mappings from R^2 to R^2 that correspond to geometric transformations.



Figure: Scaling, shearing, rotations, reflections

Scaling Transformation

Let r > 0 and define $T : R^2 \longrightarrow R^2$ by $T(\vec{x}) = r\vec{x}$. T is a **dilation** if r > 1 and a **contraction** if 0 < r < 1.

Find the standard matrix of T.

We need
$$T(\vec{e}_1) \sim d$$
 $T(\vec{e}_2)$

$$T(\vec{e}_1) : \vec{re}_1 = \langle \vec{r}_1, 0 \rangle, T(\vec{e}_2) = \vec{re}_2 = \langle 0, \Gamma \rangle$$

$$A = \begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix} = \Gamma \begin{bmatrix} 1 & 0 \\ 0 & \Gamma \end{bmatrix} = \Gamma \begin{bmatrix} 1 & 0 \\ 0 & \Gamma \end{bmatrix}$$

The Geometry of Dilation/Contraction

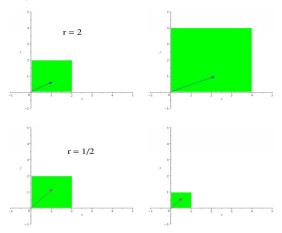


Figure: The 2 \times 2 square in the plane under the dilation $\vec{x} \mapsto 2\vec{x}$ (top) and the contraction $\vec{x} \mapsto \frac{1}{2}\vec{x}$ (bottom). Each includes an example of a single vector and its image.

A Shear Transformation on R²

Find the standard matrix for the linear transformation from $R^2 \to R^2$ that maps \vec{e}_2 to $\vec{e}_1 + \vec{e}_2$ and leaves \vec{e}_1 unchanged.

Calling the transformation
$$S$$
, we need $S(\vec{e}_1)$ and $S(\vec{e}_2)$.

 $S(\vec{e}_1) = \vec{e}_1 = \langle 1, 0 \rangle$
 $S(\vec{e}_2) = \vec{e}_1 + \vec{e}_2 = \langle 1, 0 \rangle + \langle 0, 1 \rangle = \langle 1, 1 \rangle$
 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

A Shear Transformation on R²

For the shear transformation with standard matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ find the images of the vectors

$$\vec{x}_1 = \langle 0, -1 \rangle, \quad \vec{x}_2 = \langle 1, -1 \rangle, \quad \text{and} \quad \vec{x}_3 = \langle 1, 1 \rangle$$

$$S(\vec{x}_1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \langle 0, -1 \rangle = \langle -1, -1 \rangle$$

$$S(\vec{x}_2) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \langle 1, -1 \rangle = \langle 0, -1 \rangle$$

$$S(\vec{x}_3) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \langle 1, 1 \rangle = \langle 2, 1 \rangle$$

A Shear Transformation on R²

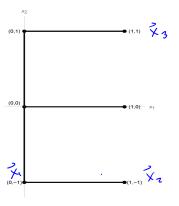


Figure: The letter "E" from line segments connecting select points from $\{(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)\}.$

A Shear Transformation on R^2

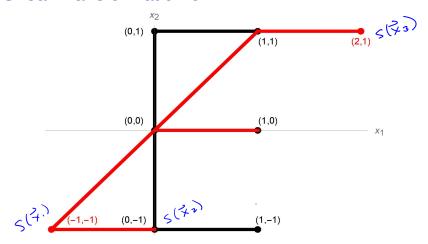


Figure: Letter "E" mapped under the shear transformation $\vec{x} \mapsto \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \vec{x}$.

Shearing Transformations

The matrix for a shearing transformation looks like one of

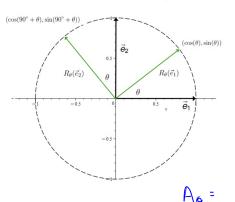
$$\underbrace{\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}}_{\text{horizontal shear}} \quad \text{or} \quad \underbrace{\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}}_{\text{vertical shear}}$$

(A shear matrix is what you get from I_2 by doing one row replacement: $kR_i + R_j \rightarrow R_j$.)

Figure: Sheared Sheep (Top) Horizontal Shear (right k > 0 and left k < 0), (Bottom) Vertical Shear (up k > 0 and down k < 0).

A Rotation on R^2

Let $R_{\theta}: R^2 \longrightarrow R^2$ be the rotation transformation that rotates each point in R^2 counter clockwise about the origin through an angle θ . Find the standard matrix for R_{θ} .



$$A_{\bullet} = \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix}$$

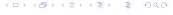
A Rotation in R^2



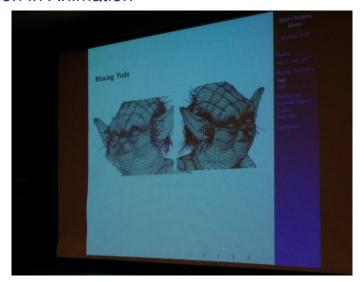
Figure: The letter "A" under a rotation transformation $R_{90^{\circ}}$.

The standard matrix

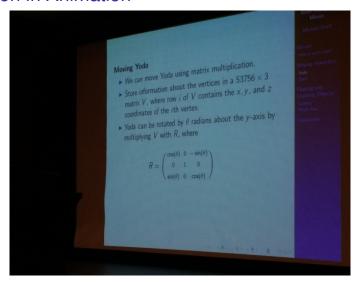
$$A_{90^{\circ}} = \left[\begin{array}{cc} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{array} \right] = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$



Rotation in Animation



Rotation in Animation



Rotation in Curve Generation

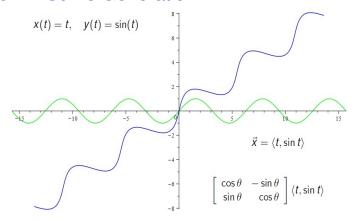


Figure: The curve $y = \sin(x)$ plotted as a vector valued function along with a version rotated through and angle $\theta = \frac{\pi}{6}$.

Example

Show that R_{θ} is invertible by showing that $R_{-\theta} = R_{\theta}^{-1}$.

We can show that
$$A_{-0} = A_0^{-1}$$
 $A_{-0} = \begin{bmatrix} \cos(-0) & -\sin(-0) \\ \sin(-0) & \cos(-0) \end{bmatrix} = \begin{bmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{bmatrix}$
 $A_{-0} = \begin{bmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{bmatrix} \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix}$
 $A_{-0} = \begin{bmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{bmatrix} \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix}$
 $A_{-0} = \begin{bmatrix} \cos^2 0 + \sin^2 0 & \cos 0(-\sin 0) + \sin 0 & \cos 0 \\ -\sin 0 & \cos 0 + \cos 0 & \sin 0 \end{bmatrix}$

$$= \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right]$$

4□ > 4回 > 4 = > 4 = > = 900

Reflection Through Axis

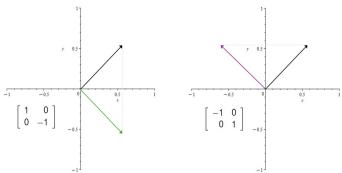


Figure: The matrix to reflect through the x_1 -axis (left) or x_2 -axis (right).

$$P_{x_1}: R^2 \to R^2 \quad P_{x_1}(\langle x_1, x_2 \rangle) = \langle x_1, -x_2 \rangle$$

$$P_{x_2}: \mathbb{R}^2 \to \mathbb{R}^2 \quad P_{x_2}(\langle x_1, x_2 \rangle) = \langle -x_1, x_2 \rangle$$

Summary of Geometric Transformations on R²

- ▶ **Scaling**: $\vec{x} \mapsto rl_2\vec{x}$, is a dilation if r > 0 and contraction if 0 < r < 1.
- ▶ **Shear**: $\vec{x} \mapsto A\vec{x}$ where $A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ or $A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ for constant k.
- ▶ **Rotation** (counter clockwise about the originthrough angle θ): $\vec{x} \mapsto A_{\theta}\vec{x}$ where $A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$
- ► **Reflection** (through an axis):

$$P_{x_1}(\langle x_1, x_2 \rangle) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \langle x_1, x_2 \rangle = \langle x_1, -x_2 \rangle, \text{ or }$$

$$P_{x_2}(\langle x_1, x_2 \rangle) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \langle x_1, x_2 \rangle = \langle -x_1, x_2 \rangle.$$

We can combine these with the composition of transformations.

5.4 Linear Transformation of Lines

One way of distinguishing linear transformations from \mathbb{R}^n to \mathbb{R}^m is that a linear transformation

maps a line to a line or to a point.

We first need to determine how to characterize a line using vectors in \mathbb{R}^n . Generally speaking, we will do this with a point (some point on the line) and a direction vector (a vector parallel to the line).

Let's consider the case in R^2 . We have some point $P=(p_1,p_2)$ on our line, and the line is parallel to some vector $\vec{d}=\langle d_1,d_2\rangle$ (with at least one of d_1 or d_2 nonzero).

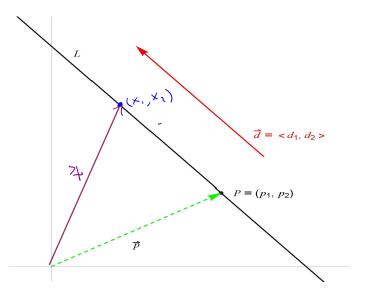


Figure: The point $P = (p_1, p_2)$ is on the line that is parallel to the vector $\vec{d} = \langle d_1, d_2 \rangle$. We want an equation for some arbitrary point $X = (x_1, x_2)$ on the line L.

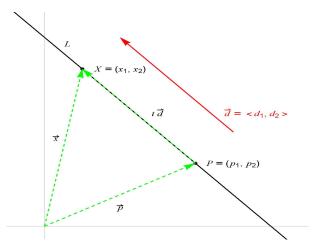


Figure: The vector $\vec{x} = \langle x_1, x_2 \rangle$ will be the vector $\vec{p} = \langle p_1, p_2 \rangle$ plus some scalar multiple of \vec{d} . We can get all of the points on L by letting the scalar t vary. That is L is described by the equation $\vec{x} = \vec{p} + t\vec{d}$, $-\infty < t < \infty$.

A Line in R²

If $P=(p_1,p_2)$ is any point on the line L that is parallel to the nonzero vector $\vec{d}=\langle d_1,d_2\rangle$, then the line L is the collection of points corresponding to the vector

$$\vec{x} = \vec{p} + t\vec{d}, \quad -\infty < t < \infty.$$
 (1)

Equation (1) is called a **vector parametric equation** or a **vector equation** of the line L. The set of component equations

$$\begin{array}{rcl} x_1 & = & p_1 + td_1 \\ x_2 & = & p_2 + td_2 \end{array}, \quad -\infty < t < \infty$$

are called **parametric equations** for the line L.

We can similarly consider a line in R^n containing the point $P=(p_1,p_2,\ldots,p_n)$ and parallel to the nonzero vector $\vec{d}=\langle d_1,d_2,\ldots,d_n\rangle$. The line is described by the vector equation

$$\vec{x} = \vec{p} + t\vec{d}, \quad -\infty < t < \infty.$$

Example

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$. Let L_1

be the line through the point P=(1,1) and parallel to the vector $\vec{d}=\langle -1,1\rangle$, and let L_2 be the line through P and parallel to the vector $\vec{g}=\langle -3,1\rangle$.

- 1. Find the vector parametric equations for L_1 and L_2 .
- 2. Find $T(L_1)$ and $T(L_2)$, the images of L_1 and L_2 under T.

$$T(L_i) = \{T(\vec{x}) \mid \vec{x} \in L_i\}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} (\langle 1, 1 \rangle) + (\langle -1, 1 \rangle) \\ (\langle 1, 1 \rangle) + (\langle -1, 1 \rangle) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 2$$

T(L1) = { (4,8)+ +(2,4) / + = R}

For
$$L_2$$
 $\vec{X} = (1,1) + t (-3,1)$
 $T(\vec{x}) = T((1,1)) + t (-3,1)$
 $T((-3,1)) = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} (-3,1) = (0,0)$

42/92

For
$$\vec{X}$$
 and L_{z} , $T(\vec{x}) = \langle 4, 8 \rangle + \langle 4, 8 \rangle$
 $= \langle 4, 8 \rangle$
 $= \langle 4, 8 \rangle$

T maps L_1 to a line, but it maps L_2 to a single point. The direction vector for L_2 has image <0,0> (i.e., it is in the kernel of T).

July 9, 2025 43/92

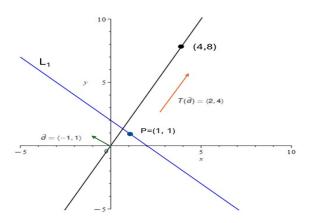


Figure: L_1 and its image $T(L_1)$ under T. The image of the line is a line.

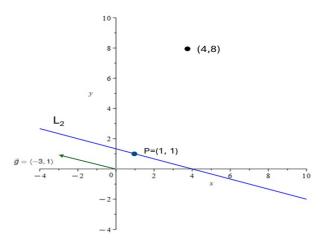


Figure: L_2 and its image $T(L_2)$ under T. The image of this line is a point. Note that we got a single point because the direction vector \vec{g} for L_2 is in the kernel of T.

Theorem

Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and suppose that L is a line in \mathbb{R}^n . Specifically, suppose that

$$L: \vec{x} = \vec{p} + t\vec{d} \tag{2}$$

where $\vec{d} \neq \vec{0}_n$.

Then T(L) is either a point or a line in \mathbb{R}^m . Specifically,

- 1. If $\vec{d} \notin \ker(T)$, then T(L) is a line in \mathbb{R}^m .
- 2. If $\vec{d} \in \ker(T)$, then T(L) is a point in \mathbb{R}^m .

A consequence is that if L_1 and L_2 are parallel lines (i.e., have the same direction vector \vec{d}), then either $T(L_1)$ and $T(L_2)$ is a pair of parallel lines $(\vec{d} \notin \ker(T))$ or is a pair of points.

