June 22 Math 3260 sec. 51 Summer 2023

Section 3.1: Introduction to Determinants

Definition: Determinant

For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the number

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{1 j} C_{1 j}=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} M_{1 j}
$$

Remark: Here, $M_{i j}$ and $C_{i j}$ refer to the $i, j^{\text {th }}$ minor and cofactor, respectively.
Remark: Note that the determinant is a number. At least for the 3×3 case, we defined it so that this number is nonzero if A is invertible.

Examples

Evaluate $\operatorname{det}(A) . \quad A=\left[\begin{array}{ccc}-1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6\end{array}\right]$
Using the definition

$$
\operatorname{det}(A)=-1\left|\begin{array}{ll}
1 & 2 \\
0 & 6
\end{array}\right|-3\left|\begin{array}{rr}
-2 & 2 \\
3 & 6
\end{array}\right|+0\left|\begin{array}{rr}
-2 & 1 \\
3 & 0
\end{array}\right|=48
$$

Find all values of x such that $\operatorname{det}(A)=0 . \quad A=\left[\begin{array}{ccc}3-x & 2 & 1 \\ 0 & 2-x & 4 \\ 0 & 3 & 1-x\end{array}\right]$
We took the determinant using the definition.

$$
\operatorname{det}(A)=(3-x)\left|\begin{array}{cc}
2-x & 4 \\
3 & 1-x
\end{array}\right|-2\left|\begin{array}{cc}
0 & 4 \\
0 & 1-x
\end{array}\right|+1\left|\begin{array}{cc}
0 & 2-x \\
0 & 3
\end{array}\right|
$$

General Cofactor Expansions

Theorem

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

We can fix any row i of a matrix A and then

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Or, we can fix any column j of a matrix A and then

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Example
Evaluate $\operatorname{det}(A)$.

$$
\left.\begin{array}{rl}
A= & {\left[\begin{array}{cccc}
-1 & 3 & 4 & 0 \\
0 & 0 & -3 & 0 \\
-2 & 1 & 2 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \quad \operatorname{det}(A)=a_{21} C_{21}+a_{22} C_{22}+a_{23} C_{23}+a_{24} C_{24}} \\
0^{\prime \prime}
\end{array}\right] \begin{array}{ccc}
\\
\operatorname{det}(A) & =a_{23} C_{23}=-(-3)\left|\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right| \\
& =3(48)=144
\end{array}
$$

frown last

Triangular Matrices

Definition:

The $n \times n$ matrix $A=\left[a_{i j}\right]$ is said to be upper triangular if $a_{i j}=0$ for all $i>j$.

It is said to be lower triangular if $a_{i j}=0$ for all $j>i$. A matrix that is both upper and lower triangular is a diagonal matrix.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right] \quad\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]
$$

Upper Triangular
Lower Triangular

Determinant of Triangular Matrix

Theorem:

For $n \geq 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A=\left[a_{i j}\right]$ is triangular, then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$.)

Example: Evaluate $\operatorname{det}(A)$.
$A=\left[\begin{array}{cccc}7 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 4 & 2 & 2 & 2\end{array}\right] \quad \operatorname{det}(A)=7(6)(2)(2) 8128(4)=168$

Example

Evaluate $\operatorname{det}(A)$

$$
A=\left[\begin{array}{ccccc}
-1 & 3 & 4 & 0 & 2 \\
0 & 2 & -3 & 0 & -4 \\
0 & 0 & 3 & 7 & 5 \\
0 & 0 & 0 & -4 & 6 \\
0 & 0 & 0 & 0 & 6
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{dit}(A) & =(-1)(2)(3)(-4)(6) \\
& =6(24)=144
\end{aligned}
$$

Section 3.2: Properties of Determinants

Theorem:

Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{\text {a }}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A) .
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A) .
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A) .
$$

"If "row" is replaced by "column" in any of the operations, the conclusions still follow.

Example
Compute the determinant by first performing row operations to obtain a triangular matrix and recording the effect of each row operation.

$$
\left|\begin{array}{cccc}
0 & 1 & 2 & -1 \\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right| \text { Let } A=\left[\begin{array}{cccc}
0 & 1 & 2 & -1 \\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right]
$$

$$
R_{2}+R_{4} \rightarrow R_{4}
$$

Row op
(1) replacemat

$$
\begin{gathered}
\left|\begin{array}{cccc}
0 & 1 & 2 & -1 \\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right| \\
R_{2} \leftrightarrow R_{1}
\end{gathered}
$$

(2) Swap

$$
\begin{aligned}
& \left|\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right| \\
& -3 R_{2}+R_{3} \rightarrow R_{3} \\
& \left|\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & -3 & 1
\end{array}\right| \\
& R_{3} \leftrightarrow R_{4} \\
& \left|\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & e
\end{array}\right|=2(1)(-3)(5)=-30
\end{aligned}
$$

$$
\operatorname{det}(A)=\frac{-30}{(-1)(-1)}=-30
$$

Row replacment

$$
k R_{i}+R_{j} \rightarrow R_{j}
$$

What about

$$
\begin{aligned}
& \text { arus a repravror } \\
& \text { June 22, } 2023 \quad 12 / 59
\end{aligned}
$$

Results on Determinants

Theorem

The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem

For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem
For $n \times n$ matrices A and B, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example
Show that if A is an $n \times n$ invertible matrix, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Note that $A A^{-1}=I$. So

$$
\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1
$$

Ry the previous theorem

$$
\begin{aligned}
& \operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1 \\
& \Rightarrow \quad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
\end{aligned}
$$

Example
Let A be an $n \times n$ matrix, and suppose there exists invertible matrix P such that ${ }^{1}$

$$
B=P^{-1} A P .
$$

Show that

$$
\begin{aligned}
& \operatorname{det}(B)=\operatorname{det}(A) \\
& \operatorname{det}(B)=\operatorname{det}\left(P^{-1} A P\right) \\
&=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P) \quad r^{0^{s^{2}}} \\
& v^{s^{e}} \\
& \text { sacs } \\
&= \operatorname{det}(A) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \quad
\end{aligned}
$$

${ }^{1}$ The process of multiplying by P^{-1} on the left and P on the right is called a similarly transform. The matrices A and B are said to be similar.

$$
\begin{aligned}
& =\operatorname{det}(A) \frac{1}{\operatorname{det}(P)} \operatorname{det}(P) \\
& =\operatorname{det}(A) .
\end{aligned}
$$

Section 3.3: Cram er's Rule, Volume, and Linear Transformations

Cramer's Rule is a method for solving some small linear systems of equations.

Notation:

For $n \times n$ matrix A and \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing the $i^{\text {th }}$ column with the vector \mathbf{b}. That is

$$
A_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_{n}\right]
$$

Example Suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, then

$$
A_{3}(\mathbf{b})=\left[\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right]
$$

Cram er's Rule

Theorem:

Let A be an $n \times n$ nonsingular matrix. Then for any vector \mathbf{b} in \mathbb{R}^{n}, the unique solution of the system $A \mathbf{x}=\mathbf{b}$ is given by \mathbf{x} where

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

Remark: The condition $\operatorname{det}(A) \neq 0$ is necessary for Cramer's rule to be a viable method. This allows for the solution to be given in terms of ratios of determinants.

Remark: If $\operatorname{det}(A)=0$, the system may be consistent, but another method is required to make a determination.

Example
Determine whether Crammer's rule can be used to solve the system. If so, use it to solve the system.

$$
\begin{aligned}
2 x_{1}+x_{2} & =9 \\
-x_{1}+7 x_{2} & =-3
\end{aligned} \rightarrow A \vec{x}=\vec{b}
$$

$$
\underbrace{\left[\begin{array}{cc}
2 & 1 \\
-1 & 7
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
a \\
-3
\end{array}\right]
$$

$$
\operatorname{det}(A)=2(7)-(-1)(1)=14+1=15
$$

$\operatorname{det}(A) \neq 0$ so Comer's rule applies

$$
\begin{aligned}
& A_{1}(\vec{b})= {\left[\begin{array}{cc}
9 & 1 \\
-3 & 7
\end{array}\right] \quad A_{2}(\vec{b})=\left[\begin{array}{cc}
2 & 9 \\
-1 & -3
\end{array}\right] } \\
& \begin{aligned}
\operatorname{det}\left(A_{1}(\vec{b})\right)= & 9(7)-(-3)(1) \quad \\
& =63+3=66 \\
& =-6+9=3 \\
& \operatorname{det}(A)=15 \\
x_{1}= & \frac{66}{15}=\frac{22}{5} \quad \text { and } \quad x_{2}=\frac{3}{15}=\frac{1}{5} \\
x_{1} & =\frac{22}{5}, x_{2}=\frac{1}{5}
\end{aligned} \\
&
\end{aligned}
$$

Application: Laplace Transforms

In various engineering applications, electrical or mechanical components are often chosen to try to control the long term behavior of a system (e.g. adding a damper to kill off oscillatory behavior). Using Laplace Transforms, differential equations are converted into algebraic equations containing a parameter s. These give rise to systems of the form

$$
\begin{aligned}
3 s X-2 Y & =4 \\
-6 X+s Y & =1
\end{aligned}
$$

Determine the values of s for which the system is uniquely solvable. For such s, find the solution (X, Y) using Crammer's rule.

$$
\begin{gathered}
3 s X-2 Y=4 \\
-6 X+s Y=1
\end{gathered} \quad\left[\begin{array}{cc}
3 s & -2 \\
-6 & s
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

if $s=2$ or $s=-2$
The system is uniquely solvable if

$$
\begin{aligned}
s & \neq \pm 2 . \\
A_{1}(\vec{b}) & =\left[\begin{array}{cc}
4 & -2 \\
1 & 5
\end{array}\right], \quad A_{2}(\vec{b})=\left[\begin{array}{cc}
3 s & 4 \\
-6 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{det}\left(A_{1}(\vec{b})\right)=4 s+2, \operatorname{det}\left(A_{2}(\vec{b})\right)=3 s+24 \\
\operatorname{det}(A)=3\left(s^{2}-4\right)
\end{gathered}
$$

For $s * \pm 2$, the solution

$$
X=\frac{4 s+2}{3\left(s^{2}-4\right)} \text { and } Y=\frac{3 s+24}{3\left(s^{2}-4\right)}=\frac{s+8}{s^{2}-4}
$$

Area \& Volume

Theorem:

If \mathbf{u} and \mathbf{v} are nonzero, nonparallel vectors in \mathbb{R}^{2}, then the area of the parallelogram determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v}]$.

Example
Find the area of the parallelogram with vertices $(0,0),(-2,4),(4,-5)$, and $(2,-1)$.

$$
\begin{aligned}
\vec{u} & =\left[\begin{array}{c}
-2 \\
4
\end{array}\right] \\
\vec{v} & =\left[\begin{array}{c}
4 \\
-5
\end{array}\right] \\
w+A & =\left[\begin{array}{ll}
\vec{u} & \vec{v}
\end{array}\right] \\
& =\left[\begin{array}{rr}
-2 & 4 \\
4 & -5
\end{array}\right]
\end{aligned}
$$

Volume of a Parallelepiped

Theorem:

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are nonzero, non-collinear vectors in \mathbb{R}^{3}, then the volume of the parallelepiped determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$.

Example
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(2,3,0),(-2,0,2)$ and $(-1,3,-1)$.

$$
\begin{aligned}
& \vec{u}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right] \quad \vec{w}=\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right] \\
& \vec{v}=\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right] \\
& \operatorname{Lt} A=\left[\begin{array}{lll}
\vec{u} & \vec{v} & \vec{w}
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & -2 \\
3 & 3 & 0 \\
0 & -1 & 2
\end{array}\right]
\end{aligned}
$$

Let's do cofactor expansion across row 3 .

$$
\begin{aligned}
\operatorname{det}(A) & =a_{31}^{\prime \prime} C_{31}+a_{32} C_{32}+a_{33} C_{33} \\
& =-(-1)\left|\begin{array}{cc}
2 & -2 \\
3 & 0
\end{array}\right|+2\left|\begin{array}{cc}
2 & -1 \\
3 & 3
\end{array}\right| \\
& =(0-(-6))+2(6+3) \\
& =6+18 \\
& =24
\end{aligned}
$$

The volume is 24

Section 4.1: Vector Spaces and Subspaces

Recall that we had defined \mathbb{R}^{n} as the set of all n-tuples of real numbers. We defined two operations, vector addition and scalar multiplication, and said that the following algebraic properties hold:

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
(viii) $\mathbf{1 u}=\mathbf{u}$

We later saw that a set of $m \times n$ matrices with scalar multiplication and matrix addition satisfies the same set of properties.

Question: Are there other sets of objects with operations that share this same structure?

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $1 \mathbf{u}=\mathbf{u}$

Remarks:

- V is more accurately called a real vector space when we assume that the relevant scalars are the real numbers.
- Property $1 ., \mathbf{u}+\mathbf{v} \in V$, is called being closed under (or with respect to) vector addition.
- Property 6., cu $\in V$, is called being closed under (or with respect to) scalar multiplication.
- A vector space has the same basic algebraic structure as \mathbb{R}^{n}
- These are axioms. That means they are assumed, not proven. However, we can use them to prove or disprove that some set with operations is actually a vector space.

An Example of a Vector Space

For an integer $n \geq 0$, let \mathbb{P}_{n} denote the set of all polynomials with real coefficients of degree at most n.

$$
\mathbb{P}_{n}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \mid p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}\right\}
$$

where addition ${ }^{2}$ and scalar multiplication are defined by

$$
\begin{gathered}
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\cdots+\left(p_{n}+q_{n}\right) t^{n} \\
(c \mathbf{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+\cdots+c p_{n} t^{n}
\end{gathered}
$$

$$
{ }^{2} \mathbf{q}(t)=q_{0}+q_{1} t+\cdots+q_{n} t^{n}
$$

Example

$$
\vec{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+\cdots+p_{1} t^{n}
$$

What is the zero vector $\mathbf{0}$ in \mathbb{P}_{n} ?
Let $\mathbf{0}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}$. Find the values of a_{0}, \ldots, a_{n}.
For \vec{p} in $\mathbb{P}_{n}, \vec{p}+\overrightarrow{0}=\vec{p}$.

$$
\begin{aligned}
(\vec{p}+\vec{O})(t) & =\vec{p}(t)+\vec{O}(t) \\
& =\left(p_{0}+a_{0}\right)+\left(p_{1}+a_{1}\right) t+\ldots+\left(p_{n}+a_{n}\right) t^{n} \\
& =p_{0}+p_{1} t+\ldots+p_{n} t^{n}
\end{aligned}
$$

$$
\begin{gathered}
p_{0}+a_{0}=p_{0} \quad \Rightarrow \quad a_{0}=0 \\
p_{1}+a_{1} \Rightarrow p_{1} \quad \Rightarrow \quad a_{1}=0 \\
\vdots \\
p_{n}+a_{n}=p_{n} \quad \Rightarrow \quad a_{n}=0
\end{gathered}
$$

That is

$$
\vec{O}(t)=0+O t+O t^{2}+\cdots+O t^{n}
$$

Example
If $\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n}$, what is the vector $-\mathbf{p}$?
Let $-\mathbf{p}(t)=c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n} t^{n}$. Find the values of c_{0}, \ldots, c_{n}.
We know that $\vec{P}+(-\vec{p})=\vec{U}$

$$
\begin{aligned}
(\vec{p}+(-\vec{p}))(t) & =\vec{p}\left(t_{0}\right)+(-\vec{p}(t)) \\
& =\left(p_{0}+c_{0}\right)+\left(p_{1}+c_{1}\right) t+\ldots+\left(p_{n}+c_{n}\right) t^{n} \\
& =0+0 t+\cdots+0 t^{n}
\end{aligned}
$$

Equating these

$$
\begin{aligned}
& p_{0}+c_{0}=0 \Rightarrow c_{0}=-p_{0} \\
& p_{1}+c_{1}=0 \Rightarrow c_{1}=-p_{1} \\
& \vdots \\
& p_{n}+c_{n}=0 \Rightarrow c_{n}=-p_{n}
\end{aligned}
$$

Nenu

$$
-\vec{p}(t)=-p_{0}-p_{1} t-\cdots-p_{n} t^{n}
$$

A set that is not a Vector Space
Let $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(1) Does property 1 . hold for V ?

$$
\begin{aligned}
& \text { Let } \vec{u}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } \vec{v}=\left[\begin{array}{l}
z \\
w
\end{array}\right] \\
& \text { be in } V \text {. So } x \leq 0, y \leq 0, z \leq 0 \text { and } \\
& w \leq 0 \text {. } \\
& \vec{u}+\vec{v}=\left[\begin{array}{l}
x+z \\
y+w
\end{array}\right]
\end{aligned}
$$

$$
x+z \leq 0 \quad \text { and } \quad y+\omega \leq 0
$$

bence $\vec{u}+\vec{v}$ is in V.

A set that is not a Vector Space

Let $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(2) Does property 6. hold for V ?

$$
\begin{aligned}
& \text { Note that } \vec{u}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \text { is in } V \text {. } \\
& \text { Let } c=-1 \quad c \vec{u}=-1\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& s \cdot x \text { is not in } V \text {. prospects } \\
& \delta \text { fails. }
\end{aligned}
$$

V is not a vector space.

