June 13 Math 3260 sec. 51 Summer 2023

Section 1.8: Intro to Linear Transformations

Recall that the product $A \mathbf{x}$ is a vector that is a linear combination of the columns of A.

If the columns of A are vectors in \mathbb{R}^{m}, and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A \mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^{n}, and
- the vector $\mathbf{b}=A \mathbf{x}$ is a vector in \mathbb{R}^{m}.

Remark: We can think of a matrix A as an operator that acts on vectors \mathbf{x} in \mathbb{R}^{n} (via the product $A \mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^{m}.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition

A transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Remark

Another name for a transformation is a function or mapping. The parentheses notation $T(\cdot)$ is typical function notation. A transformation takes a vector as an input and spits out a vector as the output.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Function Notation: If a transformation T takes a vector \mathbf{x} in \mathbb{R}^{n} and maps it to a vector $T(\mathbf{x})$ in \mathbb{R}^{m}, we can write

$$
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

which reads " T maps \mathbb{R}^{n} into \mathbb{R}^{m}."
And we can write

$$
\mathbf{x} \mapsto T(\mathbf{x})
$$

which reads "x maps to T of \mathbf{x}."
The following vertically stacked notation is often used:

$$
\begin{aligned}
T & : \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
& \mathbf{x} \mapsto T(\mathbf{x})
\end{aligned}
$$

Key Terms

For $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$,

- \mathbb{R}^{n} is the domain, and
$-\mathbb{R}^{m}$ is called the codomain.
- For \mathbf{x} in the domain, $T(\mathbf{x})$ is called the image of \mathbf{x} under T. (We can call \mathbf{x} a pre-image of $T(\mathbf{x})$.)
- The collection of all images is called the range.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A \mathbf{x}$.

Matrix Transformation Example

Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]$. Define the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by the
mapping $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the image of the vector $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under T.

$$
\begin{aligned}
T(\vec{u}) & =A \vec{u} \\
& =\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 1+3(-3) \\
2 \cdot 1+4(-3) \\
0 \cdot 1+(-2)(-3)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right]
\end{aligned}
$$

Example Continued...

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right], \quad \begin{gathered}
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
x \mapsto A \mathbf{x}
\end{gathered}
$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^{2} whose image under T is $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$. For what \vec{x} is

$$
T(\vec{x})=\left[\begin{array}{c}
-4 \\
-4 \\
4
\end{array}\right] \text { ? This is equivalent }
$$ to the matrix equation $A \vec{x}=\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$ ie., $\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$

we con use on augmented matrix

$$
\left[\begin{array}{ccc}
1 & 3 & -4 \\
2 & 4 & -4 \\
0 & -2 & 4
\end{array}\right] \stackrel{\text { ret }}{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=2 \\
& x_{2}=-2
\end{aligned}
$$

The selation is

$$
\vec{x}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

Example Continued...

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right], \quad T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

(c) Determine if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the range of T.

Is there a vector \vec{x} such that

$$
\begin{aligned}
T(\vec{x}) & =\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] ? \\
A \vec{x} & =\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { has augmented matrix }
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is inconsistent
hence $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is not in the
range of T.

Linear Transformations

Definition

A transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Remark 1:These were the two properties (that I claimed were a big deal) of the product $A \mathbf{x}$ from section 1.4.

Remark 2: Every matrix transformation (e.g. $\mathbf{x} \mapsto A \mathbf{x}$) is a linear transformation. And every linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ can be stated in terms of a matrix.

A Theorem About Linear Transformations:

Theorem:

If T is a linear transformation, then
(i) $T(\mathbf{0})=\mathbf{0}$, and
(ii) $T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})$
for any scalars c, and d and vectors \mathbf{u} and \mathbf{v}.

Remark: This second statement says:
The image of a linear combination is the linear combination of the images.
It can be generalized to an arbitrary linear combination ${ }^{1}$

$$
T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right)
$$

${ }^{1}$ This is called the principle of superposition.

An Example on \mathbb{R}^{2}

Let $r>0$ be a scalar and consider the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=r \mathbf{x} .
$$

This transformation is called a dilation if $r>1$ and a contraction if $0<r<1$.

Exercise: Show that T is a linear transformation.

$$
\begin{aligned}
& \text { We have to show that } \\
& T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v}) \text { and } \\
& T(c \vec{u})=c T(\vec{w}) \\
& \text { for every } \vec{u}, \vec{v} \in \mathbb{R}^{2} \text { and } c \in \mathbb{R}
\end{aligned}
$$

Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

$$
\begin{aligned}
T(\vec{u}+\vec{v}) & =r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v} & & \text { by } \rho^{\text {gob }} \\
& =T(\vec{u})+T(\vec{v}) & & \text { scad ar }
\end{aligned}
$$

Let $c \in \mathbb{R}$

$$
\begin{aligned}
T(c \vec{u}) & =r(c \vec{u})=c(r \vec{u}) \\
& =c T(\vec{u})
\end{aligned}
$$

prop os

The Geometry of Dilation/Contraction

Figure: The 2×2 square in the plane under the dilation $\mathbf{x} \mapsto 2 \mathbf{x}$ (top) and the contraction $\mathbf{x} \mapsto \frac{1}{2} \mathbf{x}$ (bottom). Each includes an example of a single vector and its image.

Section 1.9: The Matrix for a Linear Transformation

Recall Linear Transformation

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation provided for every vector \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} and every scalar c

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T(\mathbf{u})+T(\mathbf{v}), \quad \text { and } \\
T(c \mathbf{u}) & =c T(\mathbf{u})
\end{aligned}
$$

Two Remarks

1. Any mapping defined by matrix multiplication, $\mathbf{x} \mapsto A \mathbf{x}$, is a linear transformation.
2. Every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} can be realized in terms of matrix multiplication.

Elementary Vectors

Definition: Elementary Vectors

We'll use the notation \mathbf{e}_{i} to denote the vector in \mathbb{R}^{n} having a 1 in the $i^{\text {th }}$ position and zero everywhere else. The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are called elementary vectors.

For example, the elementary vectors in \mathbb{R}^{2} are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

The elementary vectors in \mathbb{R}^{3} are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Elementary Vectors

Remark:

In general, the elementary vectors are the columns of the $n \times n$ identity matrix.

$$
\begin{gathered}
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \cdots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \\
I_{n}=\left[\mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{n}\right]
\end{gathered}
$$

Matrix of Linear Transformation: an Example

Suppose $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ is a linear transformation, and that

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{r}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
6
\end{array}\right] .
$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^{2} we have

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}
$$

to find a matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{2} .
$$

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] \\
& T(\vec{x})=T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}\right) \\
&=x_{1} T\left(\vec{e}_{1}\right)+x_{2} T\left(\vec{e}_{2}\right) \\
&=x_{1} \cdot\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{rr}
0 & 1 \\
1 & 1 \\
-2 & -1 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This holds for any $\vec{x} \in \mathbb{R}^{2}$, so

$$
\begin{aligned}
T(\vec{x}) & =A \vec{x} \\
A & \text { if } \\
A & =\left[\begin{array}{cc}
0 & 1 \\
1 & 1 \\
-2 & -1 \\
4 & 6
\end{array}\right]
\end{aligned}
$$

Standard Matrix of a Linear Transformation

Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

Moreover, the $j^{t h}$ column of the matrix A is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the $j^{\text {th }}$ column of the $n \times n$ identity matrix I_{n}. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix A is called the standard matrix for the linear transformation T.

Example
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the scaling transformation (contraction or dilation for $r>0$) defined by

$$
T(\mathbf{x})=r \mathbf{x}, \quad \text { for positive scalar } r .
$$

Find the standard matrix for T.
The domain is \mathbb{R}^{2}, so we hove two elementary vectors, \vec{e}_{1} and \vec{e}_{2}.

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=r\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right] \\
& T\left(\vec{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=r\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
r
\end{array}\right]
\end{aligned}
$$

Calling the standard matrix A

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]
$$

A Shear Transformation on \mathbb{R}^{2}
Find the standard matrix for the linear transformation from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that maps \mathbf{e}_{2} to $\mathbf{e}_{2}-\frac{1}{2} \mathbf{e}_{1}$ and leaves \mathbf{e}_{1} unchanged.

Calling it T,

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=\vec{e}_{1} \quad T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\vec{e}_{2}\right)=\vec{e}_{2}-\frac{1}{2} \vec{e}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right]
\end{aligned}
$$

Calling the $\operatorname{modix} A \quad A=\left[\begin{array}{cc}1 & -1 / 2 \\ 0 & 1\end{array}\right]$.

A Shear Transformation on \mathbb{R}^{2}

Figure: The unit square under the transformation $\mathbf{x} \mapsto\left[\begin{array}{rr}1 & -\frac{1}{2} \\ 0 & 1\end{array}\right] \mathbf{x}$.

A Rotation on \mathbb{R}^{2}

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the rotation transformation that rotates each point in \mathbb{R}^{2} counter clockwise about the origin through an angle ϕ. Find the standard matrix for T.

Using some basic trigonometry, the points on the unit circle

$$
\begin{aligned}
T\left(\mathbf{e}_{1}\right) & =(\cos \phi, \sin \phi) \\
T\left(\mathbf{e}_{2}\right) & =\left(\cos \left(90^{\circ}+\phi\right), \sin \left(90^{\circ}+\phi\right)\right) \\
& =(-\sin \phi, \cos \phi) \\
\text { So } A & =\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] .
\end{aligned}
$$

Rotation in Animation

Rotation in Animation

Moving Yoda \quad Yoda using matrix multiplication.

- We can move Yoda using rertices in a 53756×3
- Store information about the vertices in the x, y, and z matrix V, where row coordinates of the ith verter
- Yoda can be rotated by θ radians about the y-axis by multiplying V with R, where

$$
R=\left(\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right)
$$

Rotation in Curve Generation

Figure: The curve $y=\sin (x)$ plotted as a vector valued function along with a version rotated through and angle $\phi=\frac{\pi}{6}$.

Example ${ }^{2}$

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the projection transformation that projects each point onto the x_{1} axis

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] .
$$

Find the standard matrix for T.

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
1 \\
6
\end{array}\right]
\end{aligned}
$$

${ }^{2}$ See pages 77-80 in Lay for matrices associated with other geometric tranformation on \mathbb{R}^{2}

Calling the matrix A,

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The Property Onto

Definition

A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-i.e. if the range of T is all of the codomain.

Remark: If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is an onto transformation, then the equation

$$
T(\mathbf{x})=\mathbf{b}
$$

is always solvable. If T is a linear transformation with standard matrix A, then this is equivalent to saying $A \mathbf{x}=\mathbf{b}$ is always consistent.

Determine if the transformation is onto.

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} .
$$

Note $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. we con ask whether $T(\vec{x})=\vec{b}$ is always solvable. Is $A \vec{x}=\vec{b}$ always consistent?
we con use an augnueused matrix

$$
\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right]
$$

It's an ref, and the last column counst be a pivot column.
$A \vec{x}=\vec{b}$ is always consistent,
T is onto \mathbb{R}^{2}.

The Property One to One

Definition

A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

Remark 1: If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a one to one transformation, then the equation

$$
T(\mathbf{x})=T(\mathbf{y}) \text { is only true when } \quad \mathbf{x}=\mathbf{y} .
$$

Remark 2: If T is a linear transformation with standard matrix A, being one to one would mean that
whenever $\mathbf{A} \mathbf{x}=\mathbf{b}$ is consistent, there is exactly one solution.

Determine if the transformation is one to one.

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} . \quad T: \mathbb{R}^{3} \rightarrow \mathbb{K}^{2}
$$

If $A \vec{x}=\vec{b}$ is consistent, is there c unique solution? we know that $A \vec{x}=\vec{b}$ is always. consistent. we had the augmented matrix

$$
\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right]
$$

We see that x_{1} and X_{2} are basic and x_{3} is a free variable,
$A \vec{x}=\vec{b}$ has infinitely many solutions
T is not one to one.

Two Distinct Properties

Note: We considered the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
\mathbf{x} \mapsto\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x}
$$

and found that

- it IS onto, but
- it IS NOT one to one.

This illustrates that, in general, these are distinct properties. Any given transformation may be onto, one to one, neither of these, or both.

Some Theorems about Onto and One to One

Theorem:

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Theorem:

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then
(i) T is onto if and only if the columns of A span \mathbb{R}^{m}, and
(ii) T is one to one if and only if the columns of A are linearly independent.

Example: Consider $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{1}-x_{2}, 3 x_{2}\right)$.
(a) Verify that T is one to one.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ we can find the stand and matrix A. we need $T(\vec{e}$. and $T\left(\vec{e}_{2}\right)$.

$$
\begin{aligned}
& T(1,0)=(1,2-0,3 \cdot 0)=(1,2,0) \\
& T(0,1)=(0,2 \cdot 0-1,3 \cdot 1)=(0,-1,3) \\
& A=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

we con shaw that $A \vec{x}=\overrightarrow{0}$ has on b the trivial solution.
$A \vec{x}=\overrightarrow{0}$ has ongmunted matrix

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & -1 & 0 \\
0 & 3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$\Rightarrow \vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Hence T is
one to one.

Example Continued... $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{1}-x_{2}, 3 x_{2}\right)$
(b) Determine whether T is onto

$$
A=\left[\begin{array}{rr}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right]
$$

we could ash if
$A \vec{x}=\vec{b}$ is always solvable consider the augmented matrix

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
2 & -1 & b_{2} \\
0 & 3 & b_{3}
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}-2 R_{2}}\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & -1 & b_{2} \cdot 2 b_{1} \\
0 & 3 & b_{3}
\end{array}\right]
$$

$$
3 R_{2}+R_{3} \rightarrow R_{3} \quad\left[\begin{array}{ccl}
1 & 0 & b_{1} \\
0 & -1 & b_{2}-2 b_{1} \\
0 & 0 & b_{3}+3 b_{2}-6 b_{1}
\end{array}\right.
$$

The last column will be a pivot column for some vectors \mathbf{b} in IR^{3}. So $\mathrm{Ax}=\mathbf{b}$ is not always consistent and T is NOT onto.

June 13, 2023

