June 22 Math 3260 sec. 51 Summer 2023

Section 3.1: Introduction to Determinants

Definition: Determinant

For $n \ge 2$, the **determinant** of the $n \times n$ matrix $A = [a_{ij}]$ is the number

$$\det(A) = \sum_{j=1}^{n} a_{1j}C_{1j} = \sum_{j=1}^{n} (-1)^{1+j} a_{1j}M_{1j}$$

Remark: Here, M_{ij} and C_{ij} refer to the *i*, *j*th minor and cofactor, respectively.

Remark: Note that the determinant is a number. At least for the 3×3 case, we defined it so that this number is nonzero if *A* is invertible.

A D N A B N A B N A B N

Evaluate det(A).
$$A = \begin{bmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{bmatrix}$$

Using the definition
 $det(A) = -1 \begin{vmatrix} 1 & 2 \\ 0 & 6 \end{vmatrix} - 3 \begin{vmatrix} -2 & 2 \\ 3 & 6 \end{vmatrix} + 0 \begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix} = 48$

Find all values of x such that det(A) = 0. $A = \begin{bmatrix} 3 - x & 2 & 1 \\ 0 & 2 - x & 4 \\ 0 & 3 & 1 - x \end{bmatrix}$

We took the determinant using the definition.

$$det(A) = (3-x) \begin{vmatrix} 2-x & 4 \\ 3 & 1-x \end{vmatrix} - 2 \begin{vmatrix} 0 & 4 \\ 0 & 1-x \end{vmatrix} + 1 \begin{vmatrix} 0 & 2-x \\ 0 & 3 \end{vmatrix}$$

June 22, 2023 2/59

General Cofactor Expansions

Theorem

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

We can fix any row *i* of a matrix A and then

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

Or, we can fix any column *j* of a matrix *A* and then

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

A D N A B N A B N A

June 22, 2023

3/59

Evaluate det(A).

$$A = \begin{bmatrix} -1 & 3 & 4 & 0 \\ 0 & 0 & -3 & 0 \\ -2 & 1 & 2 & 2 \\ 3 & 0 & -1 & 6 \end{bmatrix} \xrightarrow{() \text{ sing row 2}}_{dit(A) = a_{21}} C_{21} + a_{22} C_{22} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{21} C_{21} + a_{22} C_{22} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{21} C_{21} + a_{22} C_{22} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{21} C_{21} + a_{22} C_{22} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{21} C_{21} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{21} C_{21} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{21} C_{21} + a_{23} C_{23} + a_{24} C_{24}}_{dit(A) = a_{24} C_{24} + a_{25} C_{23} + a_{24} C_{24}}_{dit(A) = a_{24} C_{24} + a_{25} C_{23} + a_{24} C_{24}}_{dit(A) = a_{24} C_{24} + a_{25} C_{24} + a_{25} C_{25} + a_{25} C_{25}}_{dit(A) = a_{24} C_{24} + a_{25} C_{25} + a_{25} C_{25}}_{dit(A) = a_{24} C_{24} + a_{25} C_{25} + a_{25} C_{2$$

$$det(A) = a_{23}C_{23} = -(-3) \begin{vmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{vmatrix}$$

June 22, 2023 4/59

2

イロト イヨト イヨト イヨト

Triangular Matrices

Definition:

The $n \times n$ matrix $A = [a_{ij}]$ is said to be **upper triangular** if $a_{ij} = 0$ for all i > j.

It is said to be **lower triangular** if $a_{ij} = 0$ for all j > i. A matrix that is both upper and lower triangular is a **diagonal** matrix.

June 22, 2023 6/59

Determinant of Triangular Matrix

Theorem:

For $n \ge 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A = [a_{ij}]$ is triangular, then $det(A) = a_{11}a_{22}\cdots a_{nn}$.)

Example: Evaluate det(A)

Evaluate det(A)

$$A = \begin{bmatrix} -1 & 3 & 4 & 0 & 2 \\ 0 & 2 & -3 & 0 & -4 \\ 0 & 0 & 3 & 7 & 5 \\ 0 & 0 & 0 & -4 & 6 \\ 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$

$$drt(A) = (-1)(21(3)(-4)(6))$$
$$= 6(24) = 144$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで June 22, 2023 8/59

Section 3.2: Properties of Determinants

Theorem:

Let *A* be an $n \times n$ matrix, and suppose the matrix *B* is obtained from *A* by performing a single elementary row operation^{*a*}. Then

(i) If *B* is obtained by adding a multiple of a row of *A* to another row of *A* (row replacement), then

 $\det(B) = \det(A).$

(ii) If *B* is obtained from *A* by swapping any pair of rows (row swap) , then

 $\det(B) = -\det(A).$

(iii) If *B* is obtained from *A* by scaling any row by the constant *k* (scaling), then

 $\det(B) = k \det(A).$

^aIf "row" is replaced by "column" in any of the operations, the conclusions still follow.

Compute the determinant by first performing row operations to obtain a triangular matrix and recording the effect of each row operation.

$$= 2(1)(-3)(5) = -30$$

 $d_{1+}(A) = \frac{-30}{(-1)(-1)}$ -30 Row replacement $kR_i + R_j \rightarrow R_i$ about Ri+kRj > Rj This by m a scale by art about what 6 Jus ► < ∃ ►</p> э June 22, 2023 12/59

Results on Determinants

Theorem

The $n \times n$ matrix *A* is invertible if and only if det(*A*) \neq 0.

Theorem

For $n \times n$ matrix A, det $(A^T) =$ det(A).

Theorem

For $n \times n$ matrices A and B, det(AB) = det(A) det(B).

Show that if *A* is an $n \times n$ invertible matrix, then

 $\det(A^{-1}) = \frac{1}{\det(A)}.$ Note that AA' = T. So det(AA') = det(I) = 1By the previous theorem dt(AA') = det(A)dt(A') = 1 $\Rightarrow det(A') = \frac{1}{det(A)}$. June 22, 2023 14/59

Let *A* be an $n \times n$ matrix, and suppose there exists invertible matrix *P* such that¹

$$B=P^{-1}AP.$$

Show that

$$\det(B) = \det(A).$$

¹The process of multiplying by P^{-1} on the left and P on the right is called a *similarly transform*. The matrices A and B are said to be *similar* $P \leftrightarrow A = A = A$

= $det(A) \frac{1}{det(P)} det(P)$

= det(A).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Section 3.3: Cram er's Rule, Volume, and Linear Transformations

Cramer's Rule is a method for solving some small linear systems of equations.

Notation:

For $n \times n$ matrix A and **b** in \mathbb{R}^n , let $A_i(\mathbf{b})$ be the matrix obtained from A by replacing the *i*th column with the vector **b**. That is

$$A_i(\mathbf{b}) = [\mathbf{a}_1 \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_n]$$

Example Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, then
$$A_3(\mathbf{b}) = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix}$$

June 22, 2023 17/59

Cram er's Rule

Theorem:

Let *A* be an $n \times n$ nonsingular matrix. Then for any vector **b** in \mathbb{R}^n , the unique solution of the system $A\mathbf{x} = \mathbf{b}$ is given by **x** where

$$x_i = rac{\det A_i(\mathbf{b})}{\det A}, \quad i = 1, \dots, n$$

Remark: The condition $det(A) \neq 0$ is necessary for Cramer's rule to be a viable method. This allows for the solution to be given in terms of ratios of determinants.

Remark: If det(A) = 0, the system may be consistent, but another method is required to make a determination.

Determine whether Cramer's rule can be used to solve the system. If so, use it to solve the system.

June 22, 2023 19/59

ヘロト 人間 とくほとくほう

$$A_{1}(\overline{b}) = \begin{bmatrix} 9 & 1 \\ -3 & 7 \end{bmatrix} \qquad A_{2}(\overline{b}) = \begin{bmatrix} 2 & 9 \\ -1 & -3 \end{bmatrix}$$

 $det(A_{1}(b)) = 9(7) - (-3)(1)$ = (-3)(-3)(1) $dt(A_2(t_3)) = 2(-3) - (-1)9$ = -6 + 9 = 3

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで June 22, 2023 20/59

Application: Laplace Transforms

In various engineering applications, electrical or mechanical components are often chosen to try to control the long term behavior of a system (e.g. adding a damper to kill off oscillatory behavior). Using Laplace Transforms, differential equations are converted into algebraic equations containing a parameter s. These give rise to systems of the form

> 3sX - 2Y = 4-6X + sY = 1

Determine the values of s for which the system is uniquely solvable. For such s, find the solution (X, Y) using Crammer's rule.

> June 22, 2023

24/59

$$3sX - 2Y = 4$$

$$-6X + sY = 1$$

$$\begin{cases}3s & -z \\ -6 & s \end{cases} \begin{bmatrix} X \\ -6 & s \end{bmatrix} \begin{bmatrix} Y \\ -Y \end{bmatrix} = \begin{bmatrix} Y \\ 1 \end{bmatrix}$$

A
$$\vec{b}$$

$$d_{x}(A) = 3s(s) - (-6)(-2) = 3s^{2} - 12$$

$$d_{x}(A) = 0 \Rightarrow 3(s^{2} - 4) = 0$$
if $s = 2$ or $s = -2$
The system is unique by solvable if $s \neq \pm 2$.
$$A_{1}(b) = \begin{bmatrix} 4 & -2 \\ 1 & 5 \end{bmatrix}, A_{2}(b) = \begin{bmatrix} 3s & 4 \\ -6 & 1 \end{bmatrix}$$

$$(D + dP + dE + dE + E = 9)$$

June 22, 2023 25/59

 $dt(A_{1}(\overline{b})) = 4s + 2 , \quad det(A_{2}(\overline{b})) = 3s + 24$ $det(A) = 3(s^{2} - 4)$

For $s \neq \pm 2$, the solution $\chi = \frac{4s+2}{3(s^2-4)}$ and $\gamma = \frac{3s+24}{3(s^2-4)} = \frac{s+8}{s^2-4}$

Area & Volume (Video)

Theorem:

If **u** and **v** are nonzero, nonparallel vectors in \mathbb{R}^2 , then the area of the parallelogram determined by these vectors is $|\det(A)|$ where $A = [\mathbf{u} \ \mathbf{v}]$.

Find the area of the parallelogram with vertices (0,0), (-2,4), (4,-5), and (2,-1).

June 22, 2023 28/59

$$frea = |dt(A)|$$

= ||-2 4||
- 5||
= |-2(-5) - 4(4)|

f

Volume of a Parallelepiped

Theorem:

If **u**, **v**, and **w** are nonzero, non-collinear vectors in \mathbb{R}^3 , then the volume of the parallelepiped determined by these vectors is $|\det(A)|$ where $A = [\mathbf{u} \mathbf{v} \mathbf{w}]$.

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (2,3,0), (-2,0,2) and (-1,3,-1).

June 22, 2023 31/59

Let's de cofactor expension across row 3 dit (A) = a3, Cn, + a32 C32 + a33 C33 $= -(-1)\begin{vmatrix} 2 & -2 \\ 3 & 0 \end{vmatrix} + 2\begin{vmatrix} 2 & -1 \\ 3 & 3 \end{vmatrix}$ = (0 - (-6)) + z(6 + 3)= 6+18 = 24 The volume is D.M.

June 22, 2023 32/59

э.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

996

-3

Section 4.1: Vector Spaces and Subspaces

Recall that we had defined \mathbb{R}^n as the set of all *n*-tuples of real numbers. We defined two operations, vector addition and scalar multiplication, and said that the following algebraic properties hold:

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars c and d

- (i) u + v = v + u (v) c(u + v) = cu + cv
- (ii) (u + v) + w = u + (v + w) (vi) (c + d)u = cu + du
- (iii) u + 0 = 0 + u = u (vii) c(du) = d(cu) = (cd)u
- (iv) u + (-u) = -u + u = 0 (viii) 1u = u

We later saw that a set of $m \times n$ matrices with scalar multiplication and matrix addition satisfies the same set of properties.

> June 22, 2023

34/59

Question: Are there other sets of objects with operations that share this same structure?

Definition: Vector Space

A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms:

For all \mathbf{u}, \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

- 1. The sum $\mathbf{u} + \mathbf{v}$ is in V.
- $2. \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9.
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$
.

イロト 不得 トイヨト イヨト 二日

Remarks:

- V is more accurately called a *real vector space* when we assume that the relevant scalars are the real numbers.
- Property 1., u + v ∈ V, is called being closed under (or with respect to) vector addition.
- Property 6., cu ∈ V, is called being closed under (or with respect to) scalar multiplication.
- These are axioms. That means they are assumed, not proven. However, we can use them to prove or disprove that some set with operations is actually a vector space.

An Example of a Vector Space

For an integer $n \ge 0$, let \mathbb{P}_n denote the set of all polynomials with real coefficients of degree at most n.

$$\mathbb{P}_n = \{\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \dots + \mathbf{p}_n t^n \mid \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{R}\},\$$

where addition² and scalar multiplication are defined by

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t) = (p_0 + q_0) + (p_1 + q_1)t + \dots + (p_n + q_n)t^n$$

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + \cdots + cp_nt^n.$$

$$^{2}\mathbf{q}(t)=q_{0}+q_{1}t+\cdots+q_{n}t^{n}$$

June 22, 2023 37/59

What is the zero vector **0** in \mathbb{P}_n ?

Let $\mathbf{0}(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n$. Find the values of a_0, \ldots, a_n .

For
$$\vec{p}$$
 in \vec{P}_n , $\vec{p} + \vec{0} = \vec{p}$.
 $(\vec{p} + \vec{0})(t) = \vec{p}(t) + \vec{0}(t)$
 $= (p_0 + a_0) + (p_1 + a_1)t + \dots + (p_n + a_n)t^n$
 $= p_0 + p_1 t + \dots + p_n t^n$

June 22, 2023 38/59

- 34

イロト イロト イヨト イヨト

$$P_{0} + a_{0} = P_{0} \implies a_{0} = 0$$

$$P_{1} + a_{1} = P_{1} \implies a_{1} = 0$$

$$\vdots$$

$$P_{n} + a_{n} = P_{n} \implies a_{n} = 0$$

That is $\hat{O}(t) = 0 + 0t + 0t^{2} + \dots + 0t^{n}$

If $\mathbf{p}(t) = p_0 + p_1 t + \dots + p_n t^n$, what is the vector $-\mathbf{p}$? Let $-\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n$. Find the values of c_0, \dots, c_n .

$$(\vec{p}+(-\vec{p}))$$
 = \vec{p} (++ (- \vec{p} (+))
= (p_0+c_0) + (q_1+c_1)t + ... + (q_n+c_n)t^n
= 0 + 0t + ... + 0tⁿ

Equating these

 $p_{v} + (o = 0) \implies C_{v} = -p_{v}$ $P_1 + C_1 = 0 \implies C_1 = -P_1$ $P_{n+} C_{n} = O \implies C_{n} = -P_{n}$

A set that is not a Vector Space

Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(1) Does property 1. hold for V?

Let
$$i_{1} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ w \end{bmatrix}$
be in V . So $x \le 0, y \le 0, z \le 0$ and

 $\omega \in O$,

$$\dot{u} + \dot{v} = \begin{bmatrix} x + z \\ y + w \end{bmatrix}$$

X+250 m2 y+W50 blence int is in V.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ June 22, 2023 43/59

A set that is not a Vector Space

Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(2) Does property 6. hold for V?

Note that
$$h = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 is in V .
Let $C = -1$ $Cu = -1 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 Cu is not in V . Property
S.x fairly.

44/59

V is not a vector space.