June 21 Math 2306 sec. 53 Summer 2022

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{t h}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

$$
\begin{gathered}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
\end{gathered}
$$

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

The Principle of Superposition (homogeneous ode)

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
\begin{equation*}
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l . \tag{1}
\end{equation*}
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

NOTE: Taking all of the c's to be zero will always satisfy equation (1). The set of functions is linearly independent if taking all of the c's equal to zero is the only way to make the equation true.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Suppose there an numbers C_{1} and C_{2} such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \text { for all } x
$$

That is,

$$
c_{1} \sin x+c_{2} \cos x=0
$$

Since this is true for al real x, it's true when $x=0$. When $x=0$, the equation is

$$
c_{1} \sin (0)+c_{2} \cos (0)=0
$$

$$
\Rightarrow \quad c_{1}(0)+c_{2}(1)=0 \quad \Rightarrow \quad c_{2}=0
$$

The equation is also true when $x=\frac{\pi}{2}$. when $x=\frac{\pi}{2}$, the equation is

$$
\begin{aligned}
& c_{1} \sin \left(\frac{\pi}{2}\right)+0 \cdot \cos \left(\frac{\pi}{2}\right)=0 \\
& c_{1}(1)+0=0 \quad \Rightarrow \quad c_{1}=0
\end{aligned}
$$

Both. $C_{1}=0$ and $C_{2}=0$. The set $\left\{f_{1}(x), f_{2}(x)\right\}$ is linearly independent

Side note: If we hove two functions f_{1} ad f_{2}, the equation

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0
$$

an be rearranged to

$$
c_{v} f_{1}(x)=-c_{2} f_{2}(x)
$$

If $C_{1} \neq 0$, this be comes

$$
f_{1}(x)=\frac{-c_{2}}{c_{1}} f_{2}(x)
$$

The functions are dependent if one is a multiple of the other.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

Note that f_{3} can be built as a linear combination of f_{1} and f_{2}.

$$
\begin{aligned}
& f_{3}(x)=\frac{1}{4} f_{2}(x)-f_{1}(x) \\
& x-x^{2} \stackrel{?}{=} \frac{1}{4}(4 x)+(-1) x^{2}
\end{aligned}
$$

we con rearrange to set

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

Note

$$
\begin{aligned}
& x^{2}-\frac{1}{4}(4 x)+x-x^{2}= \\
& x^{2}-x^{2}-x+x=0 \text { for on } x
\end{aligned}
$$

we have $c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0$ with $C_{1}=1, C_{2}=\frac{-1}{4}, C_{3}=1$ not All zero

The set $\left\{f_{1}, f_{2}, f_{3}\right\}$ is linearly dependent

Linear Dependence Relation

An equation with at least one c nonzero, such as

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0
$$

from this last example is called a linear dependence relation for the functions $\left\{f_{1}, f_{2}, f_{3}\right\}$.

Definition of Wronskian

Definition: Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval l. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

2 functions \Rightarrow matrix will be 2×2.

$$
\begin{aligned}
& W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{ll}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right| \quad, \quad \begin{array}{ll}
f_{1}(x)=\operatorname{Sin} x \\
f_{1}^{\prime}(x)=\cos x
\end{array} \\
& f_{2}(x)=\cos x \\
& f_{2}^{\prime}(x)=-\sin x \\
& W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sin x(-\sin x)-\cos x(\cos x) \\
& =-\sin ^{2} x-\cos ^{2} x \\
& =-\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =-1 \\
W(\sin x & , \cos x)(x)=-1
\end{aligned}
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

3 functions \Rightarrow matrix will be 3×3.

$$
\begin{aligned}
W\left(f_{1}, f_{2}, f_{3}\right)(x) & =\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right| \\
& =x^{2}(-8-0)-4 x(-4 x-2(1-2 x))+\left(x-x^{2}\right)(0-8) \\
& =-8 x^{2}-4 x(-4 x-2+4 x)-8 x+8 x^{2} \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \\
& \omega\left(x^{2}, 4 x, x-x^{2}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Theorem: Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval l. If there exists x_{0} in l such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $W \neq 0$ the functions are lin. Independent

Alternative Version

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

we can use the Wronslian.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right|=e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right)
\end{aligned}
$$

$$
\begin{gathered}
=-2 e^{-x}-e^{-x}=-3 e^{-x} \\
W\left(e^{x}, e^{-2 x}\right)(x)=-3 e^{-x}
\end{gathered}
$$

Since this is not zero, y_{1} ard y_{2} are linearly independent.

Fundamental Solution Set

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.
Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Assume a_{i} are continuous and $a_{n}(x) \neq 0$ for all x in I.
Definition Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
The oDE is $2^{\text {nd }}$ order, so we heed two linearly indepandact solutions.
Verity they are solutions:

$$
\begin{aligned}
& y_{1}=x^{2}, \quad y_{1}^{\prime}=2 x, \quad y_{1}^{\prime \prime}=2 \\
& x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1} \stackrel{?}{=}=0 \\
& x^{2}(2)-4 x(2 x)+6\left(x^{2}\right) \stackrel{?}{=} 0 \quad \text {, is } a \\
& 2 x^{2}-8 x^{2}+6 x^{2}=0 \quad \text { Solution- }
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=x^{3}, y_{2}^{\prime}=3 x^{2}, \quad y_{2}^{\prime \prime}=6 x \\
& x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} \stackrel{?}{=} 0 \\
& x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3} \stackrel{?}{=} 0 \\
& 6 x^{3}-12 x^{3}+6 x^{3}=0 \quad \text { a is } \quad \text { a solution }
\end{aligned}
$$

Are they linearly independent?
Check the wronskian.

$$
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|=x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right) \\
& =3 x^{4}-2 x^{4}=x^{4}
\end{aligned}
$$

$w \neq 0, y_{1}$ and y_{2} ane lineal, independent.
we have a fundamental solution set.
The senerd solution

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y=c_{1} x^{2}+c_{2} x^{3}
\end{aligned}
$$

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Theorem: General Solution of Nonhomogeneous Equation

Theorem: Let y_{p} be any solution of the nonhomogeneous equation, and let $y_{1}, y_{2}, \ldots, y_{n}$ be any fundamental solution set of the associated homogeneous equation.
Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}
$$

Note the form of the solution $y_{c}+y_{p}$!
(complementary plus particular)

Superposition Principle (for nonhomogeneous eqns.)

Consider the nonhomogeneous equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{1}(x)+g_{2}(x) \tag{2}
\end{equation*}
$$

Theorem: If $y_{p_{1}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x),
$$

and $y_{p_{2}}$ is a particular solution for

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{2}(x),
$$

then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}
$$

is a particular solution for the nonhomogeneous equation (2).

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$ We will construct the general solution by considering sub-problems.
(a) Part 1 Verify that

$$
\begin{aligned}
& g_{1}(x)=36, g_{2}(x)=-14 x \\
& \text { our ishtar side } \\
& \text { is } g_{1}(x)+g_{2}(x)
\end{aligned}
$$

$$
y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36
$$

$$
y_{p_{1}}=6, \quad y_{p_{1}}^{\prime}=0, \quad y_{p_{1}}^{\prime \prime}=0
$$

$$
x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}} \stackrel{?}{=} 36
$$

$$
x^{2}(0)-4 x(0)+6(6) \stackrel{?}{=} 36
$$

$$
36=36
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
\begin{array}{rl}
y_{p_{2}}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x . \\
y_{p_{2}}=-7 x,, y_{p_{2}}{ }^{\prime}=-7, \quad y_{p_{2}}^{\prime \prime}=0 \\
x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}} & ?-14 x \\
x^{2}(8)-4 x(-7)+6(-7 x) & =-14 x \\
28 x-42 x & =-14 x \\
-14 x & =-14 x
\end{array}
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

The sereid solution $y=y_{c}+y_{e}$

$$
y_{c}=c_{1} x^{2}+c_{2} x^{3}
$$

From (a) ad (b) $\quad y_{p}=y_{p_{1}}+y_{p_{2}}=6-7 x$
The senerd solution

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

The genera solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

we need to find the C^{\prime} valves such that

$$
\begin{aligned}
& y(1)=0 \text { and } y^{\prime}(1)=-5 \\
& y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7 \\
& y(1)=c_{1}\left(1^{2}\right)+c_{2}\left(1^{3}\right)+6-7(1)=0 \\
& c_{1}+c_{2}-1=0 \\
& c_{1}+c_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}(1)=2 c_{1}(1)+3 c_{2}\left(1^{2}\right)-7=-5 \\
& 2 c_{1}+3 c_{2}-7=-5 \\
& 2 c_{1}+3 c_{2}=2
\end{aligned}
$$

solue

$$
\begin{aligned}
& C_{1}+c_{2}=1 \quad \Rightarrow \quad 2 c_{1}+Q C_{2}=2 \\
& 2 C_{1}+3 C_{2}=2 \quad \Rightarrow \quad 2 C_{1}+3 C_{2}=2 \\
& -\frac{2 c_{2}=0}{-c_{2}=0} \\
& \Rightarrow C_{2}=0 \\
& \Rightarrow \quad C_{1}=1
\end{aligned}
$$

The solution to the IV P

$$
y=x^{2}+6-7 x
$$

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

