June 28 Math 2306 sec. 53 Summer 2022

Section 8: Homogeneous Equations with Constant Coefficients
We are considering second order, linear, homogeneous ODEs with constant coefficients.

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { with } a \neq 0
$$

We looked for solutions of the form $y=e^{m x}$ for constant m and arrived at the characteristic equation

$$
a m^{2}+b m+c=0 .
$$

If m is a solution of the characteristic equation, then $y=e^{m x}$ is a solution of the differential equation. The characteristic equation may have two distinct real roots, one repeated real root, or complex conjugate roots.

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

There are two different roots m_{1} and m_{2}. A fundamental solution set consists of

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case II: One repeated real root

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c=0
$$

If the characteristic equation has one real repeated root m, then a fundamental solution set to the second order equation consists of

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \quad b^{2}-4 a c<0
$$

The two roots of the characteristic equation will be

$$
\begin{equation*}
m_{1}=\alpha+i \beta \text { and } m_{2}=\alpha-i \beta \text { where } i^{2}=-1 . \tag{70}
\end{equation*}
$$

We want our solutions in the form of real valued functions. We start by writing a pair of solutions

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

We will use the principle of superposition to write solutions y_{1} and y_{2} that do not contain the complex number i.

Deriving the solutions Case III
Recall Euler's Formula ${ }^{1}$: $e^{i \theta}=\cos \theta+i \sin \theta$.

$$
\begin{aligned}
y_{1}=e^{\alpha x} e^{i \beta x} & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Let $y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)\right)=e^{\alpha x} \cos (\beta x)$
${ }^{1}$ As the sine is an odd function $e^{-i \theta}=\cos \theta-i \sin \theta$.
and $y_{2}=\frac{1}{2 i}\left(Y_{1}-\psi_{2}\right)=\frac{1}{2 i}\left(2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)$

The solutions well use are

$$
y_{1}=e^{\alpha x} \cos (\beta x) \text { and } y_{2}=e^{d x} \sin (\beta x)
$$

Case III: Complex conjugate roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c<0
$$

Let α be the real part of the complex roots and β be the imaginary part of the complex roots. Then a fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Example
constant cost.

Find the general solution of $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0$.
Charadist.c eq $\quad m^{2}+4 m+6=0$
quadratic formula

$$
\begin{aligned}
& m= \frac{-4 \pm \sqrt{4^{2}-4(1)(6)}}{2(1)}=\frac{-4 \pm \sqrt{-8}}{2} \\
&= \frac{-4 \pm 2 \sqrt{2} i}{2}=-2 \pm \sqrt{2} i \\
& m=\alpha \pm i \beta \Rightarrow \alpha=-2, \quad \beta=\sqrt{2}
\end{aligned}
$$

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t), \quad x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

The genera solution

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ for each pair of complex roots.
- It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an $n^{\text {th }}$ degree polynomial, m may be a root of multiplicity k where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example
Find the general solution of the ODE.
$y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$ Cost coef, homugeneow
The Characteristic eqn is

$$
m^{3}-3 m^{2}+3 m-1=0 \Rightarrow(m-1)^{3}=0
$$

$m=1$, triple root.

$$
y_{1}=e^{x}, y_{2}=x e^{x} \text { and } y_{3}=x^{2} e^{x}
$$

The several solution

Example
Find the general solution of the ODE.
$y^{(4)}+3 y^{\prime \prime}-4 y=0 \quad$ homogereans, constant coff.
Charactaistic equation

$$
\begin{aligned}
& m^{4}+3 m^{2}-4=0 \quad \text { factor } \\
& \left(m^{2}+4\right)\left(m^{2}-1\right)=0 \\
& \left(m^{2}+4\right)(m-1)(m+1)=0 \\
& m-1=0 \Rightarrow m_{1}=1 \quad \Rightarrow y_{1}=e^{x} \\
& m+1=0 \Rightarrow m_{2}=-1 \Rightarrow y_{2}=e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
& m^{2}+4=0 \Rightarrow m^{2}=-4 \quad m= \pm \sqrt{-4}= \pm 2 i \\
& m=\alpha \pm i \beta \Rightarrow \alpha=0, \beta=2 \\
& y_{3}= e^{0 x} \cos (2 x)=\cos (2 x) \\
& y_{4}= e^{0 x} \sin (2 x)=\sin (2 x)
\end{aligned}
$$

The general solution

$$
y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos (2 x)+c_{4} \sin (2 x)
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, $e^{k x}$,
- sines and/or cosines, $\sin (k x), \cos (k x)$
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example ${ }^{2}$
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

The left side is constant coefficient and the right side $g(x)=8 x+1$ is a polynomial
Focusing on y_{p}, what hind of function might $y_{p} b e$? We guess that y_{p} is also a lIst $^{\text {st }}$ degree polynomial.

Set $y_{p}=A x+B$ when A, B are constant.
${ }^{2}$ We're only ignoring the y_{c} part to illustrate the process.

Sub this into the ODE, we need

$$
\begin{gathered}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
y_{p}=A x+B, \quad y_{p}^{\prime}=A, \quad y_{p}^{\prime \prime}=0 \\
0-4(A)+4(A x+B)=8 x+1 \\
4 A x+(-4 A+4 B)=8 x+1
\end{gathered}
$$

Match like terms

$$
\begin{aligned}
& 4 A x=8 x \Rightarrow A=2 \\
&-4 A+4 B=1 \Rightarrow 4 B=1+4 A \\
& B= \frac{1+4(2)}{4}=\frac{9}{4}
\end{aligned}
$$

So $y_{p}=A x+B$ is a solution
if $A=2$ and $B=\frac{9}{4}$.
That is, $y_{p}=2 x+\frac{9}{4}$.

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

The left is constant coefficient, the right side $g(x)=6 e^{-3 x}$ is on exponential.
g is a constant times $e^{-3 x}$.
sat $y_{\rho}=A e^{-3 x}$
Sub in $y_{p}{ }^{\prime}=-3 A e^{-3 x}, y_{p}^{\prime \prime}=9 A e^{-3 x}$

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{-3 x}
$$

$$
\begin{gathered}
9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4\left(A e^{-3 x}\right)=6 e^{-3 x} \\
e^{-3 x}(9 A+12 A+4 A)=6 e^{-3 x} \\
25 A e^{-3 x}=6 e^{-3 x}
\end{gathered}
$$

Matching like terms

$$
25 A=6 \quad \Rightarrow \quad A=\frac{6}{25}
$$

The particular solution

$$
y_{P}=\frac{6}{25} e^{-3 x}
$$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

Constant coff. left and $g(x)=16 x^{2}$ is a paly noma.

Suppose we see $g(x)$ as a constant times x^{2}. Set $y_{p}=A x^{2}$

$$
\begin{gathered}
y_{p}^{\prime}=2 A x \\
y_{p}^{\prime \prime}=2 A \\
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2}
\end{gathered}
$$

$$
\begin{aligned}
& 2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2} \\
& 4 A x^{2}-8 A x+2 A=16 x^{2}+0 x+0
\end{aligned}
$$

Match line terms.

$$
\begin{aligned}
& \text { Dike terms. } \\
& 4 A=16 \Rightarrow A=4 \quad \text { not single! } \\
& -8 A=0 \text { and } 2 A=0 \Rightarrow A=0
\end{aligned}
$$

The guess for y_{p} is wrong.

$$
g(x)=16 x^{2} \text { is a } 2^{n d} \text { degree polynomial. }
$$

Sit $y_{p}=A x^{2}+B x+C$
Try again. $\quad y_{p}{ }^{\prime}=2 A x+B, \quad y_{p}{ }^{\prime \prime}=2 A$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
\end{aligned}
$$

Match like terms

$$
\begin{aligned}
&-4 A=16 \Rightarrow A=4 \\
&-8 A+4 B=0 \Rightarrow 4 B=8 A \Rightarrow B=2 A=8 \\
& 2 A-4 B+4 C=0 \Rightarrow 4 C=-2 A+4 B \\
& 4 C=-2(4)+4(8)=24 \\
& C=6
\end{aligned}
$$

The particula solution is

$$
y_{p}=4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \quad \text { and } \quad-2 A=0
$$

This is impossible as it would require $-5=0$!

General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for y_{p} is

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

(a) $g(x)=1$ (or really any constant)

Constant a.k.a. Zero degree polynomial

$$
y_{p}=A
$$

(b) $g(x)=x-7$ list degree poly nomid

$$
y_{p}=A x+B
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(c) $g(x)=5 x^{2} \quad 2^{n d}$ degree poly.

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5 \quad 3^{\text {rd }}$ degree poly

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(e) $g(x)=x e^{3 x} \quad 1^{\text {St }}$ degree poly times $e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}
$$

(f) $g(x)=\cos (7 x) \quad$ linear combo of $\cos (7 x)$ and

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x)$
linear
of sine $1 \cos 2 x$
and $4 x$

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \cos (4 x)+D \sin (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x)$
$a^{n d}$ degree polys tines $\sin (3 x)$ and $\cos (3 x)$.

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

