
June 29 Math 3260 sec. 51 Summer 2023

Section 4.2: Null & Column Spaces, Row Space, Linear
Transformations

Definition

Definition: Let A be an m × n matrix. The null space of A,
denoted by Nul A, is the set of all solutions of the homogeneous
equation Ax = 0. That is

Nul A = {x ∈ Rn | Ax = 0}.

Theorem:

If A is an m × n matrix, then Nul(A) is a subspace of Rn.
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Column Space

Definition:

The column space of an m × n matrix A, denoted ColA, is
the set of all linear combinations of the columns of A. If A =
[a1 · · · an], then

ColA = Span{a1, . . . ,an}.

Theorem:

The column space of an m × n matrix A is a subspace of Rm.
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Row Space

Definition:

The row space, denoted RowA, of an m × n matrix A is the
subspace of Rn spanned by the rows of A.

It’s written into the definition of the row space that it is a subspace of Rn

Theorem

If two matrices A and B are row equivalent, then their row spaces
are the same.

June 28, 2023 3 / 54



Fundamental Subspaces
People often refer to four fundamental subspaces associated with an
m × n matrix. The fourth one is the null space of AT .

Remark: Since the rows of A are the columns of AT and vice versa,
it’s not surprising that

Col(A) = Row(AT ) and Row(A) = Col(AT ).

Remark: We can summarize that for m × n matrix A

Col(A) and Nul(AT ) are subspaces of Rm,

and
Row(A) and Nul(A) are subspaces of Rn.
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Example

The following matrices are row equivalent. Use them to find an explicit
description (i.e., a spanning set) for Row(A) and Nul(A).

A =

 −2 2 −3 −2
3 −3 3 1
2 −2 2 0

 and B =

 1 −1 0 0
0 0 1 0
0 0 0 1
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Linear Transformation

Definition:

Let V and W be vector spaces. A linear transformation
T : V → W is a rule that assigns to each vector x in V a unique
vector T (x) in W such that

(i) T (u + v) = T (u) + T (v) for every u,v in V , and

(ii) T (cu) = cT (u) for every u in V and scalar c.

Remark: The only difference between this definition and our previous
one is that the domain and codomain spaces can be any vector
spaces.
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Example
Let C1(R) denote1 the set of all real valued functions that are
differentiable and C0(R) the set of all continuous real valued functions.
Note that differentiation is a linear transformation. That is

D : C1(R) −→ C0(R), D(f ) = f ′

satisfies the two conditions in the previous definition.

We know from calculus that if f and g are differentiable and c is a
scalar, then

d
dx

(f (x) + g(x)) = f ′(x) + g′(x) and
d
dx

(cf (x)) = cf ′(x).

Using the current notation, we can write these statements like

D(f + g) = D(f ) + D(g) and D(cf ) = cD(f ).

1This could also be written as C1(−∞,∞).
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Example
Consider the derivative transformation on C1(R)

D : C1(R) −→ C0(R)

f 7→ f ′

Characterize the subset of C1(R) such that D(f ) = 0.
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Kernel and Range
Definition:

The kernel of a linear transformation T : V −→ W is the set of
all vectors x in V such that T (x) = 0. (All solutions to a homoge-
neous equation.)

A null space is a kernel.

Definition:

The range of a linear transformation T : V −→W is the set of all
vectors in W of the form T (x) for some x in V . (All the images of
the transformation.)

A column space is a range.
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Range & Kernel as Subspaces

Theorem:

Given a linear transformation T : V −→W ,

I the range of T is a subspace of W ,

I and the kernel of T is a subspace of V .

Remark: This generalizes the result for column and null spaces. If
T : Rn → Rm, T (x) = Ax. Then Col(A) is the range of T and is a
subspace of Rm. And Nul(A) is the kernel of T and is a subspace of
Rn.
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Example

Consider T : C1(R) −→ C0(R) defined by

T (f ) =
df
dx

+ αf (x), α a fixed constant.

(a) Express the equation that a function y must satisfy if y is in the
kernel of T .
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T : C1(R) −→ C0(R), T (f ) = df
dx + αf (x)

(b) Show that for any scalar c, y = ce−αx is in the kernel of T .
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Section 4.3: Linearly Independent Sets and Bases

Definition:

A set of vectors {v1, . . . ,vp} in a vector space V is said to be
linearly independent if the equation

c1v1 + c2v2 + · · ·+ cpvp = 0 (1)

has only the trivial solutions c1 = c2 = · · · = cp = 0.

The set is linearly dependent if there exist a nontrivial solution (at
least one of the weights ci is nonzero).

If there is a nontrivial solution c1, . . . , cp, then equation (1) is called a
linear dependence relation.
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Linearly Dependent Sets

Theorem:

Consider the ordered set {v1, . . . ,vp} in a vector space V , where
p ≥ 2 and v1 6= 0. This set is linearly dependent if and only
if there is some j > 1 such that vj is a linear combination of the
preceding vectors v1, . . . ,vj−1.

This says that

1. If one of the vectors, say vj can be written as a linear combo of the
ones that come before it, the set is linearly dependent, and

2. if the set is linearly dependent, it must be possible to write one of
the vectors as a linear combo of the others.

June 28, 2023 15 / 54



Example
Determine if the set {p1,p2,p3} is linearly dependent or independent
in P2, where

p1 = 1, p2 = 2t , and p3 = t − 3.
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Basis

Definition:

Let H be a subspace of a vector space V . An indexed set of
vectors B = {b1, . . . ,bp} in V is a basis of H provided

(i) B is linearly independent, and
(ii) H = Span(B).

Remark: We can think of a basis as a minimal spanning set. All of the
information needed to construct vectors in H is contained in the basis,
and none of this information is repeated.
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A Basis for R2

Recall that e1 =

[
1
0

]
and e2 =

[
0
1

]
, and any vector x in R2 can be

written as

x =

[
x1
x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
Moreover, the equation c1

[
1
0

]
+ c2

[
0
1

]
=

[
0
0

]
is only satisfied

when c1 = 0 and c2 = 0.

So the set of vectors
{[

1
0

]
,

[
0
1

]}
is a basis for R2.

This set of two vectors {e1,e2}, along with the two operations
vector addition and scalar multiplication, is all that is needed
to build all of R2!
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Standard or Elementary Basis in Rn

The columns of the n × n identity matrix provide an obvious ba-
sis for Rn. This is called the standard basis or the elementary
basis for Rn.

The examples in R3 and R4 are


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 , and




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 ,

respectively.

When we want an ordered basis, we order these in the obvious way,
{e1,e2, . . . ,en}.
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Other Vector Spaces
The set {1, t , t2, t3} is a basis2 for P3.

Notice that for any vector p in P3,

p(t) = p01 + p1t + p2t2 + p3t3.

This is a linear combination of 1, t , t2, and t3. We already know that
the zero polynomial

0(t) = 01 + 0t + 0t2 + 0t3.

That is, the equation

c0 + c1t + c2t2 + c3t3 = 0 ⇔ c0 = c1 = c2 = c3 = 0

2The set {1, t , . . . , tn} is called the standard basis for Pn
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Other Vector Spaces

The set
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis for

M2×2.

The exercise is left to the reader. It must be shown that

I every matrix
[

a b
c d

]
can be written as a linear combination of

these vectors and
I this is a linearly independent set.
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Prelude to a Spanning Set Theorem

Example: Let v1, v2, v3 be vectors in a vector space V , and suppose
that

(1) H =Span{v1,v2,v3} and
(2) v3 = v1 − 2v2.

Show that H =Span{v1,v2}.
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Spanning Set Theorem

Theorem

Let S = {v1,v2, . . . ,vp} be a set in a vector space V and
H =Span(S).

a. If one of the vectors in S, say vk is a linear combination of
the other vectors in S, then the subset of S obtained by
eliminating vk still spans H.

b. If H 6= {0}, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication to
construct a basis.
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Column Space
Find a basis for the column space matrix B that is in reduced row
echelon form

B =


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

 .
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Using the rref

Theorem:

If A = [a1 · · · an] and B = [b1 · · ·bn] are row equivalent matrices,
then Nul A = Nul B. That is, the equations

Ax = 0 and Bx = 0

have the same solution set.

Remark: This means that {a1, . . . ,an} and {b1, . . . ,bn} have exactly
the same linear dependence relationships!

Remark: We’ve actually already used this when we used an rref to
characterize a null space.
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A Basis for a Column Space

Theorem

Let A be an m × n matrix. The pivot columns of a matrix A form
a basis of Col(A).

Caveat: This means we can use row reduction to identify a basis, but
the vectors in the basis will be from the original matrix A.
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Example
Consider the matrix A shown with a row equivalent rref. Find a basis
for Col(A).

A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

 rref−→


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0
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Basis for a Row Space

Theorem:

If two matrices A and B are row equivalent, then their row spaces
are the same.

Remark: This tells us that a basis for the row space of an m× n matrix
A is the set of nonzero rows of its rref.

Remark: Note how this is different from the column space. For Col(A),
take the vectors from A, but for Row(A) take the vectors from the rref.
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Find a basis for Row(A)

A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

 rref−→


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0
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Bases for Col(A), Row(A), and Nul(A)

Given a matrix A, find the rref. Then

I The pivot columns of the original matrix A give a basis for
Col(A).

I The nonzero rows of rref(A) give a basis for Row(A).

I Use the rref to solve Ax = 0 to identify a basis for Nul(A).
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Find a basis for Nul(A)

A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

 rref−→


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0
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