June 20 Math 3260 sec. 51 Summer 2023

Section 2.2: Inverse of a Matrix

In this section, we will consider square, a.k.a. $n \times n$, matrices, and we are looking for something analogous to the reciprocal of a real number.

If *A* is an $n \times n$ matrix, we ask whether there is another $n \times n$ matrix A^{-1} with the property

$$A^{-1}A = AA^{-1} = I_n.$$

- If such matrix A⁻¹ exists, we'll say that A is nonsingular or invertible.
- Otherwise, we'll say that A is singular.

$2\times 2\ case$

Theorem

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is singular.

Determinant

The quantity ad - bc is called the **determinant** of A and may be denoted in several ways

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

June 16, 2023

Examples

(a)
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$$

We determined that det(A) = 17 making A nonsingular, and

$$A^{-1} = \frac{1}{17} \left[\begin{array}{cc} 5 & -2 \\ 1 & 3 \end{array} \right]$$

(b)
$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$$

For this example, det(A) = 0 making A singular. Being **singular** means that there is no inverse.

Theorem

Theorem

If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

June 16, 2023 5/70

・ロト・日本・日本・日本・日本

Example

Use a matrix inverse to solve the system.

$$3x_{1} + 2x_{2} = -1$$
as a metrix equation
$$\begin{bmatrix} 3 & z \\ -1 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$
Let $A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$ and $b^{2} \begin{bmatrix} -1 \\ 4 \end{bmatrix}$
we know that $A^{2} = \frac{1}{17} \begin{bmatrix} 5 & -7 \\ 1 & 3 \end{bmatrix}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\vec{\chi} = \vec{A} \vec{b} = \frac{1}{17} \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix}$

 $\chi_1 = \frac{-13}{17}$, $\chi_2 = \frac{13}{17}$

Inverses, Products, & Transposes

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$\left(A^{-1}\right)^{-1}=A.$$

(ii) If *A* and *B* are invertible $n \times n$ matrices, then the product *AB* is also invertible^{*a*} with

$$(AB)^{-1} = B^{-1}A^{-1}.$$

(iii) If A is invertible, then so is A^{T} . Moreover

$$\left(\boldsymbol{A}^{T}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{T}.$$

^aThis can generalize to the product of k invertible matrices.

Elementary Matrices

Definition:

An **elementary** matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples¹:

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, \quad E_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\Im R_{2} \to R_{2} \qquad \Im R_{1} \leftrightarrow R_{3} \to R_{2} \qquad R_{1} \leftrightarrow R_{2}$$

¹There's nothing standard about the subscripts used here, although using *E* to denote an elementary matrix is common.

Action of Elementary Matrices

Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, and compute the following products

$$E_{1}A, E_{2}A, \text{ and } E_{3}A.$$

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

June 16, 2023 10/70

$$A = \left[\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

$$E_{2}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ 3 & k & i \end{bmatrix}$$
$$= \begin{bmatrix} a & b & c \\ d & e & f \\ 2c + 3 & 2b + h & 2c + i \end{bmatrix}$$
$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

June 16, 2023 11/70

2

ヘロト ヘ団ト ヘヨト ヘヨト

 $A = \left| \begin{array}{c} a & b & c \\ d & e & f \\ a & h & i \end{array} \right|$

 $E_3 = \left| \begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right|$

 $E_{3} A^{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ $= \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$

3

イロン イ理 とくほ とくほ とう

Remarks

Remarks

- 1. Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
- 2. Each elementary matrix is invertible where the inverse *undoes* the row operation,
- 3. Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

June 16, 2023

13/70

Matrix Inverses

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_n . Moreover, if

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A = I_n$$
, then $A = (E_k \cdots E_2 E_1)^{-1} I_n$.

That is,

$$A^{-1} = \left[(E_k \cdots E_2 E_1)^{-1} \right]^{-1} = E_k \cdots E_2 E_1.$$

The sequence of operations that reduces *A* to I_n , transforms I_n into A^{-1} .

Remark: This last observation—operations that take *A* to I_n also take I_n to A^{-1} —gives us a method for computing an inverse!

Algorithm for finding A^{-1}

Inverse Matrix Algorithm

To find the inverse of a given matrix A:

- Form the $n \times 2n$ augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If rref(A) is I, then [A I] is row equivalent to [I A⁻¹], and the inverse A⁻¹ will be the last n columns of the reduced matrix.
- ▶ If rref(*A*) is NOT *I*, then *A* is not invertible.

Remarks: We don't need to know ahead of time if *A* is invertible to use this algorithm. If *A* is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq I$.

June 16, 2023

15/70

Examples: Find the Inverse if Possible

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{bmatrix} = A$$
 set up $\begin{bmatrix} A & F \end{bmatrix}$
 $\begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ -4 & -7 & 3 & 0 & 1 & 0 \\ -4 & -7 & 3 & 0 & 1 & 0 \\ -7 & -7 & 3 & 0 & 1 & 0 \\ -2 & -6 & 4 & 0 & 0 & 1 \end{bmatrix}$ $4R_1 + R_2 \Rightarrow R_2$
 $R_1 + R_3 \Rightarrow R_3$
 $\begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 4 & 1 & 0 \\ 0 & -2 & 2 & 2 & 0 & 1 \end{bmatrix}$ $2R_2 + R_3 \Rightarrow R_3$

June 16, 2023 16/70

<ロト <回 > < 回 > < 回 > < 回 > … 回

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 10 & 2 & 1 \end{bmatrix} .$$

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Examples: Find the Inverse if Possible

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & 1 \\ 5 & 6 & 0 \end{bmatrix} = A$$

 $\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ 5 & 6 & 0 & 0 & 1 \end{bmatrix} = R_1 + R_2 - R_2$
 $\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 5 & 6 & 0 & 0 & 1 \end{bmatrix} = -SR_1 + R_3 \rightarrow R_3$
 $\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 1 & 0 \\ 0 & -4 & -15 & -5 & 0 & 1 \end{bmatrix} = 4R_2 + R_3 \rightarrow R_3$

June 16, 2023 19/70

<ロト <回 > < 回 > < 回 > < 回 > … 回

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 4 & 1 \end{bmatrix} \xrightarrow{-3R_3 + R_1 \Rightarrow R_2} \xrightarrow{-3R_2 = R_2 \Rightarrow R_2}$$
$$\begin{bmatrix} 1 & 2 & 0 & 4 & -12 & -3 \\ 0 & 1 & 0 & 5 & -15 & -4 \\ 0 & 0 & 1 & -1 & 4 & 1 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \Rightarrow R_1} \xrightarrow{-2R_2 + R_1 \Rightarrow R_1}$$
$$\begin{bmatrix} 1 & 0 & 0 & -6 & 18 & 5 \\ 0 & 1 & 0 & 5 & -15 & -4 \\ 0 & 0 & 1 & -1 & 4 & 1 \end{bmatrix}$$

June 16, 2023 20/70

୬ବଙ

▲口> ▲圖> ★注> ★注> 二注

 $A' = \begin{pmatrix} -6 & 18 & 5 \\ 5 & -15 & -4 \\ -1 & 4 & 1 \end{pmatrix}$

< □ > < □ > < □ > < 亘 > < 亘 > < 亘 > 三 のへで June 16, 2023 21/70

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of...

- A matrix equation $A\mathbf{x} = \mathbf{b}$;
- A linear system that has A as its coefficient matrix;
- A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$;
- Not to mention things like its **pivots**, its **rref**, the linear dependence/independence of its columns, blah blah blah...

Question: Is this stuff related to being singular/nonsingular? How?

The Invertible Matrix Theorem

Suppose A is $n \times n$. The following are equivalent. ^a

- (a) A is invertible.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A are linearly independent.
- (f) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one to one.
- (g) $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
 - (i) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
 - (j) There exists an $n \times n$ matrix C such that CA = I.
- (k) There exists an $n \times n$ matrix D such that AD = I.
- (I) A^{T} is invertible.

^aMeaning all are true or none are true.

The Inverse of a Matrix is Unique

Theorem

Let *A* and *B* be $n \times n$ matrices. If AB = I, then *A* and *B* are both invertible with $A^{-1} = B$ and $B^{-1} = A$.

Proof: Assume
$$AB=I$$
, well show that
B is invertible and $B'=A$. Consider the
homogeneous system $BX=O$, we wish
to show that \overline{X} must be \overline{O} . From
 $B\overline{X}=\overline{O}$ multiply on the left by A .
 $B\overline{X}=\overline{O}$
 $AB\overline{X}=\overline{O}$
 $AB\overline{X}=A\overline{O}$

June 16, 2023 29/70

$$I = \vec{a}$$

 $X = \vec{a}$
 $B \neq = \vec{a}$ has only the trivial solution,
hence B is invertible. There exist
a matrix B' . From $AB = I$, multiply
on the robult by $T\vec{a}'$.
 $AB = I$
 $ATS = T\vec{a}'$
 $AI = B'$
 $A = B'$

June 16, 2023 30/70

Since B is invertible B^{\prime} is also in vertible, size, A is invertible and $(A)^{\prime} = (B^{\prime})^{\prime} = B$ That is, $B = A^{\prime}$.

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ June 16, 2023 31/70

Invertible Linear Transformations

Definition:

A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is said to be **invertible** if there exists a function $S : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that both

$$S(T(\mathbf{x})) = \mathbf{x}$$
 and $T(S(\mathbf{x})) = \mathbf{x}$

for every **x** in \mathbb{R}^n .

If such a function exists, we typically denote it by

$$S=T^{-1}.$$

June 16, 2023 33/70

< ロ > < 同 > < 回 > < 回 >

Invertability of a Transformation and its Matrix

Theorem

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and *A* its standard matrix. Then *T* is invertible if and only if *A* is invertible. Moreover, if *T* is invertible, then

$$T^{-1}({\bf x}) = A^{-1}{\bf x}$$

for every **x** in \mathbb{R}^n .

Remark: This indicates that we can determine if a linear transformation is invertible and identify the inverse transform using the standard matrix.

June 16, 2023

34/70

Example

Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \text{ given by } T(x_{1}, x_{2}) = (3x_{1} - x_{2}, 4x_{2}).$$
Calling the Standard moder X $A,$

$$A = \left[T(\vec{e},) T(\vec{e})\right],$$

$$T(\vec{e},) = T(1, 0) = (3 - 0, 0) = (3, 0),$$

$$T(\vec{e},) = T(0, 1) = (0 - 1, 4) = (-1, 4),$$

$$A = \left[\begin{array}{c} 3 & -1 \\ 0 & 4 \end{array}\right], \quad det(A) = 3 - 4 - 0(-1) = (2, 4),$$

$$June 16, 2023 \qquad 35/7$$

A¹ exists and
$$A^{-1} = \frac{1}{12} \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix}$$
.
 T^{-1} exists and $T(x_{2}) = A^{-1} x$
 $T^{-1}(x_{2}) = \frac{1}{12} \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 4x_{2} + x_{2} \\ 3x_{2} \end{bmatrix}$
 $= \begin{bmatrix} \frac{1}{3}x_{1} + \frac{1}{2}x_{2} \\ \frac{1}{3}x_{2} \end{bmatrix}$
 $T^{-1}(x_{1}, x_{2}) = (\frac{1}{3}x_{1} + \frac{1}{2}x_{2}, \frac{1}{3}x_{2})$

<ロ▶<書▶<書▶ ま のQペ June 16, 2023 36/70

Example

Suppose $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a one to one linear transformation. Can we determine whether *T* is onto? Why (or why not)?

If we let A be the struder?
notice,
$$T(x) = Ax$$
, by the invertible
matrix Theorem, if $x \mapsto Ax$ is
one to one, then $x \mapsto Ax$ is also
onto.
 $(f) \Leftrightarrow (i)$ from the price.

June 16, 2023 37/70

Section 3.1: Introduction to Determinants

We defined a number, called a **determinant**, for a 2×2 matrix. And that number was related to whether the matrix was invertible.

For
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, we said that the determinant $\det(A) = a_{11}a_{22} - a_{21}a_{12}$.

And we had the critical relationship that A is nonsingular (a.k.a. invertible) if and only if det(A) is nonzero.

Here, we want to extend the concept of **determinant** to all $n \times n$ matrices and do it in such a way that for any square matrix A,

A is nonsinguar if and only if $det(A) \neq 0$.

June 16, 2023

39/70

Determinant: 3×3 Matrix

Let's assume that $A = [a_{ij}]$ is an **invertible** 3×3 matrix, and suppose that $a_{11} \neq 0$. We can start the row reduction process to obtain zeros below the left most pivot position.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11}R_2 \to R_2 \\ a_{11}R_3 \to R_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11}a_{21} & a_{11}a_{22} & a_{11}a_{23} \\ a_{11}a_{31} & a_{11}a_{32} & a_{11}a_{33} \end{bmatrix}$$

$$= \frac{a_{21}R_1 + R_2 \to R_2}{a_{31}R_1 + R_3 \to R_3} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11}a_{21} & a_{11}a_{32} & a_{11}a_{33} \end{bmatrix}$$

< □ > < @ > < E > < E > E のへで June 16, 2023 40/70

Determinant: 3×3 Matrix

If $A \sim I$, one of the entries in the 2, 2 or the 3, 2 position must be nonzero. Let's assume it is the 2, 2 entry and continue the reduction²

$$\begin{array}{c} b_{22}R_3 \to R_3 \\ -b_{32}R_2 + R_3 \to R_3 \end{array} \quad \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & 0 & a_{11}\Delta \end{array} \right],$$

where Δ is an expression involving the entries of *A*. We can state the following:

If *A* is invertible, it must be that the bottom right entry is nonzero. That is

$$\Delta \neq 0.$$

Note that if $\Delta = 0$, then *A* would not be row equivalent to *I* making *A* singular. We will define the determinant to be Δ .

²The factors shown here are $b_{22} = a_{11}a_{22} - a_{12}a_{21}$ and $b_{32} = a_{11}a_{32} - a_{12}a_{31} = 0$

Determinant: 3×3 Matrix

We can rearrange the term Δ and state the determinant in an easy to remember way.

 $\Delta = a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$

Notice that each expression in parentheses is a *product minus product*, i.e., they look like determinants of 2×2 matrices! We can restate these as determinants and arrive at the following formula for the determinant of a 3×3 matrix.

3×3 Determinant

For
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, the determinant

$$\det(A) = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Minors & Cofactors

Some Notation

Let $n \ge 2$. For an $n \times n$ matrix A, let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting the i^{th} row and the j^{th} column of A.

For example, if

$$A = \begin{bmatrix} -1 & 3 & 2 & 0 \\ 4 & 4 & 0 & -3 \\ -2 & 1 & 7 & 2 \\ 3 & 0 & -1 & 6 \end{bmatrix} \text{ then } A_{23} = \begin{bmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{bmatrix}$$

June 16, 2023 43/70

Minors & Cofactors

Suppose *A* is an $n \times n$ matrix for some $n \ge 2$.

Definition: Minor

The *i*, *j*th **minor** of the $n \times n$ matrix *A* is the number

$$M_{ij} = \det(A_{ij}).$$

Definition: Cofactor

Let *A* be an $n \times n$ matrix with $n \ge 2$. The *i*, *j*th **cofactor** of *A* is the number

$$C_{ij}=(-1)^{i+j}M_{ij}.$$

イロト イポト イヨト イヨト

Minors & Cofactors

Find the three minors M_{11} , M_{12} , M_{13} and find the 3 cofactors C_{11} , C_{12} , C_{13} of the matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \qquad M_{11} = dek (A_{11})$$
$$= \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$$
$$= \begin{bmatrix} a_{22} & a_{33} \\ a_{32} & a_{33} \end{bmatrix}$$
$$= a_{22} a_{33} - a_{32} a_{23}$$
$$C_{11} = (-D) M_{11} = M_{11} = a_{22} a_{33} - a_{32} a_{23}$$
$$M_{12} = dek (A_{12}) = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} = a_{21} a_{33} - a_{31} a_{23}$$

$$C_{12} = (-D^{1+2}M_{12} = -(a_{21}a_{33} - a_{31}a_{22})$$

$$M_{13} = dt(A_{13}) = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{21}a_{32} - a_{31}a_{22}$$

$$C_{13} = (-D^{1+3}M_{13} = a_{21}a_{32} - a_{31}a_{22})$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ シ ● ○ ○ ○ June 16, 2023 46/70

Observation:

Recall that the determinant of the 3 × 3 matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ was given by

$$\det(A) = a_{11}\det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}\det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13}\det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Cofactor Expansion

Note that we can write

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

An expression of this form is called a *cofactor expansion*.

The Determinant

Definition: Determinant

For $n \ge 2$, the **determinant** of the $n \times n$ matrix $A = [a_{ij}]$ is the number

$$det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j}M_{1j}$$

Remark: Note that this definition defines determinants iteratively via the minors. The determinant of a 3×3 matrix is given in terms of the determinants of three 2×2 matrices. The determinant of a 4×4 matrix is given in terms of the determinants of four 3×3 matrices, and so forth.

Example Evaluate det(*A*).

-

$$A = \begin{bmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{bmatrix}$$

$$dxt(A) = (-1) \begin{vmatrix} 1 & 2 \\ 0 & 6 \end{vmatrix} - 3 \begin{vmatrix} -2 & 2 \\ 3 & 6 \end{vmatrix} + 0 \begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix}$$
$$= -(6-0) - 3(-12-6) = -6 + 54 = 48$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで June 16, 2023 49/70

Example

Find all values of x such that³ det(A) = 0.

$$A = \begin{bmatrix} 3-x & 2 & 1\\ 0 & 2-x & 4\\ 0 & 3 & 1-x \end{bmatrix} \quad det(A) = a_{11} C_{11} + a_{22} C_{12} + a_{13} C_{13}$$

$$d + (A) = (3-x) \begin{vmatrix} z - x & y \\ 3 & 1 - x \end{vmatrix} - 2 \begin{vmatrix} 0 & y \\ 0 & 1 - x \end{vmatrix} + 1 \begin{vmatrix} 0 & z - x \\ 0 & 3 \end{vmatrix}$$
$$= (3-x) ((2-x)(1-x) - 12)$$

³In the next section, we'll state that a matrix is **singular** when its determinant is zero.

 $= (3-\chi) (\chi^2 - 3\chi - 10)$

= (3-x)(x-5)(x+2)

dut(A)=0 if X=3, X=5 or

X=-2.

June 16, 2023 52/70