June 15 Math 3260 sec. 51 Summer 2023 Section 1.9: The Matrix for a Linear Transformation

### **Recall Linear Transformation**

A transformation  $T : \mathbb{R}^n \to \mathbb{R}^m$  is a **linear transformation** provided for every vector **u** and **v** in  $\mathbb{R}^n$  and every scalar *c* 

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
, and

$$T(c\mathbf{u}) = cT(\mathbf{u}).$$

#### **Recall Elementary Vectors**

We use the notation  $\mathbf{e}_i$  to denote the vector in  $\mathbb{R}^n$  having 1 in the *i*<sup>th</sup> position and zero everywhere else. There are *n* such vectors in  $\mathbb{R}^n$ , and they are the columns of the  $n \times n$  identity matrix.

# Standard Matrix of a Linear Transformation

#### Theorem

Let  $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  be a linear transformation. There exists a unique  $m \times n$  matrix *A* such that

 $T(\mathbf{x}) = A\mathbf{x}$  for every  $\mathbf{x} \in \mathbb{R}^n$ .

Moreover, the *j*<sup>th</sup> column of the matrix *A* is the vector  $T(\mathbf{e}_j)$ , where  $\mathbf{e}_j$  is the *j*<sup>th</sup> column of the  $n \times n$  identity matrix  $I_n$ . That is,

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}.$$

The matrix *A* is called the **standard matrix** for the linear transformation *T*.

# Onto and One to One

### Definition

A mapping  $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  is said to be **onto**  $\mathbb{R}^m$  if each **b** in  $\mathbb{R}^m$  is the image of at least one **x** in  $\mathbb{R}^n$ —i.e. if the range of *T* is all of the codomain.

### Definition

A mapping  $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  is said to be **one to one** if each **b** in  $\mathbb{R}^m$  is the image of **at most one x** in  $\mathbb{R}^n$ .

June 15, 2023 3/72

# Some Theorems about Onto and One to One

#### **Theorem:**

Let  $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  be a linear transformation. Then T is one to one if and only if the homogeneous equation  $T(\mathbf{x}) = \mathbf{0}$  has only the trivial solution.

### **Theorem:**

Let  $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  be a linear transformation, and let A be the standard matrix for T. Then

- (i) T is onto if and only if the columns of A span  $\mathbb{R}^m$ , and
- (ii) T is one to one if and only if the columns of A are linearly independent.

## Remarks

Suppose  $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  is a linear transformation and A is the standard matrix for T.

June 15, 2023

- ▶ If *T* is **onto**, then
  - the range of T is  $\mathbb{R}^m$ ,
  - the equation  $T(\mathbf{x}) = \mathbf{b}$  is always solvable,
  - the system  $A\mathbf{x} = \mathbf{b}$  is always consistent.
- If T is one to one, then
  - $T(\mathbf{x}) = T(\mathbf{y})$  implies that  $\mathbf{x} = \mathbf{y}$ ,
  - $A\mathbf{x} = \mathbf{0}$  has no free variables.

# Example

Consider the linear transformation 
$$\begin{array}{c} \mathcal{T}:\mathbb{R}^3 o\mathbb{R}^2 \ (x_1,x_2,x_3)\mapsto (x_3,x_1+x_2) \end{array}$$

Determine the set of all preimages<sup>1</sup> of **0**. State the solution as a span.

We want to characterize all 
$$\vec{x}$$
 in  $\mathbb{R}^3$   
such that  $T(\vec{x}) = \vec{0}$ . Let's find the  
standard matrix  $A$ . Let's find  
 $T(\vec{e}_1), T(\vec{e}_2), T(\vec{e}_3)$ .  
 $T(\vec{e}_i) = T(1,0,0) = (0,1+0) = (0,1)$   
 $T(\vec{e}_2) = T(0,1,0) = (0,0+1) = (0,1)$ 

<sup>1</sup>This actually has a special name. The set of all preimages of the zero vector is called the *kernel* of *T*.

 $T(\vec{e}_{3}) = T(o, o, i) = (1, o + 0) = (1, o)$ A= (001). We need the solutions to AX=0. The angmented matrix is [1100] Kiski [1100] rrek  $\chi_1 = -\chi_2$ solution:  $\vec{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -X_2 \\ X_2 \\ 0 \end{bmatrix}$ X2 is free X3=0 = X2 (-1 1 0

June 15, 2023 7/72

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

The set is Span  $\left( \begin{bmatrix} -1\\ 0\\ 0 \end{bmatrix} \right)$ .

## Section 2.1: Matrix Operations

Recall the convenient notaton for a matrix A

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}$$

Here each column is a vector  $\mathbf{a}_j$  in  $\mathbb{R}^m$ . We'll use the additional convenient notation to refer to A by entries

$$A = [a_{ij}].$$

June 15, 2023

9/72

 $a_{ij}$  is the entry in **row** *i* and **column** *j*.

# Main Diagonal & Diagonal Matrices

The **main diagonal** of a matrix consist of the entries  $a_{ii}$ .

| a <sub>11</sub>        | $a_{12}$    | $a_{13}$               | •••   | <b>a</b> 1n ]   |
|------------------------|-------------|------------------------|-------|-----------------|
| $a_{21}$               | <b>a</b> 22 | $a_{23}$               | • • • | <b>a</b> 2n     |
| <b>a</b> 31            | $a_{22}$    | <b>a</b> 33            | • • • | <b>a</b> 3n     |
| ÷                      | ÷           | ÷                      | ·     | :               |
| <i>a</i> <sub>m1</sub> | $a_{m2}$    | <i>a</i> <sub>m3</sub> | • • • | a <sub>mn</sub> |

A diagonal matrix is a square matrix, m = n, for which all entries **not** on the main diagonal are zero.

| a <sub>11</sub> | 0        | 0        |   | ך 0               |
|-----------------|----------|----------|---|-------------------|
| 0               | $a_{22}$ | 0        |   | 0                 |
| 0               | 0        | $a_{33}$ |   | 0                 |
| ÷               | ÷        | ÷        | · | :                 |
| 0               | 0        | 0        |   | a <sub>nn</sub> ] |

# Matrix Equality

### Matrix Equality:

Two matrices  $A = [a_{ij}]$  and  $B = [b_{ij}]$  are equal provided they are of the same size,  $m \times n$ , and

 $a_{ji} = b_{jj}$  for every  $i = 1, \ldots, m$  and  $j = 1, \ldots, n$ .

In this case, we can write

$$A = B$$
.

June 15, 2023

# Scalar Multiplication & Matrix Addition

We have two initial operations we can perform on matrices.

### Scalar Multiplication:

For  $m \times n$  matrix  $A = [a_{ij}]$  and scalar c

$$cA = [ca_{ij}].$$

#### Matrix Addition:

For 
$$m \times n$$
 matrices  $A = [a_{ij}]$  and  $B = [b_{ij}]$ 

$$A+B=[a_{ij}+b_{ij}].$$

Note: The sum of two matrices is only defined if they are of the same size.

June 15, 2023

## Example

Consider the following matrices.

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

イロト イポト イヨト イヨト

э

13/72

June 15, 2023

Evaluate each expression or state why it fails to exist.

(a) 
$$3B = \begin{pmatrix} 3(-z) & 3(4) \\ 3(-z) & 3(6) \end{pmatrix}^{-1} \begin{bmatrix} -6 & 12 \\ -21 & 0 \end{bmatrix}$$

Evaluate each expression or state why it fails to exist.

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 4 \\ 7 & 0 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$
  
b) A + B  
$$= \begin{bmatrix} 1 & -2 & -3 + 4 \\ -2 + 7 & 2 + 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 7 \end{bmatrix}$$

June 15, 2023 14/72

イロト イポト イヨト イヨト 二日

#### Zero Matrix

The  $m \times n$  zero matrix has a zero in each entry. We'll denote this matrix as O (or  $O_{m,n}$  if the size is not clear from the context).

#### Theorem: Algebraic Properties of Scalar Mult. and Matrix Add.

Let A, B, and C be matrices of the same size and r and s be scalars. Then

(i) 
$$A + B = B + A$$
 (v)  $r(A + B) = rA + rB$ 

 (ii)  $(A + B) + C = A + (B + C)$ 
 (vi)  $(r + s)A = rA + sA$ 

 (iii)  $A + O = A$ 
 (vii)  $r(sA) = s(rA) = (rs)A$ 

 (iv)<sup>a</sup>  $A + (-A) = O$ 
 (viii)  $1A = A$ 

<sup>*a*</sup>The term -A denotes (-1)A.

# Matrix Multiplication

We know that for any  $m \times n$  matrix A, the operation "**multiply vectors** in  $\mathbb{R}^n$  by A" defines a linear transformation (from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ ).

We wish to define matrix multiplication in such a way as to correspond to **function composition**. Thus if

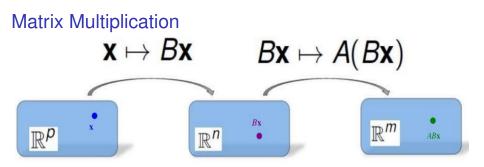
$$S(\mathbf{x}) = B\mathbf{x}$$
, and  $T(\mathbf{v}) = A\mathbf{v}$ ,

then

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}.$$

イロト イポト イヨト イヨト

June 15, 2023



 $B \sim n \times p$   $A \sim m \times n$ 

 $AB \sim m \times p$ 

Figure: **x** is mapped from  $\mathbb{R}^{p}$  to  $B\mathbf{x}$  in  $\mathbb{R}^{n}$ . Then  $B\mathbf{x}$  in  $\mathbb{R}^{n}$  is mapped to  $AB\mathbf{x}$  in  $\mathbb{R}^{m}$ . The composition is a mapping  $\mathbb{R}^{p} \to \mathbb{R}^{m}$ . This is only defined if the number of rows of the matrix *B* is equal to the number of columns of the matrix *A*.

June 15, 2023

## Matrix Multiplication

$$S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} \implies B \sim n \times p$$
$$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \implies A \sim m \times n$$
$$T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} \implies AB \sim m \times p$$

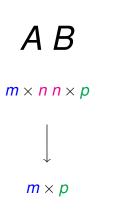
$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p \Longrightarrow$$
$$A(B\mathbf{x}) = x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p \Longrightarrow$$

$$AB = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$$

The  $j^{th}$  column of *AB* is *A* times the  $j^{th}$  column of *B*.

## **Product of Matrices**

The product AB is only defined if the number of columns of A (the left matrix) matches the number of rows of B (the right matrix).



June 15, 2023

# Example

Compute the product AB where

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} 0 \\ -4 \end{bmatrix} , \quad \overrightarrow{b}_{3} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} 1 & 2 \\ -8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} , \quad \overrightarrow{b}_{2} = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}$$

◆□▶ ◆●▶ ◆ ●▶ ◆ ● ▶ ● ● のへで June 15, 2023 21/72

# Row-Column Rule for Computing the Matrix Product If $AB = C = [c_{ij}]$ , then

$$c_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}.$$

(The *ij*<sup>th</sup> entry of the product is the *dot* product of *i*<sup>th</sup> row of *A* with the  $j^{th}$  column of *B*.)

For example, if *A* is  $2 \times 2$  and *B* is  $2 \times 3$ , then n = 2. The entry in row 2 column 3 of *AB* would be

$$c_{23} = \sum_{k=1}^{2} a_{2k} b_{k3} = a_{21} b_{13} + a_{22} b_{23}.$$

June 15, 2023 22/72

# Example

### **Theorem: Properties of the Matrix Product**

Let *A* be an  $m \times n$  matrix. Let *r* be a scalar and *B* and *C* be matrices for which the indicated sums and products are defined. Then

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

June 15, 2023

(i) 
$$A(BC) = (AB)C$$

(ii) 
$$A(B+C) = AB + AC$$

(iii) 
$$(B+C)A = BA + CA$$

(iv) 
$$r(AB) = (rA)B = A(rB)$$
, and

(v) 
$$I_m A = A = A I_n$$

# **Critical Remarks**

### Caveats

- 1. Matrix multiplication **does not commute**! That is, in general  $AB \neq BA$ . In fact, the validity of *AB* does not even imply that *BA* is defined.
- The zero product property **does not** hold! That is, if *AB* = *O*, one **cannot** conclude that one of the matrices *A* or *B* is a zero matrix.
- 3. There is No cancelation law. That is, AB = CB does not imply that A and C are equal.

Compute AB and BA where 
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$ .  
AB  
 $z \times (z)^{2}$   
 $z \times (z)^{2}$   
 $AB = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & 6 \end{bmatrix}$   
 $BA = \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & 6 \end{bmatrix}$   
 $BA = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$   
 $AB \neq BA$ 

June 15, 2023 27/72

୬୯୯

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > 」 臣

Compute the products *AB*, *CB*, and *BB* where  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$ , and  $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .  $AB = \begin{pmatrix} \circ & i \\ \circ & \circ \end{pmatrix} \begin{bmatrix} \circ & \circ \\ 3 & \circ \end{pmatrix} = \begin{bmatrix} 3 & \circ \\ 8 & \circ \end{bmatrix}$ AB = C.R  $C \mathbb{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ but A=C BB = 0but  $B \neq 0$  $BB = \begin{bmatrix} 6 & 0 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 



#### **Positive Integer Powers:**

If *A* is square—meaning *A* is an  $n \times n$  matrix for some  $n \ge 2$ , then the product *AA* is defined. For positive integer *k*, we'll define

$$A^k = AA^{k-1}.$$

**Zero Power:** We define  $A^0 = I_n$ , where  $I_n$  is the  $n \times n$  identity matrix.

4 D K 4 B K 4 B K 4

June 15, 2023

## Transpose

### **Definition: Matrix Transpose**

Let  $A = [a_{ij}]$  be an  $m \times n$  matrix. The **transpose** of A is the  $n \times m$  matrix denoted and defined by

$$A^{T}=[a_{ji}].$$

For example, if

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
, then  $A^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$ .

June 15, 2023 30/72

## Example

$$A = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -4 & 6 \end{bmatrix}$$

Compute  $A^T$ ,  $B^T$ , the transpose of the product  $(AB)^T$ , and the product  $B^T A^T$ .

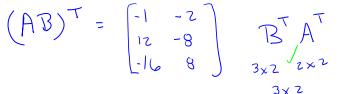
We already computed 
$$AB = \begin{bmatrix} -1 & 12 & -16 \\ -2 & -8 & 8 \end{bmatrix}$$
 in a previous example.  
 $A^{T} = \begin{bmatrix} 1 & -2 \\ -3 & z \end{bmatrix} = B^{T} = \begin{bmatrix} 2 & 1 \\ 0 & -9 \\ 2 & 6 \end{bmatrix}$ 

イロト イポト イヨト イヨト

э

31/72

June 15, 2023



3×2

 $B^{T}A^{T} = \begin{bmatrix} 2 & 1 \\ 0 & -Y \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 12 & -8 \\ -16 & 8 \end{bmatrix}$ 

イロト イポト イヨト イヨト 二日 June 15, 2023 32/72

# **Properties-Matrix Transposition**

#### Theorem

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then

(i) 
$$(A^T)^T = A$$

(ii) 
$$(\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T$$

(iii)  $(rA)^T = rA^T$ 

(iv) 
$$(AB)^T = B^T A^T$$

June 15, 2023 34/72

## Section 2.2: Inverse of a Matrix

Consider the scalar equation ax = b. Provided  $a \neq 0$ , we can solve this explicity

$$x = a^{-1}b$$

where  $a^{-1}$  is the unique number such that  $aa^{-1} = a^{-1}a = 1$ .

If A is an  $n \times n$  matrix, we seek an analog  $A^{-1}$  that satisfies the condition

$$A^{-1}A = AA^{-1} = I_n.$$

- If such matrix A<sup>-1</sup> exists, we'll say that A is nonsingular or invertible.
- Otherwise, we'll say that *A* is **singular**.

## $2\times 2\ case$

#### Theorem

Let 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If  $ad - bc \neq 0$ , then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is singular.

### Determinant

The quantity ad - bc is called the **determinant** of A and may be denoted in several ways

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

June 15, 2023 36/J

# Find the inverse if possible

(a) 
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} \quad det(A) = 3(5) - (-1)(2) = 17$$
$$det(A) \neq 0 \implies A^{-1} exists$$
$$A :s \quad non singular.$$
$$A':s \quad non singular.$$
$$A' = \frac{1}{17} \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 5/17 & -2/7 \\ 1/17 & 3/17 \end{bmatrix}$$
Check: 
$$A^{T}A = \frac{1}{17} \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} = \frac{1}{17} \begin{bmatrix} 17 & 0 \\ 0 & 17 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (D + (D + (D + (D + D))) = 17)$$
$$Une 15,2023 \quad 37/72$$

## Find the inverse if possible

(b) 
$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$$
  
 $det(A) = 3(u) - 6(z) = 0$   
 $A$  is singular, i.e.,  $A^{-1}$   
 $doesn't$  exist.