June 2 Math 2306 sec. 53 Summer 2022

Section 1: Concepts and Terminology

Suppose $y=\phi(x)$ is a differentiable function. We know that $d y / d x=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x)
$$

Even $d y / d x$ is differentiable with $\frac{d^{2} y}{d x^{2}}=-4 \cos (2 x)$.

Suppose $y=\cos (2 x)$
Note that $\frac{d^{2} y}{d x^{2}}+4 y=0$. for function

$$
u_{y}=4 \cos (2 x)
$$

$$
y^{\prime \prime}+4 y=-4 \cos (2 x)+4 \cos (2 x)=0
$$

A differential equation

$$
\text { The equation } \frac{d^{2} y}{d x^{2}}+4 y=0
$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it?

Also, is $\cos (2 x)$ the only possible function that y could be?

Definition

A Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Solving a differential equation refers to determining the dependent variable(s)-as function(s).

Independent Variable: will appear as one that derivatives are taken with respect to.

Dependent Variable: will appear as one that derivatives are taken of.
In $y=f(x)$, the y is dependent and the x is independent.

Classifications (ODE versus PDE)

Type: An ordinary differential equation (ODE) has exactly one independent variable ${ }^{1}$. For example

$$
\begin{gathered}
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t \\
\text { or } \quad y^{\prime \prime}+4 y=0
\end{gathered}
$$

${ }^{1}$ These are the subject of this course.

Classifications (ODE versus PDE)

A partial differential equation (PDE) has two or more independent variables. For example

$$
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, \quad \text { or } \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

The expression $\frac{\partial y}{\partial t}$ is read
the partial derivative of y with respect to t.
It's computed by taking the derivative of $y=f(x, t)$ while keeping the other variable, x, fixed.

Classifications (Order)

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$
\begin{array}{ll}
\frac{d y}{d x}-y^{2}=3 x & \text { I }^{\text {st orden ODE }} \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} & 3^{r d} \text { order ODE } \\
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} & 2^{n d} \text { order PDE }
\end{array}
$$

Notations and Symbols

We'll use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}, \quad$ or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Our equation $\frac{d^{2} y}{d x^{2}}+4 y=0$ has this form where

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=\frac{d^{2} y}{d x^{2}}+4 y
$$

Notations and Symbols

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

Our equation $\frac{d^{2} y}{d x^{2}}+4 y=0$ can be written in normal form.

$$
\frac{d^{2} y}{d x^{2}}=-4 y \quad \text { note that } f\left(x, y, y^{\prime}\right)=-4 y
$$

Classifications (Linear Equations)

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Example First Order:

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Example Second Order:

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Properties of a Linear ODE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

- Each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not the dependent one.
- y, and its derivatives can only appear as themselves (not squared, square rooted, inside some other function).
- The characteristic structure of the left side is that

$$
y, \quad \frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}
$$

are multiplied by functions of the independent variable and added together.

Examples of Linear ODEs

$$
\begin{array}{ll}
y^{\prime \prime}+4 y=0 & t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t} \\
a_{0}(x)=4 & a_{0}(t)=-1 \\
a_{2}(x)=0 & a_{1}(t)=2 t \\
a_{2}(x)=1 & a_{2}(t)=t^{2} \\
g(x)=0 & g(6)=e^{t}
\end{array}
$$

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Examples of Nonlinear ODEs

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3} \quad u^{\prime \prime}+u^{\prime}=\cos u
$$

$\left(y^{\prime}\right)^{4}$ is a nonlinear
U is dependent tern so $\cos u$ is a nonlinear term.

Example: Classification
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $y^{\prime \prime}+2 t y^{\prime}=\cos t+y-y^{\prime \prime \prime}$

$$
y^{(\prime \prime}+y^{\prime \prime}+2 t y^{\prime}-y=\cos t
$$

It is linear
dependent r y
order 3
(b) $\quad \ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant

Independent variable time

order 2
nonlinear due to $\sin \theta$ term.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Solution or Explicit Solution

Definition: A function ϕ defined on an interval ${ }^{2} /$ and possessing at least n continuous derivatives on I is a solution of (${ }^{*}$) on l if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Example: $\phi(x)=\cos (2 x)$ is a solution of $y^{\prime \prime}+4 y=0$ on $(-\infty, \infty)$ because

- it is twice differentiable, and
- when we set $y=\cos (2 x)$ in the equation, it gives a true statement (namely, $0=0$).

[^0]Examples:
Verify that the given function is an solution of the ODE on the indicated interval. The c_{1} and c_{2} are constants.

$$
\phi(x)=c_{1} x+\frac{c_{2}}{x}, \quad I=(0, \infty), \quad x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

- Noble ϕ is twice continuously diff'ble

Do the substitution, set $y=\phi(x)=c_{1} x+c_{2} x^{\prime \prime}$

$$
\begin{aligned}
& y^{\prime}=c_{1}-c_{2} x^{-2} \\
& y^{\prime \prime}=2 c_{2} x^{-3} \\
& \quad x^{2} y^{\prime \prime}+x y^{\prime}-y \stackrel{?}{=} 0
\end{aligned}
$$

$$
\begin{gathered}
x^{2}\left(2 c_{2} x^{-3}\right)+x\left(c_{1}-c_{2} x^{-2}\right)-\left(c_{1} x+c_{2} x^{-1}\right) \stackrel{?}{=} 0 \\
2 c_{2} x^{-1}+c_{1} x-c_{2} x^{-1}-c_{1} x-c_{2} x^{-1}=0 \\
x\left(c_{1}-c_{1}\right)+x^{-1}\left(2 c_{2}-c_{2}-c_{2}\right)=0 \\
0=0
\end{gathered}
$$

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Implicit Solution

Definition: An implicit solution of (*) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

Recall that a relation is an equation in the two variables x and y. Something like

$$
x^{2}+y^{2}=4, \quad \text { or } \quad x y=e^{y}
$$

would be examples of relations.

Example: Implicitly Defined Solutions)
Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

we assume the relation. That is, suppose

$$
y^{2}-2 x^{2} y=1
$$

we ll use implicit differentiation to show

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 x y}{y-x^{2}} \\
& y^{2}-2 x^{2} y=1 \quad \text { take } \frac{d}{d x}
\end{aligned}
$$

It may not be possible to clearly identify the domain of definition of an implicit solution.

$$
2 y \frac{d y}{d x}-2\left(2 x y+x^{2} \frac{d y}{d x}\right)=0
$$

isolate $\frac{d y}{d x}$:

$$
\begin{array}{r}
y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x}=0 \\
\left(y-x^{2}\right) \frac{d y}{d x}=2 x y \\
\Rightarrow \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
\end{array}
$$

Function vs Solution

The interval of defintion has to be an interval.

Consider the ODE

$$
\frac{d y}{d x}=-y^{2}
$$

The function $y=\frac{1}{x}$ is a solution. The domain of $f(x)=\frac{1}{x}$

- as a function could be stated as $(-\infty, 0) \cup(0, \infty)$.
- as a solution to an ODE could be stated as $(0, \infty)$, or as $(-\infty, 0)$.

In the absence of additional information, we'll usually take the interval of definition to be the largest possible one (or one of the largest possible ones).

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.

Systems of ODEs

Sometimes we want to consider two or more dependent variables that are functions of the same independent variable. The ODEs for the dependent variables can depend on one another. Some examples of relevant situations are

- predator and prey
- competing species
- two or more masses attached to a system of springs
- two or more composite fluids in attached tank systems

Such systems can be linear or nonlinear.

Example of Nonlinear System

$$
\begin{aligned}
\frac{d x}{d t} & =-\alpha x+\beta x y \\
\frac{d y}{d t} & =\gamma y-\delta x y
\end{aligned}
$$

This is known as the Lotka-Volterra predator-prey model. $x(t)$ is the population (density) of predators, and $y(t)$ is the population of prey. The numbers α, β, γ and δ are nonnegative constants.
This model is built on the assumptions that

- in the absence of predation, prey increase exponentially
- in the absence of predation, predators decrease exponentially,
- predator-prey interactions increase the predator population and decrease the prey population.

Example of a Linear System

$$
\begin{aligned}
& \frac{d i_{2}}{d t}=-2 i_{2}-2 i_{3}+60 \\
& \frac{d i_{3}}{d t}=-2 i_{2}-5 i_{3}+60
\end{aligned}
$$

Figure: Electrical Network of resistors and inductors showing currents i_{2} and i_{3} modeled by this system of equations.

Solution of a System

When we talk about a solution to a system of ODEs, we mean a set of functions, one for each dependent variable. For example, a solution to

$$
\begin{aligned}
& \frac{d i_{2}}{d t}=-2 i_{2}-2 i_{3}+60 \\
& \frac{d i_{3}}{d t}=-2 i_{2}-5 i_{3}+60
\end{aligned}
$$

would have to include functions for both of i_{2} and i_{3}.
A fun exercise is to show that

$$
\begin{aligned}
& i_{2}(t)=30-24 e^{-t}-6 e^{-t} \\
& i_{3}(t)=12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

gives a solution. This is what you get if you assume that the initial currents are all zero.

Systems of ODEs

There are various approaches to solving a system of differential equations. These can include

- elimination (try to eliminate a dependent variable),
- matrix techniques,
- Laplace transforms ${ }^{3}$
- numerical approximation techniques

[^1]
Some Terms

- A parameter is an unspecified constant (such as c_{1} and c_{2} in the last example with $\left.\phi(x)=c_{1} x+\frac{c_{2}}{x}\right)$.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $\phi(x)=c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

[^0]: ${ }^{2}$ The interval is called the domain of the solution or the interval of definition.

[^1]: ${ }^{3}$ We'll consider this later.

