June 23 Math 2306 sec. 53 Summer 2022

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.
$\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0$
Some things to keep in mind:

- Every fundamental solution set has two linearly independent solutions y_{1} and y_{2},
- The general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we know one solution $y_{1}(x)$. This section is about a process called Reduction of order. Reduction of order is a method for finding a second solution by assuming that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

The goal is to find the unknown function u.

Context

- We start with a second order, linear, homogeneous ODE in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

- We know one solution y_{1}. (Keep in mind that y_{1} is a known!)
- We know there is a second linearly independent solution (section 6 theory says so).
- We try to find y_{2} by guessing that it can be found in the form

$$
y_{2}(x)=u(x) y_{1}(x)
$$

where the goal becomes finding u.

- Due to linear independence, we know that u cannot be constant.

Example
Find the general solution to the ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \text { for } x>0
$$ given that $y_{1}(x)=x$ is one solution.

The ODE in standard for \sim is

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=0 \quad, \quad y_{1}=x
$$

Suppose

$$
\begin{aligned}
& y_{2}=u(x) y_{1}(x)=x u \quad \text { corn fin } \\
& y_{2}=x u \\
& y_{2}^{\prime}=x u^{\prime}+u \\
& y_{2}^{\prime \prime}=x u^{\prime \prime}+u^{\prime}+u^{\prime}=x u^{\prime \prime}+2 u^{\prime}
\end{aligned}
$$

Sub int the $O D E$

$$
\begin{aligned}
& y_{2}^{\prime \prime}-\frac{1}{x} y_{2}^{\prime}+\frac{1}{x^{2}} y_{2}=0 \\
& x u^{\prime \prime}+2 u^{\prime}-\frac{1}{x}\left(x u^{\prime}+u\right)+\frac{1}{x^{2}}(x u)=0 \\
& x u^{\prime \prime}+2 u^{\prime}-u^{\prime}-\frac{1}{x} u+\frac{1}{x} u=0
\end{aligned}
$$

$$
\times u^{\prime \prime}+u^{\prime}=0 \text { and ope for } h(x)
$$

Let $w=u^{\prime}$, then $w^{\prime}=u^{\prime \prime}$. The ODE for w is

$$
x w^{\prime}+w=0
$$

This is a lISt order linear and separable ODE.

Let's separate the variables

$$
\begin{aligned}
& x \frac{d w}{d x}=-w \Rightarrow \frac{1}{w} d w=\frac{-1}{x} d x \\
& \int \frac{1}{w} d w=-\int \frac{1}{x} d x \\
& \ln w=-\ln x \\
& \text { s-ppoing } \\
& \omega^{70} \\
& w=e^{-\ln x}=x^{-1} \\
& w=u^{\prime} \text { so } u=\int w d x \\
& u=\int x^{-1} d x=\ln x \\
& y_{1}=x, y_{2}=u y_{1}=(\ln x) x=x \ln x
\end{aligned}
$$

The genera solution

$$
y=c_{1} x+c_{2} x \ln x
$$

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-\text { is known. }
$$

Suppose

$$
\begin{aligned}
y_{2} & =u y_{1} \\
y_{2}^{\prime} & =u^{\prime} y_{1}+u y_{1}^{\prime} \\
y_{2}^{\prime \prime} & =u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& =u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
\end{aligned}
$$

We know that $\quad y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0$.

$$
\begin{gathered}
y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x)\left(u y_{1}\right)=0
\end{gathered}
$$

Collect $u^{\prime \prime}, u^{\prime}, u$

The ODE for u is

$$
y_{1} u^{\prime \prime}+\left(2 y_{i}+P(x) y_{1}\right) u^{\prime}=0
$$

Divide by y,

$$
u^{\prime \prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+p(x)\right) u^{\prime}=0
$$

Let $w=u^{\prime}$ so $w^{\prime}=u^{\prime \prime}$ and $u=\int w d x$
w solves the $1^{\text {st }}$ order linear and separable ODE

$$
\frac{d w}{d x}+\left(\frac{2 y^{\prime}}{y_{1}}+p(x)\right) w=0
$$

Separating variables

$$
\frac{d w}{d x}=-\left(\frac{2 y_{i}^{\prime}}{y_{1}}+P(x)\right) w
$$

$$
\begin{aligned}
\frac{1}{w} d w & =-2 \frac{\frac{d y_{1}}{d x}}{y_{1}} d x-p(x) d x \\
\int \frac{1}{w} d w & =-2 \int \frac{d y_{1}}{y_{1}}-\int p(x) d x \\
\ln w & =-2 \ln y_{1}-\int p(x) d x \\
w & =e^{-2 \ln y_{1}-\int p(x) d x} \\
& =e^{\ln y_{1}^{-2}} \cdot e^{-\int p(x) d x} \\
& =y_{1}^{-2} e^{-\int p(x) d x}
\end{aligned}
$$

$$
\begin{aligned}
& w=\frac{e^{-\int p(x) d x}}{y_{1}^{2}} \text { so } \\
& u=\int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x \\
& y_{2}=u y_{1}
\end{aligned}
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the solution of the IVP where one solution of the ODE is given.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y_{1}=e^{-2 x}, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

we need y_{2}. Using reduction of order

$$
\begin{aligned}
& y_{2}=y_{1} u \quad u=\int \frac{e^{-\int P(x) d x}}{\left(y_{1}\right)^{2}} d x \\
& P(x)=u, \quad-\int P(x) d x=-\int u d x=-4 x
\end{aligned}
$$

The numerator is $e^{-4 x}$
The denominator $\left(y_{1}\right)^{2}=\left(e^{-2 x}\right)^{2}=e^{-4 x}$

So $u=\int \frac{e^{-4 x}}{e^{-4 x}} d x=\int d x=x$

$$
y_{2}=y_{1} u=x e^{-2 x}
$$

The general solution $y=c_{1} y_{1}+c_{2} y_{2}$

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Apply $y(0)=1$ and $y^{\prime}(0)=1$

$$
\begin{aligned}
& y^{\prime}=-2 c_{1} e^{-2 x}+c_{2} e^{-2 x}-2 c_{2} x e^{-2 x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=1 \Rightarrow c_{1}=1 \\
& y^{\prime}(0)=-2 c_{1} e^{0}+c_{2} e^{0}-2 c_{2} \cdot 0 e^{0}=1
\end{aligned}
$$

$$
-2 C_{1}+c_{2}=1 \Rightarrow c_{2}=1+2 C_{1}=1+2=3
$$

The solution to the IVP

$$
y=e^{-2 x}+3 x e^{-2 x}
$$

Section 8: Homogeneous Equations with Constant

 CoefficientsWe consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

If we put this in normal form, we get

$$
\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \frac{d y}{d x}-\frac{c}{a} y .
$$

Question: What sorts of functions y could be expected to satisfy

$$
\begin{gathered}
y^{\prime \prime}=\text { (constant) } y^{\prime}+\text { (constant) } y ? \\
y=e^{m x}, \text { sine }+ \text { cosines }
\end{gathered}
$$

[^0]We look for solutions of the form $y=e^{m x}$ with m constant.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Sub in $y=e^{m x}$

$$
\begin{aligned}
& y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x} \\
& \quad a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
& e^{m x}\left(a m^{2}+b m+c\right)=0
\end{aligned}
$$

This holds if m satisfies

$$
a m^{2}+b m+c=0
$$

This is a quadratic equation for m.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Example
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
m^{2}-2 m-2=0
$$

Find the roots. Completing the squan

$$
\begin{aligned}
m^{2}-2 m+1 & =2+1 \\
(m-1)^{2} & =3 \\
m-1 & = \pm \sqrt{3} \Rightarrow m=1 \pm \sqrt{3}
\end{aligned}
$$

we haw two different red numbers

$$
\begin{gathered}
m_{1}=1+\sqrt{3}, m_{2}=1-\sqrt{3} \\
y_{1}=e^{(1+\sqrt{3}) x}, y_{2}=e^{(1-\sqrt{3}) x}
\end{gathered}
$$

The gere rd solution

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0
$$

There is only one real, double root, $m=\frac{-b}{2 a}$.
Use reduction of order to find the second solution to the equation (in standard form)

$$
\begin{aligned}
& y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \text { given one solution } y_{1}=e^{-\frac{b}{2 a} x} \\
& y_{2}=y_{1} u, u=\int \frac{e^{-\int p e x d x}}{\left(y_{1}\right)^{2}} d x \\
& P(x)=\frac{b}{a},-\int p(x) d x=-\int \frac{b}{a} d x=-\frac{b}{a} x
\end{aligned}
$$

The numerator is $e^{-\frac{b}{a} x}$.
The denominator is $(y)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{\frac{-b}{a} x}$

$$
\begin{aligned}
u=\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{-b}{a} x}} d x & =\int d x=x \\
y_{2}=u y_{1} & =x y_{1}=x e^{\frac{-b}{2 a} x}
\end{aligned}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \quad b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

[^0]: ${ }^{1}$ We'll extend the result to higher order at the end of this's section.

