June 2 Math 2306 sec. 53 Summer 2022

Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ¹

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)}) \tag{1}$$

A D N A B N A B N

subject to the initial conditions

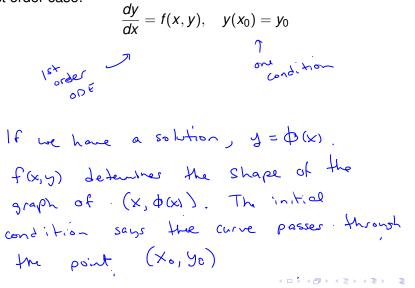
$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)–(2) is called an *initial value problem* (IVP).

¹on some interval *I* containing x_0 .

June 2, 2022 1/40

IVPs First order case:



June 2, 2022 2/40

IVPs

Second order case:

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

The order of the two conditions both @ Xo

June 2, 2022 3/40

2

イロト イロト イヨト イヨト

Example

Given that $y = c_1 x + \frac{c_2}{x}$ is a 2-parameter family of solutions of $x^2y'' + xy' - y = 0$, solve the IVP

$$x^{2}y'' + xy' - y = 0$$
, $y(1) = 1$, $y'(1) = 3$

$$y = C_1 \times + \frac{C_2}{\times}$$
 be need to find C_1, C_2
so that $y(1) = 1$ and $y'(1) = 3$

June 2, 2022 4/40

<ロ> <四> <四> <四> <四> <四</p>

$$y = c_{1}x + \frac{c_{2}}{x}, \quad y' = c_{1} - \frac{c_{2}}{x^{2}}$$

$$y(1) = c_{1}(1) + \frac{c_{2}}{1} = 1, \quad y'(1) = c_{1} - \frac{c_{2}}{1^{2}} = 3$$

$$\Rightarrow \quad c_{1} + c_{2} = 1, \quad solve \quad yuis$$

$$c_{1} - c_{2} = 3, \quad system$$

$$add \quad 2c_{1} = 4 = 0, \quad c_{1} = 2, \quad c_{2} = 1 - c_{1} = 1 - 2 = -1$$

$$The solution to the IVP is$$

$$y = 2x - \frac{1}{x}$$
Note: this is the member of the family
$$y = c_{1}x + \frac{c_{2}}{x} \text{ for } c_{1} = 2 \text{ ad } c_{2} = -1$$

June 2, 2022 5/40

Graphical Interpretation n

Figure: Each curve solves y' + 2xy = 0, $y(0) = y_0$. Each colored curve corresponds to a different value of y_0

A Numerical Solution

Consider a first order initial value problem

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

Euler's Method is a scheme for finding an approximate solution to this IVP. The basic idea is that we

- Start with the known point (x_0, y_0) on the solution curve,
- use the slope (given by $\frac{dy}{dx}$) to get a tangent line there, and
- approximate a nearby point on the curve by the tangent line.
- march forward a littel bit, and repeat.

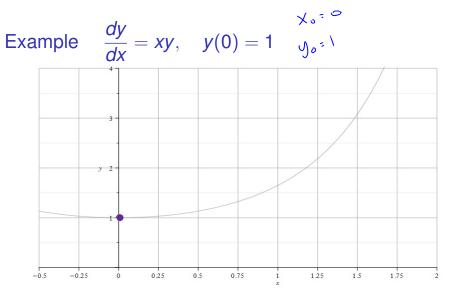


Figure: We know that the point $(x_0, y_0) = (0, 1)$ is on the curve. And the slope of the curve at (0, 1) is $m_0 = f(0, 1) = 0 \cdot 1 = 0$.

Note: The gray curve is the true solution to this IVP. It's shown for reference

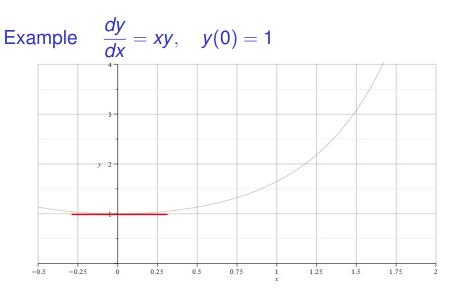


Figure: So we draw a little tangent line (we know the point and slope). Then we increase x, say $x_1 = x_0 + h$, and approximate the solution value $y(x_1)$ with the value on the tangent line y_1 . So $y_1 \approx y(x_1)$.

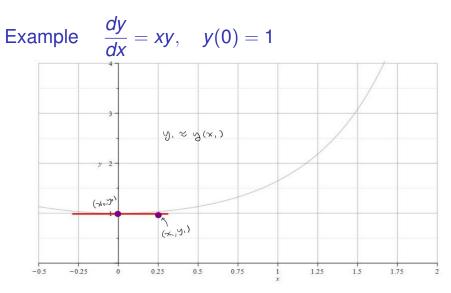


Figure: We take the approximation to the true function *y* at the point $x_1 = x_0 + h$ to be the point on the tangent line.

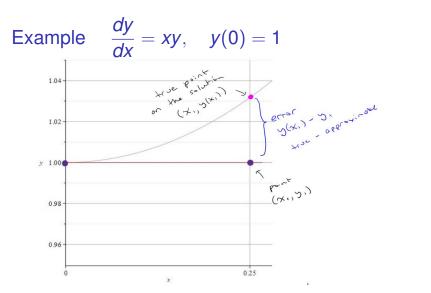


Figure: When *h* is very small, the true solution and the tangent line point will be close. Here, we've zoomed in to see that there is some error between the exact *y* value and the approximation from the tangent line, f(x) = f(x)

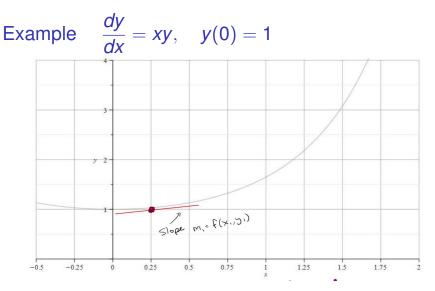


Figure: Now we start with the point (x_1, y_1) and repeat the process. We get the slope $m_1 = f(x_1, y_1)$ and draw a tangent line through (x_1, y_1) with slope m_1 .

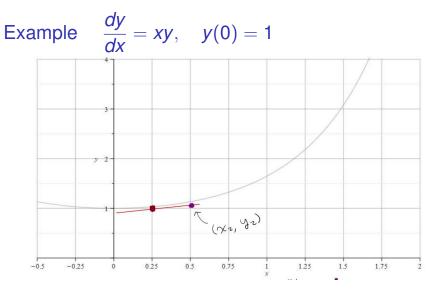


Figure: We go out *h* more units to $x_2 = x_1 + h$. Pick the point on the tangent line (x_2, y_2) , and use this to approximate $y(x_2)$. So $y_2 \approx y(x_2)$

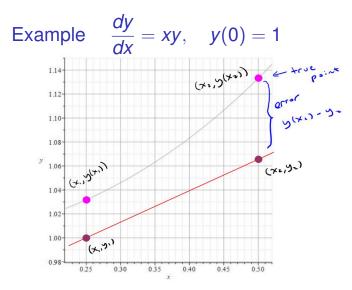


Figure: If we zoom in, we can see that there is some error. But as long as *h* is small, the point on the tangent line approximates the point on the actual solution curve.

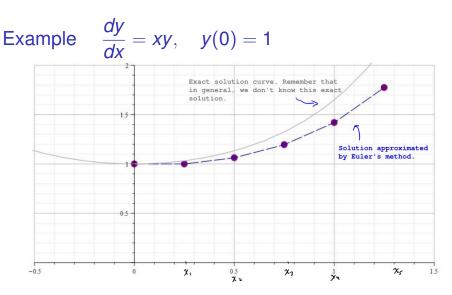


Figure: We can repeat this process at the new point to obtain the next point. We build an approximate solution by advancing the independent variable and connect the points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.

Euler's Method: An Algorithm & Error We start with the IVP

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

We build a sequence of points that approximates the true solution y

$$(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N).$$

We'll take the *x* values to be equally spaced with a common difference of *h*. That is

$$\begin{aligned}
 x_1 &= x_0 + h \\
 x_2 &= x_1 + h = x_0 + 2h \\
 x_3 &= x_2 + h = x_0 + 3h \\
 \vdots \\
 x_n &= x_0 + nh
 \end{aligned}$$

June 2, 2022

16/40

Euler's Method: An Algorithm

$$\frac{dy}{dx}=f(x,y), \quad y(x_0)=y_0.$$

Notation:

- y_n will denote our approximation, and
- $y(x_n)$ will denote the exact solution (that we don't know)

To build a formula for the approximation y_1 , let's approximate the derivative at (x_0, y_0) .

$$f(x_0, y_0) = \left. \frac{dy}{dx} \right|_{(x_0, y_0)} \approx \frac{y_1 - y_0}{x_1 - x_0}$$

(Notice that's the standard formula for slope.)

June 2, 2022 17/40

Euler's Method: An Algorithm

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

Let's get a formula for y_1 .

June 2, 2022 18/40

イロト 不得 トイヨト イヨト ニヨー

Euler's Method: An Algorithm

$$\frac{dy}{dx}=f(x,y),\quad y(x_0)=y_0.$$

We can continue this process. So we use

$$\frac{y_2 - y_1}{h} = f(x_1, y_1) \implies y_2 = y_1 + hf(x_1, y_1)$$

and so forth. We have

Euler's Method Formula: The n^{th} approximation y_n to the exact solution $y(x_n)$ is given by

$$y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

with (x_0, y_0) given in the original IVP and *h* the choice of step size.

Euler's Method Example: $\frac{dy}{dx} = xy$, y(0) = 1

Take h = 0.25 to find an approximation to y(1).

f(x,y) = xy, $x_0 = 0$ and $y_0 = 1$ $y(1) \approx y_4$ starting with $x_0 = 0$ getting to $x_4 = 1$ with step size 0.25 $y_1 = y_0 + h f(x_0, y_0)$ = 1 + 0.25 (0.1) = 1

X,=0.25, y,=1 yz=y,+hf(x,,y,)

$$= 1 + 0.25 (0.25 \cdot 1) = 1.0625$$

$$X_{z} = 0.5, \quad y_{z} = 1.0625$$

$$y_{3} = y_{z} + hf(X_{z}, y_{z})$$

$$= 1.0625 + 0.25 (0.5 \cdot 1.0625) = 1.19531$$

$$X_{3} = 0.75, \quad y_{3} = 1.1953$$

$$y_{4} = y_{3} + h f(X_{3}, y_{3})$$

$$= 1.19531 + 0.25 (0.75 \cdot 1.19531)$$

$$= 1.41913$$

$$y(1) \approx 1.41943$$

Ξ. June 2, 2022 21/40

୬ବଙ

Euler's Method Example: $\frac{dy}{dx} = xy$, y(0) = 1

Take h = 0.25 to find an approximation to y(1).

We went through this process and found that $y_4 = 1.41943$ was our approximation to y(1).

The true² $y(1) = \sqrt{e} = 1.64872$. This raises the question of how good our approximation can be expected to be.

²The exact solution $y = e^{x^2/2}$.

June 2, 2022 22/40

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 … のへの

Euler's Method: Error

First, let's define what we mean by the term *error*. There are a couple of types of error that we can talk about. These are³

Absolute Error = |True Value – Approximate Value|

and

$$\text{Relative Error} = \frac{\text{Absolute Error}}{|\text{True value}|}$$

³Some authors will define absolute error without use of absolute value bars so that absolute error need not be nonnegative.

Euler's Method: Error

We can ask, how does the error depend on the step size?

$$\frac{dy}{dx} = xy, \quad y(0) = 1$$

I programed Euler's method into Matlab and used different *h* values to approximate y(1), and recorded the results shown in the table.

	h	$y(1) - y_n$	$\frac{y(1)-y_n}{y(1)}$
	0.2	0.1895	0.1149
.4593 1.5471	0.1	0.1016	0.0616
1.5959	0.05	0.0528	0.0320
.6281	0.025	0.0269	0.0163
1.6351	0.0125	0.0136	0.0082
			0.0163

y(1)=1.6487

 $y_5=1.$ $y_{10}=1$ $y_{20}=1$ $y_{40}=1$ $y_{80}=1$

Euler's Method: Error

We notice from this example that cutting the step size in half, seems to cut the error and relative error in half. This suggests the following:

The absolute error in Euler's method is proportional to the step size.

There are two sources of error for Euler's method (not counting numerical errors due to machine rounding).

- The error in approximating the curve with a tangent line, and
- using the approximate value y_{n-1} to get the slope at the next step.

A D A A B A A B A A B A B B

June 2, 2022

25/40

_

Euler's Method: Error

For numerical schemes of this sort, we often refer to the *order* of the scheme. If the error satisfies

Absolute Error = Ch^p

where *C* is some constant, then the order of the scheme is *p*.

Euler's method is an order 1 scheme.

• • • • • • • • • • • •

June 2, 2022

26/40

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$\frac{dy}{dx} = g(x).$$

For example, solve the ODE

$$\frac{dy}{dx} = 4e^{2x} + 1. \qquad \Longrightarrow \qquad \Im = \int \frac{dy}{dx} dx = \int (Ye^{2x} + 1) dx$$
$$= 2e^{2x} + x + \zeta$$

June 2, 2022 27/40

• • • • • • • • • • • •

Separable Equations

Definition: The first order equation y' = f(x, y) is said to be **separable** if the right side has the form

$$f(x,y)=g(x)h(y).$$

That is, a separable equation is one that has the form

$$\frac{dy}{dx} = g(x)h(y).$$

イロト 不得 トイヨト イヨト 二日

June 2, 2022

28/40

Determine which (if any) of the following are separable.

(a)
$$\frac{dy}{dx} = x^3 y$$

Separable
 $\frac{dy}{dx} = g(x)h(y)$. where $g(x) = x^3$
and $h(y) = y$
(b) $\frac{dy}{dx} = 2x + y$ not separable

< □ → < □ → < 直 → < 直 → < 亘 → 三 の へ () June 2, 2022 29/40

(c)
$$\frac{dy}{dx} = \sin(xy^2)$$

(d)
$$\frac{dy}{dt} - te^{t-y} = 0 \implies \frac{dy}{dt} = te^{t-y} = te^{t} \cdot e^{t}$$

This is separable $g(t) = te^{t}$, $h(y) = e^{t}$

↓ ロ ト ◆ ● ト ◆ ● ト ◆ ● ト ● ● ◇ Q ◇
June 2, 2022 30/40

Solving Separable Equations Recall that from $\frac{dy}{dx} = g(x)$, we can integrate both sides

$$\int \frac{dy}{dx}\,dx = \int g(x)\,dx.$$

We'll use this observation!

Solving Separable Equations

Let's assume that it's safe to divide by h(y) and let's set p(y) = 1/h(y). We solve (usually find an implicit solution) by **separating the** variables.

$$\frac{dy}{dx} = g(x)h(y)$$
Recall $|f y = \phi(x)$

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{dy}{h(y)} = g(x)$$

$$\frac{dy}{dx} = g(x)$$

$$\frac{dy}{dx} = g(x)$$

$$\frac{dy}{dx} = g(x) dx$$

Solve the ODE

- $\frac{dy}{dx} = -\frac{x}{y} = -x \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ Separable $\omega / g(x) = -x \quad \text{ad}$ $h(y) = \frac{1}{2}$
- $\Rightarrow \frac{1}{3} \frac{dy}{dx} = -\chi$
- $\Rightarrow y \frac{dy}{dx} dx = -x dx \Rightarrow y dy = -x dx$
 - $\int y \, dy = -\int x \, dx \Rightarrow \pm y^2 = -\pm x^2 + C$
 - The solutions are $x^2 + y^2 = k$

June 2, 2022 33/40

イロン イボン イヨン 一日