June 30 Math 2306 sec. 53 Summer 2022

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Method of Undetermined Coefficients

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

- The left must be constant coefficient
- the right must be from one of the given classes of functions (polynomial, exponential, sine/cosine)
- we assume that a particular solution y_{p} is of the same general type as g.
- the general solution will be $y_{c}+y_{p}$

Examples of Forms of y_{p} based on g (Trial Guesses)

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

(a) $g(x)=1$ (or really any nonzero constant)

$$
y_{p}=A
$$

(b) $g(x)=x-7$

$$
y_{p}=A x+B
$$

(c) $g(x)=5 x^{2}$

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5$

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

Examples of Forms of y_{p} based on g (Trial Guesses)

(e) $g(x)=x e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}
$$

(f) $g(x)=\cos (7 x)$

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

(g) $g(x)=\sin (2 x)-\cos (4 x)$

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x)$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)

(i) $g(x)=e^{x} \cos (2 x)$ Linear combo of $e^{x} \cos (2 x)$ and $e^{x} \sin (2 x)$

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

(j) $g(x)=x e^{-x} \sin (\pi x)$

Think of the x factor as a first degree polynomial. This is a linear combo of first degree polynomials times exponentials e^{-x} times sines and cosines of πx.

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_{p} by considering separate problems

$$
\begin{array}{ll}
y_{p_{1}} \text { solves } & a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x) \\
y_{p_{2}} \text { solves } & a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{2}(x)
\end{array}
$$

and so forth.
Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}$.

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

Consider two problems:
Find y_{p}, that solver

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x} \quad y_{p_{1}}=A e^{-3 x}
$$

And find ye that solves

$$
\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+4 y & =16 x^{2} \\
y_{\rho_{2}} & =B x^{2}+(x+D)
\end{aligned}
$$

The form for y_{p} is

$$
y_{p}=A e^{-3 x}+B x^{2}+C x+D
$$

A Glitch!
What happens if the assumed form for y_{p} is part ${ }^{1}$ of y_{c} ? Consider applying the process to find a particular solution to the ODE

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=3 e^{x} \quad \begin{array}{r}
\text { Constant co et left and } \\
\text { exponential right. }
\end{array} \\
& g(x)=3 e^{x}, \text { guess } y_{p}=A e^{x}
\end{aligned}
$$

Let's try to determine A.

$$
\begin{array}{r}
y_{p}^{\prime}=A e^{x}, y_{p}^{\prime \prime}=A e^{x} \\
y_{p}^{\prime \prime}-y_{p}^{\prime}=3 e^{x}
\end{array}
$$

${ }^{1}$ A term in $g(x)$ is contained in a fundamental solution set of the associated homogeneous equation.

$$
\begin{aligned}
A e^{x}-A e^{x} & =3 e^{x} \\
0 & =3 e^{x} \quad \text { need } \quad 0=3 \quad \therefore \text { far } 15 e \\
0 &
\end{aligned}
$$

The guess $y_{p}=A_{e}{ }^{x}$ is a solution to the associated homogeneous equation.

* Multiplying by x, setting

$$
y_{p}=A x e^{x}
$$

will result in finding y_{p}

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Case II Examples
Find the general solution of the ODE.

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Constant coet left and exponential right.
Find y_{c} : y_{c} solves $y^{\prime \prime}-2 y^{\prime}+y=0$

$$
\begin{aligned}
& \text { Characteristic eqn } \begin{array}{r}
m^{2}-2 m+1=0 \\
(m-1)^{2}=0 \Rightarrow m=1 \begin{array}{l}
\text { double } \\
\text { cot }
\end{array} \\
y_{1}=e^{x}, y_{2}=x e^{x}, y_{c}=c_{1} e^{x}+c_{2} x e^{x}
\end{array}
\end{aligned}
$$

Find $y_{p}: g(x)=-4 e^{x}$ guess $\quad y_{p}=A e^{x} \quad x^{x}$, we x^{ω}
tryasain $y_{p}=A x e^{x} \quad x$ again $\quad y_{p}=A x^{x} e^{x}$

The correct fords is $y_{p}=A x^{2} e^{x}$

$$
\begin{gathered}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=-4 e^{x} \\
y_{p}=A x^{2} e^{x} \\
y_{p}^{\prime}=A x^{2} e^{x}+2 A x e^{x} \\
y_{p}^{\prime \prime}=A x^{2} e^{x}+4 A x e^{x}+2 A e^{x} \\
A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
\end{gathered}
$$

Collect like terms

$$
\begin{gathered}
x^{2} e^{x}(A-2 A+A)+x e^{x}(4 A-4 A)+e^{x}(2 A)=-4 e^{x} \\
2 A e^{x}=-4 e^{x} \\
2 A=-4 \Rightarrow A=-2 \\
y_{p}=-2 x^{2} e^{x}
\end{gathered}
$$

The seneca solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular solution

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find $y_{c}: m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0$

$$
y_{1}=e^{2 x}, \quad y_{2}=x e^{2 x}
$$

hook for $y_{p}=y_{p_{1}}+y_{p_{2}}$ where $y_{p_{1}}$ solves $y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)$ and $y_{p 2}$ solves $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$

$$
g_{1}(x)=\sin (4 x)
$$

set $y_{p_{1}}=A \sin (4 x)+B \cos (4 x)$
no like terns in common w) ye

$$
\begin{aligned}
& y_{1}=e^{2 x}, y_{2}=x e^{2 x} \\
& y_{2}(x)=x e^{2 x},
\end{aligned}
$$

$$
\begin{aligned}
y_{p_{2}} & =(C x+D) e^{2 x} x^{2} \\
& =C x^{3} e^{2 x}+D x^{2} e^{2 x}
\end{aligned}
$$

$$
y_{p}=A \sin (4 x)+B \cos (4 x)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
$$

Solve the IVP

$$
y^{\prime \prime}-y=4 e^{-x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

The ODE is constant coef, nonhomogeneous with exponentid right hand side.

Find y_{c} : $m^{2}-1=0 \Rightarrow(m-1)(m+1)=0$

$$
\begin{array}{r}
m=1 \text { or } m=-1 \\
y_{1}=e^{x}, y_{2}=e^{-x} \text { so } y_{c}=c_{1} e^{x}+c_{2} e^{-x}
\end{array}
$$

Find $y_{p}: \quad g(x)=4 e^{-x}, \quad y_{p}=A e^{-x} x=A x e^{-x}$

The correct form is $y_{p}=A x e^{-x}$.

$$
\begin{aligned}
y_{p}^{\prime} & =A e^{-x}-A x e^{-x} \\
y_{p}^{\prime \prime} & =-A e^{-x}-A e^{-x}+A x e^{-x}=-2 A e^{-x}+A x e^{-x} \\
y_{p}^{\prime \prime}-y_{p} & =4 e^{-x} \\
-2 A e^{-x} & +A x e^{-x}-A x e^{-x}=4 e^{-x} \\
& -2 A e^{-x}=4 e^{-x} \Rightarrow A=-2
\end{aligned}
$$

Hence $y_{p}=-2 x e^{-x}$
The genera solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}
$$

June 29, $2022 \quad 21 / 46$

Now, appls $y(0)=-1, y^{\prime}(0)=1$

$$
\begin{array}{r}
y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x} \\
y(0)=c_{1} e^{0}+c_{2} e^{0}-2 \cdot 0 e^{0}=-1 \\
c_{1}+c_{2}=-1 \\
y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{0}-2 e^{0}+2 \cdot 0 \cdot e^{0}=1 \\
c_{1}-c_{2}-2=1 \\
c_{1}-c_{2}=3
\end{array}
$$

Solve $\quad c_{1}+c_{2}=-1$

$$
c_{1}-c_{2}=3
$$

$$
\begin{array}{ll}
2 c_{1}=2 & c_{1}=1 \\
2 c_{2}=-4 & c_{2}=-2
\end{array}
$$

The solution to the IV P

$$
y=e^{x}-2 e^{-x}-2 x e^{-x}
$$

