
June 13 Math 3260 sec. 51 Summer 2023

Section 1.8: Intro to Linear Transformations

Recall that the product Ax is a vector that is a linear combination of the
columns of A.

If the columns of A are vectors in Rm, and there are n of them, then

I A is an m × n matrix,

I the product Ax is defined for x in Rn, and

I the vector b = Ax is a vector in Rm.

Remark: We can think of a matrix A as an operator that acts on
vectors x in Rn (via the product Ax) to produce vectors b in Rm.
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Transformation from Rn to Rm

Definition

A transformation T from Rn to Rm is a rule that assigns to each
vector x in Rn a vector T (x) in Rm.

Remark

Another name for a transformation is a function or mapping.
The parentheses notation T (·) is typical function notation. A
transformation takes a vector as an input and spits out a vector
as the output.
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Transformation from Rn to Rm

Function Notation: If a transformation T takes a vector x in Rn and
maps it to a vector T (x) in Rm, we can write

T : Rn −→ Rm

which reads “T maps Rn into Rm.”

And we can write

x 7→ T (x)

which reads “x maps to T of x.”

The following vertically stacked notation is often used:

T : Rn −→ Rm

x 7→ T (x)
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Key Terms

For T : Rn −→ Rm,

I Rn is the domain, and

I Rm is called the codomain.

I For x in the domain, T (x) is called the image of x under T . (We
can call x a pre-image of T (x).)

I The collection of all images is called the range.

I If T (x) is defined by multiplication by the m × n matrix A, we may
denote this by x 7→ Ax.
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Matrix Transformation Example

Let A =

 1 3
2 4
0 −2

. Define the transformation T : R2 −→ R3 by the

mapping T (x) = Ax.

(a) Find the image of the vector u =

[
1
−3

]
under T .

June 13, 2023 5 / 47



Example Continued...

A =

 1 3
2 4
0 −2

 , T : Rn −→ Rm

x 7→ Ax

(b) Determine a vector x in R2 whose image under T is

 −4
−4
4

.

June 13, 2023 6 / 47



June 13, 2023 7 / 47



Example Continued...

A =

 1 3
2 4
0 −2

 , T : Rn −→ Rm

x 7→ Ax

(c) Determine if

 1
0
1

 is in the range of T .
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Linear Transformations
Definition

A transformation T : Rn −→ Rm, is linear provided

(i) T (u + v) = T (u) + T (v) for every u,v in the domain of T ,
and

(ii) T (cu) = cT (u) for every scalar c and vector u in the
domain of T .

Remark 1:These were the two properties (that I claimed were a big
deal) of the product Ax from section 1.4.

Remark 2: Every matrix transformation (e.g. x 7→ Ax) is a linear
transformation. And every linear transformation T : Rn −→ Rm can be
stated in terms of a matrix.
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A Theorem About Linear Transformations:
Theorem:

If T is a linear transformation, then
(i) T (0) = 0, and
(ii) T (cu + dv) = cT (u) + dT (v)

for any scalars c, and d and vectors u and v.

Remark: This second statement says:

The image of a linear combination is the linear combination of
the images.

It can be generalized to an arbitrary linear combination1

T (c1u1 + c2u2 + · · ·+ ck uk ) = c1T (u1) + c2T (u2) + · · ·+ ck T (uk ).

1This is called the principle of superposition.
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An Example on R2

Let r > 0 be a scalar and consider the transformation T : R2 −→ R2

defined by
T (x) = rx.

This transformation is called a dilation if r > 1 and a contraction if
0 < r < 1.

Exercise: Show that T is a linear transformation.
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The Geometry of Dilation/Contraction

Figure: The 2× 2 square in the plane under the dilation x 7→ 2x (top) and the
contraction x 7→ 1

2 x (bottom). Each includes an example of a single vector
and its image.
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Section 1.9: The Matrix for a Linear Transformation
Recall Linear Transformation

A transformation T : Rn → Rm is a linear transformation pro-
vided for every vector u and v in Rn and every scalar c

T (u + v) = T (u) + T (v), and

T (cu) = cT (u).

Two Remarks
1. Any mapping defined by matrix multiplication, x 7→ Ax, is a linear

transformation.
2. Every linear transformation from Rn to Rm can be realized in terms

of matrix multiplication.
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Elementary Vectors
Definition: Elementary Vectors

We’ll use the notation ei to denote the vector in Rn having a
1 in the i th position and zero everywhere else. The vectors
e1,e2, . . . ,en are called elementary vectors.

For example, the elementary vectors in R2 are

e1 =

[
1
0

]
and e2 =

[
0
1

]
.

The elementary vectors in R3 are

e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1

 .
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Elementary Vectors

Remark:

In general, the elementary vectors are the columns of the n × n
identity matrix.

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · ,en =


0
0
...
1


In = [e1 e2 · · · en]
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Matrix of Linear Transformation: an Example
Suppose T : R2 −→ R4 is a linear transformation, and that

T (e1) =


0
1
−2

4

 , and T (e2) =


1
1
−1

6

 .

Use the fact that T is linear, and the fact that for each x in R2 we have

x =

[
x1
x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
= x1e1 + x2e2

to find a matrix A such that

T (x) = Ax for every x ∈ R2.
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T (e1) =


0
1
−2
4

 , and T (e2) =


1
1
−1
6
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Standard Matrix of a Linear Transformation

Theorem

Let T : Rn −→ Rm be a linear transformation. There exists a
unique m × n matrix A such that

T (x) = Ax for every x ∈ Rn.

Moreover, the j th column of the matrix A is the vector T (ej), where
ej is the j th column of the n × n identity matrix In. That is,

A = [T (e1) T (e2) · · · T (en)] .

The matrix A is called the standard matrix for the linear trans-
formation T .
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Example
Let T : R2 −→ R2 be the scaling transformation (contraction or dilation
for r > 0) defined by

T (x) = rx, for positive scalar r .

Find the standard matrix for T .
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A Shear Transformation on R2

Find the standard matrix for the linear transformation from R2 → R2

that maps e2 to e2 − 1
2e1 and leaves e1 unchanged.
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A Shear Transformation on R2

Figure: The unit square under the transformation x 7→
[

1 − 1
2

0 1

]
x.
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A Rotation on R2

Let T : R2 −→ R2 be the rotation transformation that rotates each point
in R2 counter clockwise about the origin through an angle φ. Find the
standard matrix for T .
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Rotation in Animation
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Rotation in Animation
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Rotation in Curve Generation

Figure: The curve y = sin(x) plotted as a vector valued function along with a
version rotated through and angle φ = π

6 .
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Example2

Let T : R2 −→ R2 be the projection transformation that projects each
point onto the x1 axis

T
([

x1
x2

])
=

[
x1
0

]
.

Find the standard matrix for T .

2See pages 77–80 in Lay for matrices associated with other geometric
tranformation on R2
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The Property Onto

Definition

A mapping T : Rn −→ Rm is said to be onto Rm if each b in Rm

is the image of at least one x in Rn—i.e. if the range of T is all of
the codomain.

Remark: If T : Rn −→ Rm is an onto transformation, then the equation

T (x) = b

is always solvable. If T is a linear transformation with standard matrix
A, then this is equivalent to saying Ax = b is always consistent.
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Determine if the transformation is onto.

T (x) =
[

1 0 2
0 1 3

]
x.
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The Property One to One
Definition

A mapping T : Rn −→ Rm is said to be one to one if each b in
Rm is the image of at most one x in Rn.

Remark 1: If T : Rn −→ Rm is a one to one transformation, then the
equation

T (x) = T (y) is only true when x = y.

Remark 2: If T is a linear transformation with standard matrix A, being
one to one would mean that

whenever Ax = b is consistent, there is exactly one solution.
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Determine if the transformation is one to one.

T (x) =
[

1 0 2
0 1 3

]
x.
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Two Distinct Properties

Note: We considered the linear transformation T : R3 → R2 defined by

x 7→
[

1 0 2
0 1 3

]
x

and found that
I it IS onto, but
I it IS NOT one to one.

This illustrates that, in general, these are distinct properties. Any given
transformation may be onto, one to one, neither of these, or both.
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Some Theorems about Onto and One to One
Theorem:

Let T : Rn −→ Rm be a linear transformation. Then T is one to
one if and only if the homogeneous equation T (x) = 0 has only
the trivial solution.

Theorem:

Let T : Rn −→ Rm be a linear transformation, and let A be the
standard matrix for T . Then

(i) T is onto if and only if the columns of A span Rm, and
(ii) T is one to one if and only if the columns of A are linearly

independent.
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Example: Consider T (x1, x2) = (x1,2x1 − x2,3x2).

(a) Verify that T is one to one.
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Example Continued... T (x1, x2) = (x1,2x1 − x2,3x2)

(b) Determine whether T is onto
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The last column will be a pivot column for some vectors b in 
IR3. So Ax = b is not always consistent and T is NOT onto.
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