June 20 Math 3260 sec. 51 Summer 2023

Section 2.2: Inverse of a Matrix

In this section, we will consider square, a.k.a. $n \times n$, matrices, and we are looking for something analogous to the reciprocal of a real number.

If A is an $n \times n$ matrix, we ask whether there is another $n \times n$ matrix A^{-1} with the property

$$
A^{-1} A=A A^{-1}=I_{n} .
$$

- If such matrix A^{-1} exists, we'll say that A is nonsingular or invertible.
- Otherwise, we'll say that A is singular.

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is singular.

Determinant

The quantity $a d-b c$ is called the determinant of A and may be denoted in several ways

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c .
$$

Examples

(a) $A=\left[\begin{array}{cc}3 & 2 \\ -1 & 5\end{array}\right]$

We determined that $\operatorname{det}(A)=17$ making A nonsingular, and

$$
A^{-1}=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]
$$

(b) $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$

For this example, $\operatorname{det}(A)=0$ making A singular. Being singular means that there is no inverse.

Theorem
Theorem
If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof: Let's show that $A^{-12} b$ is a solution, Substitute $\vec{x}=A^{-1} \vec{b}$ in to the system.

$$
\begin{aligned}
A \cdot \vec{x} & =A\left(A^{-1} \vec{b}\right) \\
& =\left(A A^{-1}\right) \vec{b} \\
& =I \vec{b}=\vec{b}
\end{aligned}
$$

Hence $A^{-1} \vec{b}$ is a solution. Now, suppose \vec{x} is my solution. So

$$
A \vec{x}=\vec{b}
$$

Since A is invertible A^{-1} exists. Now, nultipl, on the left by A^{-1}.

$$
\begin{aligned}
A^{-1}(A \vec{x}) & =A^{-1} \vec{b} \\
\left(A^{-1} A\right) \vec{x} & =A^{-1} \vec{b} \\
I \vec{x} & =A^{-1} \cdot \vec{b} \Rightarrow \vec{x}=A^{-1} \vec{b}
\end{aligned}
$$

So $A^{-1} \vec{b}$ is the unique solution

Example
Use a matrix inverse to solve the system.
$3 x_{1}+2 x_{2}=-1$
$-x_{1}+5 x_{2}=4$ as a matrix equation

$$
\left[\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
$$

Let $A=\left[\begin{array}{cc}3 & 2 \\ -1 & 5\end{array}\right]$ and $\vec{b}^{2}=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$
we know that $A^{-1}=\frac{1}{17}\left[\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right]$

$$
\begin{aligned}
& \vec{x}=\vec{A}^{-1} \vec{b}=\frac{1}{17}\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
4
\end{array}\right] \\
&=\frac{1}{17}\left[\begin{array}{c}
-13 \\
11
\end{array}\right]=\left[\begin{array}{c}
-\frac{13}{17} \\
\frac{11}{17}
\end{array}\right] \\
& x_{1}=\frac{-13}{17}, x_{2}=\frac{11}{17}
\end{aligned}
$$

Inverses, Products, \& Transposes

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

(ii) If A and B are invertible $n \times n$ matrices, then the product $A B$ is also invertible ${ }^{a}$ with

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(iii) If A is invertible, then so is A^{T}. Moreover

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

${ }^{a}$ This can generalize to the product of k invertible matrices.

Elementary Matrices

Definition:

An elementary matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples ${ }^{1}$:

$$
\begin{array}{rr}
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] . \\
& 3 R_{2} \rightarrow R_{2} \quad 2 R_{1}+R_{3} \rightarrow R_{3} \quad R_{1} \leftrightarrow R_{2}
\end{array}
$$

${ }^{1}$ There's nothing standard about the subscripts used here, although using E to denote an elementary matrix is common.

Action of Elementary Matrices

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, and compute the following products

$$
\begin{aligned}
E_{1} A, & E_{2} A, \text { and } E_{3} A \\
E_{1} A & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & l
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a & b & c \\
3 d & 3 e & 3 f \\
2 & h & i
\end{array}\right]
\end{aligned}
$$

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& E_{2} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
j & h & i
\end{array}\right] \\
&=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
2 a+g & 2 b+h & 2 c+i
\end{array}\right] \\
& E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& E_{3} A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
&=\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right] \\
& E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Remarks

Remarks

1. Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
2. Each elementary matrix is invertible where the inverse undoes the row operation,
3. Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A .
$$

Matrix Inverses

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_{n}. Moreover, if

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A=I_{n}, \text { then } A=\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} I_{n} .
$$

That is,

$$
A^{-1}=\left[\left(E_{k} \cdots E_{2} E_{1}\right)^{-1}\right]^{-1}=E_{k} \cdots E_{2} E_{1} .
$$

The sequence of operations that reduces A to I_{n}, transforms I_{n} into A^{-1}.

Remark: This last observation-operations that take A to I_{n} also take I_{n} to A^{-1}-gives us a method for computing an inverse!

Algorithm for finding A^{-1}

Inverse Matrix Algorithm

To find the inverse of a given matrix A :

- Form the $n \times 2 n$ augmented matrix $\left[\begin{array}{ll}A & 1\end{array}\right]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If $\operatorname{rref}(A)$ is I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If $\operatorname{rref}(A)$ is NOT I, then A is not invertible.

Remarks: We don't need to know ahead of time if A is invertible to use this algorithm. If A is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq 1$.

Examples: Find the Inverse if Possible
(a)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right]=A \quad \text { set wo } \quad\left[\begin{array}{ll}
A & I
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
-4 & -7 & 3 & 0 & 1 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\\
4 R_{1}+R_{2} \rightarrow R_{2} \\
2 R_{1}+R_{3} \rightarrow R_{3}
\end{array}} \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}\right] \quad 2 R_{2}+R_{3} \rightarrow R_{3}}
\end{aligned}
$$

$$
\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & 0 & 0 & 10 & 2 & 1
\end{array}\right]
$$

A has only two pivot cohmens, A^{-1} doesnel exist

Examples: Find the Inverse if Possible
(b)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & -1 & 1 \\
5 & 6 & 0
\end{array}\right]=A} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
R_{1}+R_{2} \rightarrow R_{2} \\
-5 R_{1}+R_{3} \rightarrow R_{3}
\end{array}} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 & 0 \\
0 & -4 & -15 & -5 & 0 & 1
\end{array}\right] \quad 4 R_{2}+R_{3} \rightarrow R_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 4 & 1
\end{array}\right] \begin{array}{l}
-3 R_{3}+R_{1} \rightarrow R_{1} \\
-4 R_{3}+R_{2} \rightarrow R_{2} \\
{\left[\begin{array}{cccccc}
1 & 2 & 0 & 4 & -12 & -3 \\
0 & 1 & 0 & 5 & -15 & -4 \\
0 & 0 & 1 & -1 & 4 & 1
\end{array}\right] \quad-2 R_{2}+R_{1} \rightarrow R_{1}} \\
{\left[\begin{array}{cccccc}
1 & 0 & 0 & -6 & 18 & 5 \\
0 & 1 & 0 & 5 & -15 & -4 \\
0 & 0 & 1 & -1 & 4 & 1
\end{array}\right]}
\end{array}{ }^{1}}
\end{aligned}
$$

$$
A^{-1}=\left[\begin{array}{ccc}
-6 & 18 & 5 \\
5 & -15 & -4 \\
-1 & 4 & 1
\end{array}\right]
$$

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of...

- A matrix equation $A \mathbf{x}=\mathbf{b}$;
- A linear system that has A as its coefficient matrix;
- A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$;
- Not to mention things like its pivots, its rref, the linear dependence/independence of its columns, blah blah blah...

Question: Is this stuff related to being singular/nonsingular? How?

The Invertible Matrix Theorem

Suppose A is $n \times n$. The following are equivalent. ${ }^{a}$
(a) A is invertible.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one to one.
(g) $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There exists an $n \times n$ matrix C such that $C A=I$.
(k) There exists an $n \times n$ matrix D such that $A D=I$.
(I) A^{T} is invertible.
${ }^{a}$ Meaning all are true or none are true.

The Inverse of a Matrix is Unique
Theorem
Let A and B be $n \times n$ matrices. If $A B=I$, then A and B are both invertible with $A^{-1}=B$ and $B^{-1}=A$.

Proof: Assume $A B=I$, well show that B is invertible and $B^{-1}=A$. Consider the homogeneous. system $B \vec{x}=\overrightarrow{0}$, we wish. to show that \vec{x} must be \vec{O}. From $B \vec{x}=0$ multiply on the lat by A.

$$
\begin{aligned}
B \vec{x} & =\overrightarrow{0} \\
A B \vec{x} & =A \overrightarrow{0}
\end{aligned}
$$

June 16, $2023 \quad$ 29/70

$$
\begin{aligned}
I \vec{x} & =\overrightarrow{0} \\
\vec{x} & =\overrightarrow{0} .
\end{aligned}
$$

$B \vec{x}=\overrightarrow{0}$ has only the trivial solution, hence B is invertible. There exist a matrix \vec{B}^{-1}. From $A B=I$, multop's on the right by B^{\prime}.

$$
\begin{aligned}
A B & =I \\
A B B^{-1} & =I B^{-1} \\
A I & =B^{-1} \\
A & =B^{-1}
\end{aligned}
$$

Since B is invertible B^{-1} is also in vertible., ie., A is invertible and

$$
(A)^{-1}=\left(B^{-1}\right)^{-1}=B
$$

That is, $B=A^{-1}$.

Invertible Linear Transformations

Definition:

A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that both

$$
S(T(\mathbf{x}))=\mathbf{x} \quad \text { and } \quad T(S(\mathbf{x}))=\mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.
If such a function exists, we typically denote it by

$$
S=T^{-1}
$$

Invertability of a Transformation and its Matrix

Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation and A its standard matrix. Then T is invertible if and only if A is invertible. Moreover, if T is invertible, then

$$
T^{-1}(\mathbf{x})=A^{-1} \mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

Remark: This indicates that we can determine if a linear transformation is invertible and identify the inverse transform using the standard matrix.

Example
Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$
T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad \text { given by } \quad T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2}, 4 x_{2}\right) .
$$

Calling the stand ard matrix A,

$$
\begin{aligned}
& A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right] \\
& T\left(\vec{e}_{1}\right)=T(1,0)=(3-0,0)=(3,0) \\
& T\left(\vec{e}_{2}\right)=T(0,1)=(0-1,4)=(-1,4) \\
& A=\left[\begin{array}{cc}
3 & -1 \\
0 & 4
\end{array}\right] \quad \operatorname{det}(A)=3 \cdot 4-0(-1)=12
\end{aligned}
$$

A^{-1} exists and $A^{-1}=\frac{1}{12}\left[\begin{array}{ll}4 & 1 \\ 0 & 3\end{array}\right]$.
T^{-1} exists and $T^{-1}(\vec{x})=A^{-1} \vec{x}$

$$
\begin{aligned}
& T^{-1}(\vec{x})=\frac{1}{12}\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{12}\left[\begin{array}{c}
4 x_{1}+x_{2} \\
3 x_{2}
\end{array}\right] \\
&=\left[\begin{array}{c}
\frac{1}{3} x_{1}+\frac{1}{12} x_{2} \\
\frac{1}{4} x_{2}
\end{array}\right] \\
& T^{-1}\left(x_{1}, x_{2}\right)=\left(\frac{1}{3} x_{1}+\frac{1}{12} x_{2}, \frac{1}{4} x_{2}\right)
\end{aligned}
$$

Example

Suppose $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a one to one linear transformation. Can we determine whether T is onto? Why (or why not)?

If we let A be the standard matrix, $T(\vec{x})=A \vec{x}$, by the invertible matrix Theorem, if $\vec{x} \mapsto A \vec{x}$ is one to one, then $\vec{x} \mapsto A \vec{x}$ is also onto.
$(f) \Leftrightarrow(i)$ from the theorem. June 16, $2023 \quad 37 / 70$

Section 3.1: Introduction to Determinants

We defined a number, called a determinant, for a 2×2 matrix. And that number was related to whether the matrix was invertible.

For $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, we said that the determinant

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}
$$

And we had the critical relationship that A is nonsingular (a.k.a. invertible) if and only if $\operatorname{det}(A)$ is nonzero.

Here, we want to extend the concept of determinant to all $n \times n$ matrices and do it in such a way that for any square matrix A,

A is nonsinguar if and only if $\operatorname{det}(A) \neq 0$.

Determinant: 3×3 Matrix

Let's assume that $A=\left[a_{i j}\right]$ is an invertible 3×3 matrix, and suppose that $a_{11} \neq 0$. We can start the row reduction process to obtain zeros below the left most pivot position.

$$
\begin{gathered}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \begin{array}{c}
a_{11} R_{2} \rightarrow R_{2} \\
a_{11} R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right]} \\
-a_{21} R_{1}+R_{2} \rightarrow R_{2} \\
-a_{31} R_{1}+R_{3} \rightarrow R_{3} .
\end{gathered}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right] .
$$

Determinant: 3×3 Matrix

If $A \sim I$, one of the entries in the 2,2 or the 3,2 position must be nonzero. Let's assume it is the 2,2 entry and continue the reduction ${ }^{2}$

$$
\begin{gathered}
b_{22} R_{3} \rightarrow R_{3} \\
-b_{32} R_{2}+R_{3} \rightarrow R_{3}
\end{gathered}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

where Δ is an expression involving the entries of A. We can state the following:

If A is invertible, it must be that the bottom right entry is nonzero. That is

$$
\Delta \neq 0
$$

Note that if $\Delta=0$, then A would not be row equivalent to I making A singular. We will define the determinant to be Δ.
${ }^{2}$ The factors shown here are $b_{22}=a_{11} a_{22}-a_{12} a_{21}$ and $b_{32}=a_{11} a_{32}-a_{12} a_{31} \bar{\varepsilon}$

Determinant: 3×3 Matrix

We can rearrange the term Δ and state the determinant in an easy to remember way.

$$
\Delta=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
$$

Notice that each expression in parentheses is a product minus product, i.e., they look like determinants of 2×2 matrices! We can restate these as determinants and arrive at the following formula for the determinant of a 3×3 matrix.

3×3 Determinant

For $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, the determinant

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

Minors \& Cofactors

Some Notation

Let $n \geq 2$. For an $n \times n$ matrix A, let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A.

For example, if

$$
A=\left[\begin{array}{rrrr}
-1 & 3 & 2 & 0 \\
4 & 4 & 0 & -3 \\
-2 & 1 & 7 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \text { then } A_{23}=\left[\begin{array}{rrr}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right] .
$$

Minors \& Cofactors

Suppose A is an $n \times n$ matrix for some $n \geq 2$.

Definition: Minor

The $i, j^{\text {th }}$ minor of the $n \times n$ matrix A is the number

$$
M_{i j}=\operatorname{det}\left(A_{i j}\right) .
$$

Definition: Cofactor

Let A be an $n \times n$ matrix with $n \geq 2$. The $i, j^{\text {th }}$ cofactor of A is the number

$$
C_{i j}=(-1)^{i+j} M_{i j} .
$$

Minors \& Cofactors
Find the three minors M_{11}, M_{12}, M_{13} and find the 3 cofactors C_{11}, C_{12}, C_{13} of the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] . \begin{aligned}
M_{11} & =\operatorname{det}\left(A_{11}\right) \\
& =\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \\
& =a_{22} a_{33}-a_{32} a_{23} \\
C_{11} & =(-1)^{1+1} M_{11}=M_{11}
\end{aligned}=a_{22} a_{33}-a_{32} a_{23} \\
& M_{12}=\operatorname{det}\left(A_{12}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
C_{12} & =\left(-D^{1+2} M_{12}\right.
\end{array}=-\left(a_{21} a_{33}-a_{31} a_{23}\right)\right) ~ \begin{aligned}
M_{13} & =\operatorname{det}\left(A_{13}\right)
\end{aligned}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|, ~\left(a_{32}-a_{31} a_{22} .\right.
$$

Observation:

Recall that the determinant of the 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ was given by
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Cofactor Expansion

Note that we can write
$\operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$
An expression of this form is called a cofactor expansion.

The Determinant

Definition: Determinant

For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the number

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} M_{1 j}
\end{aligned}
$$

Remark: Note that this definition defines determinants iteratively via the minors. The determinant of a 3×3 matrix is given in terms of the determinants of three 2×2 matrices. The determinant of a 4×4 matrix is given in terms of the determinants of four 3×3 matrices, and so forth.

Example
Evaluate $\operatorname{det}(A)$.

$$
\begin{aligned}
& \text { Evaluate } \operatorname{det}(A) \text {. } \\
& \begin{array}{l}
A=\left[\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right] \quad \operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \mu_{12} \\
\operatorname{det}(A)=(-1)\left|\begin{array}{ll}
1 & 2 \\
0 & 6
\end{array}\right|-3\left|\begin{array}{cc}
-2 & 2 \\
3 & 6
\end{array}\right|+0\left|\begin{array}{cc}
-2 & 1 \\
3 & 0
\end{array}\right| \\
=-(6-0)-3(-12-6)=-6+54=48
\end{array}
\end{aligned}
$$

Example
Find all values of x such that ${ }^{3} \operatorname{det}(A)=0$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3-x & 2 & 1 \\
0 & 2-x & 4 \\
0 & 3 & 1-x
\end{array}\right] \quad \operatorname{det}(A)=a_{11} C_{11}+a_{n 2} C_{12}+a_{13} C_{13} \\
& \operatorname{det}(A)=(3-x)\left|\begin{array}{cc}
2-x & 4 \\
3 & 1-x
\end{array}\right|-2\left|\begin{array}{cc}
0 & 4 \\
0 & 1-x
\end{array}\right|+1\left|\begin{array}{cc}
0 & 2-x \\
0 & 3
\end{array}\right| \\
& 0
\end{aligned}
$$

${ }^{3}$ In the next section, we'll state that a matrix is singular when its determinant is zero.

June 16, $2023 \quad 51 / 70$

$$
\begin{aligned}
& =(3-x)\left(x^{2}-3 x-10\right) \\
& =(3-x)(x-5)(x+2) \\
& \operatorname{dat}(A)=0 \text { if } x=3, x=5 \text { or } \\
& x=-2 .
\end{aligned}
$$

