June 28 Math 2306 sec. 53 Summer 2022

Section 8: Homogeneous Equations with Constant Coefficients

We are considering second order, linear, homogeneous ODEs with constant coefficients.

$$arac{d^2y}{dx^2}+brac{dy}{dx}+cy=0, \quad ext{with } a
eq 0.$$

We looked for solutions of the form $y = e^{mx}$ for constant *m* and arrived at the characteristic equation

$$am^2+bm+c=0.$$

If *m* is a solution of the characteristic equation, then $y = e^{mx}$ is a solution of the differential equation. The characteristic equation may have two distinct real roots, one repeated real root, or complex conjugate roots.

Case I: Two distinct real roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac > 0$.

There are two different roots m_1 and m_2 . A fundamental solution set consists of

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.$$

June 23, 2022

2/55

Case II: One repeated real root

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac = 0$

If the characteristic equation has one real repeated root *m*, then a fundamental solution set to the second order equation consists of

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

4 D K 4 B K 4 B K 4

June 23, 2022

3/55

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

The two roots of the characteristic equation will be

$$m_1 = \alpha + i\beta$$
 and $m_2 = \alpha - i\beta$ where $i^2 = -1$.

 $- \cap$

4 D K 4 B K 4 B K 4 B K

June 23, 2022

4/55

We want our solutions in the form of <u>real valued</u> functions. We start by writing a pair of solutions

$$Y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x}$$
, and $Y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} e^{-i\beta x}$.

We will use the **principle of superposition** to write solutions y_1 and y_2 that do not contain the complex number *i*.

Deriving the solutions Case III

Recall Euler's Formula¹ : $e^{i\theta} = \cos \theta + i \sin \theta$.

$$Y_{1} = e^{\alpha x} e^{i\beta x} = e^{\alpha x} \left(C_{0s}(\beta x) + i S_{in}(\beta x) \right)$$

$$= e^{\alpha x} C_{0s}(\beta x) + i e^{\alpha x} S_{in}(\beta x)$$

$$Y_{2} = e^{\alpha x} e^{-i\beta x} = e^{\alpha x} \left(C_{0r}(\beta x) - i S_{in}(\beta x) \right)$$

$$= e^{\alpha x} C_{0s}(\beta x) - i e^{\alpha x} S_{in}(\beta x)$$

$$hut \quad y_{i} = \frac{1}{2} \left(Y_{i} + Y_{2} \right) = \frac{1}{2} \left(2e^{\alpha x} C_{0s}(\beta x) \right) = e^{\alpha x} C_{0s}(\beta x)$$

¹As the sine is an odd function $e^{-i\theta} = \cos \theta - i \sin \theta$.

ond $y_{z} = \frac{1}{z_{i}} \left(y_{i} - y_{z} \right) = \frac{1}{z_{i}} \left(z_{i} e^{x} S_{in}(\beta x) \right) = e^{x} S_{in}(\beta x)$

Salutiona well use an The

y = e Cos (BX) and yz = e Sim(BX)

Case III: Complex conjugate roots

$$ay'' + by' + cy = 0$$
, where $b^2 - 4ac < 0$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x).$$

June 23, 2022 7/55

Example

Constant Coet.

Find the general solution of

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0.$$

Chare drivestic eqn
$$M^2 + 4m + 6 = 0$$

 $9 \lor ad_{rat, c}$ formula
 $M = -4 \pm \sqrt{4^2 - 4(1)(6)} = -4 \pm \sqrt{-8}$
 $= -4 \pm 2\sqrt{2} i$
 $= -2 \pm \sqrt{2} i$
 $M = \sqrt{2} \pm i\beta \implies \sqrt{4} = \sqrt{2}$

June 23, 2022 8/55

 $X_1 = e^{-2t} G_s(\overline{r_2t})$, $X_2 = e^{-2t} S_{1n}(\overline{r_2t})$ The general solution $X = C, e^{-2t} G_{s}(J_{z}t) + C_{z}e^{-2t} S_{in}(J_{z}t)$

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

June 23, 2022

10/55

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, *m* may be a root of multiplicity *k* where $1 \le k \le n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x), \dots,$$

 $x^{k-1}e^{\alpha x}\cos(\beta x), x^{k-1}e^{\alpha x}\sin(\beta x)$

June 23, 2022

11/55

Example

Find the general solution of the ODE.

v''' - 3v'' + 3v' - v = 0Const week, hon ugene ou The Characteristic Can is $m^{3} - 3m^{2} + 3m - 1 = 0 \implies (m - 1)^{5} = 0$ m=1, triple root. $y_1 = e^{x}$, $y_2 = xe^{x}$ and $y_3 = x^2e^{x}$ The general solution $y = c_1 e^{x} + c_2 x e^{x} + c_3 x e^{x}$ June 23, 2022 12/55

Example

Find the general solution of the ODE.

 $y^{(4)}+3y''-4y=0$ homogeneous constant coef. Characteristic equation $M' + 3m^2 - 4 = 0$ factor $(m^2 + 4)(m^2 - 1) = 0$ $(m^{2}+4)(m-1)(m+1) = 0$ =) y= e $M-1=0 \implies M=1$ $Mr = 0 \implies M_z = -1$ =) yz = e June 23, 2022 15/55

 $m^{2} + 4 = 0$ $m^2 = -4$ $M = \pm \sqrt{-4} = \pm 2i$ m = q ± ig = q=0, g= Z $y_3 = e^{OX} C_{SS}(z_X) = C_{SS}(z_X)$ $y_{y=e} \stackrel{e^{\star}}{=} S_{2n}(2x) = Sin(2x)$ general solution $y = c_1 e + c_2 e + c_3 G_5(z_X) + c_4 S_{10}(z_X)$

■ ▶ ◀ ■ ▶ ■ ∽ ९ ペ June 23, 2022 16/55

イロン イ理 とくほ とくほ とう

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where *g* comes from the restricted classes of functions

- polynomials,
 exponentials, e^{k-x}, b- constant
 sines and/or cosines, sin (kx), Cos (kx)
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

Motivating Example²

Find a particular solution of the ODE

~

Sub this into the ODE. We need $y_{p}'' - y_{y_{p}} + y_{y_{p}} = 8 \times +1$ $\gamma_{P} = A_{X+} \mathcal{B}, \quad \gamma_{P}' = A, \quad \gamma_{P}'' = 0$ 0 - 4 (A) + 4 (A×+B) = 8×+ Ax + (-A + AB) = 8x + 1Match like terms MAX=BX => A=Z -4A+4B=1 => 4B=1+4A $B = \underbrace{1 + 4(z)}_{G} = \underbrace{9}_{G} + \underbrace{9}_{G} + \underbrace{1 + 4(z)}_{G} = \underbrace{1 + 4(z)}_{G}$ June 23, 2022 20/55

So yp = Ax+B is a solution if A=2 and B= q. That is, yp = 2x + y.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ June 23, 2022 21/55 The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

The left is constant coefficient, the right
side
$$g(x) = 6 e^{3x}$$
 is an exponential,
g is a constant times e^{3x} .
Sub $y_p = A e^{3x}$
Sub in $y_p' = -3A e^{3x}$, $y_p'' = 9A e^{3x}$
 $y_p'' - 4y_p' + 4y_p = 6 e^{-3x}$

June 23, 2022 22/55

$$9A e^{-3x} - 4 (-3A e^{-3x}) + 4 (Ae^{-3x}) = 6 e^{-3x}$$

$$e^{-3x} (9A + 12A + 4A) = 6e^{-3x}$$

$$QSA e^{-3x} = 6 e^{-3x}$$
Matching the terms
$$QSA = 6 \Rightarrow A = \frac{6}{55}$$
The particular solution
$$yP = \frac{6}{85} e^{-3x}$$

June 23, 2022 23/55

Make the form general

$$y'' - 4y' + 4y = 16x^2$$

Constant colf. Lyte and $g(x) = 16x^2$ is a
Poly normal.
Suppose we see $g(x)$ as a constant times
 x . Set $y_{\beta} = A x^2$
 $y_{\beta'} = 2Ax$
 $y_{\beta''} = 2A$
 $y_{\beta''} = 2A$

June 23, 2022 24/55

$$2A - Y(2Ax) + Y(Ax^{2}) = 16x^{2}$$

$$4Ax^{2} - 8Ax + 2A = 16x^{2} + 0x + 0$$
Match like terms.

$$4A = 16 \implies A = Y$$

$$e^{0}x^{2}x^{3}b^{3}k^{2}$$

$$-8A = 0 \implies A = 0$$

The guess for
$$y_p$$
 is wrong.
 $g(x) = 16x^2$ is a 2^{nd} degree polynomial.
Sut $y_p = Ax^2 + Bx + C$
Try again. $y_p' = 2Ax + B$, $y_p'' = 2A$
 $u_{p+1} + 2 + 1 \ge 2$

ye"-456 + 450 = 16×2 $2A - 4(2Ax + B) + 4(Ax^{2} + Bx + C) = 16x^{2}$ $4A x^{2} + (-8A + 4B) x + (2A - 4B + 4C) = \frac{16x^{2} + 0x + 0}{2}$ Match like terms $-4A = 16 \Rightarrow A = 4$ $-8A+YB=0 \Rightarrow YR=8A \Rightarrow B=2A=8$ $2A - 4B + 4(=0) \Rightarrow 4C = -2A + 4R$ 4C = -2(4) + 4(8) = 24C = 6

June 23, 2022 26/55

The particular solution is

$$y_p = 4x^2 + 8x + 6$$

General Form: sines and cosines

$$y''-y'=20\sin(2x)$$

If we assume that $y_p = A\sin(2x)$, taking two derivatives would lead to the equation

$$-4A\sin(2x) - 2A\cos(2x) = 20\sin(2x).$$

This would require (matching coefficients of sines and cosines)

$$-4A = 20$$
 and $-2A = 0$.

A D N A D N A D N A D N

June 23, 2022

28/55

This is impossible as it would require -5 = 0!

General Form: sines and cosines

We must think of our equation $y'' - y' = 20 \sin(2x)$ as

$$y'' - y' = 20\sin(2x) + 0\cos(2x).$$

The correct format for y_p is

$$y_p = A\sin(2x) + B\cos(2x).$$

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = g(x)$$

(a) g(x) = 1 (or really any constant) Constat a. L.a. Zero degree polynomial yr - A (b) g(x) = x - 7 1st degree polynomial yp = Ax+B

June 23, 2022 30/55

(c) $g(x) = 5x^2$ $\partial^{\gamma 2} degree poly$ $y_p = A x^2 + B x + C$ (d) $g(x) = 3x^3 - 5$ 3² degree poly $\mathcal{Y}_{P} = A x^{3} + B x^{2} + C x + D$

June 23, 2022 31 / 55

(e)
$$g(x) = xe^{3x}$$
 | St degree poly times e^{3x}
 $y_{p} = (Ax + B)e^{3x}$

(f)
$$g(x) = \cos(7x)$$
 finear combo of $\cos(7x)$ and
 $\sin(7x)$

Je = A Cos (7x) + BSin(7x).

June 23, 2022 32/55

(g)
$$g(x) = \sin(2x) - \cos(4x)$$
 livear combes 2x
of sime 1005
Mx

$$y_{p} = A S_{in}(2x) + B(cos(3x) + C Cos(4x) + D S_{in}(4x))$$

$$(h) g(x) = x^{2} sin(3x)$$

$$y_{P} = \left(Ax^{2} + Bx + C\right)S_{1} \wedge (3x) + \left(Dx^{2} + Ex + F\right)G_{3}(3x)$$

<ロ> <四> <四> <四> <四> <四</p> June 23, 2022 33/55

Т