June 29 Math 3260 sec. 51 Summer 2023

Section 4.2: Null & Column Spaces, Row Space, Linear Transformations

Definition

Definition: Let *A* be an $m \times n$ matrix. The **null space** of *A*, denoted by Nul *A*, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\mathsf{Nul}\, A = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$$

Theorem:

If *A* is an $m \times n$ matrix, then Nul(*A*) is a subspace of \mathbb{R}^n .

June 28, 2023 1/54

Definition:

The **column space** of an $m \times n$ matrix A, denoted Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \{ \mathbf{a}_1, \ldots, \mathbf{a}_n \}.$$

Theorem:

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Definition:

The **row space**, denoted Row *A*, of an $m \times n$ matrix *A* is the subspace of \mathbb{R}^n spanned by the rows of *A*.

It's written into the definition of the row space that it is a subspace of \mathbb{R}^n

Theorem

If two matrices *A* and *B* are row equivalent, then their row spaces are the same.

June 28, 2023

3/54

Fundamental Subspaces

People often refer to four fundamental subspaces associated with an $m \times n$ matrix. The fourth one is the null space of A^{T} .

Remark: Since the rows of *A* are the columns of A^T and vice versa, it's not surprising that

 $\operatorname{Col}(A) = \operatorname{Row}(A^T)$ and $\operatorname{Row}(A) = \operatorname{Col}(A^T)$.

Remark: We can summarize that for $m \times n$ matrix *A*

Col(A) and $Nul(A^T)$ are subspaces of \mathbb{R}^m ,

and

Row(A) and Nul(A) are subspaces of \mathbb{R}^n .

Example

The following matrices are row equivalent. Use them to find an explicit description (i.e., a spanning set) for Row(A) and Nul(A).

$$A = \begin{bmatrix} -2 & 2 & -3 & -2 \\ 3 & -3 & 3 & 1 \\ 2 & -2 & 2 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For $\mathcal{R}ow(A)$, we can use the rows of A
or \mathcal{B} . $\mathcal{R}ow(A) = Span \left\{ \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\},$
Null(A) contains all solutions to $A \neq = 0$
 $\begin{bmatrix} A & 0 \end{bmatrix} \xrightarrow{\operatorname{ref}} \begin{bmatrix} B & 0 \end{bmatrix}$

From B, \vec{x} satisfies $\vec{x}_1 = x_2$ $\vec{x}_2 = \begin{pmatrix} x_2 \\ x_2 \\ 0 \\ x_4 = 0 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Nul $(A) = Spen \left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}.$

3

Linear Transformation

Definition:

Let *V* and *W* be vector spaces. A **linear transformation** $T: V \rightarrow W$ is a rule that assigns to each vector **x** in *V* a unique vector $T(\mathbf{x})$ in *W* such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for every \mathbf{u}, \mathbf{v} in V, and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every **u** in *V* and scalar *c*.

Remark: The only difference between this definition and our previous one is that the domain and codomain spaces can be any vector spaces.

Example

Let $C^1(\mathbb{R})$ denote¹ the set of all real valued functions that are differentiable and $C^0(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

satisfies the two conditions in the previous definition.

We know from calculus that if f and g are differentiable and c is a scalar, then

$$\frac{d}{dx}(f(x)+g(x))=f'(x)+g'(x) \quad \text{and} \quad \frac{d}{dx}(cf(x))=cf'(x).$$

Using the current notation, we can write these statements like

D(f+g) = D(f) + D(g) and D(cf) = cD(f).

¹This could also be written as $C^1(-\infty,\infty)$.

June 28, 2023 8/54

Example

Consider the derivative transformation on $C^1(\mathbb{R})$

$$f \mapsto f'$$

Characterize the subset of $C^1(\mathbb{R})$ such that $D(f) = 0$.
These are the constraint
functions
 $f(x) = C$ for some
real number C :

 $D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$

 $f \mapsto f'$

 A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A June 28, 2023 9/54

Kernel and Range

Definition:

The **kernel** of a linear transformation $T: V \longrightarrow W$ is the set of all vectors **x** in V such that $T(\mathbf{x}) = \mathbf{0}$. (All solutions to a homogeneous equation.)

A null space is a **kernel**.

Definition:

The **range** of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (All the images of the transformation.)

A column space is a **range**.

イロト 不得 トイヨト イヨト ヨー ろくの June 28, 2023

10/54

Range & Kernel as Subspaces

Theorem: Given a linear transformation *T* : *V* → *W*, the range of *T* is a subspace of *W*, and the kernel of *T* is a subspace of *V*.

Remark: This generalizes the result for column and null spaces. If $T : \mathbb{R}^n \to \mathbb{R}^m$, $T(\mathbf{x}) = A\mathbf{x}$. Then Col(*A*) is the range of *T* and is a subspace of \mathbb{R}^m . And Nul(*A*) is the kernel of *T* and is a subspace of \mathbb{R}^n .

Example

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

If y is in the kernel, then

$$T(y) = 0$$
; $T(y) = \frac{dy}{dx} + \alpha y$. The
equation is $\frac{dy}{dx} + \alpha y = 0$

イロト 不得 トイヨト イヨト 二日

$$T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad T(f) = \frac{df}{dx} + \alpha f(x)$$

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

If y is in the kernel of T, then

$$\frac{dy}{dx} + ay = 0.$$
 Let $y = ce^{ax}$.

$$\frac{dy}{dx} = ce^{ax}(-a) = -ace^{-ax}$$

$$\frac{dy}{dx} + ay \stackrel{?}{=} 0$$

$$-ace^{ax} + ace^{ax} \stackrel{?}{=} 0$$

$$0 = 0$$
is in the kernel.

$$y = 28.2023$$
13/54

Section 4.3: Linearly Independent Sets and Bases

Definition:

A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in a vector space *V* is said to be **linearly independent** if the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

June 28, 2023

14/54

has only the trivial solutions $c_1 = c_2 = \cdots = c_p = 0$.

The set is **linearly dependent** if there exist a nontrivial solution (at least one of the weights c_i is nonzero).

If there is a nontrivial solution c_1, \ldots, c_p , then equation (1) is called a **linear dependence relation**.

Linearly Dependent Sets

Theorem:

Consider the ordered set { $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } in a vector space *V*, where $p \ge 2$ and $\mathbf{v}_1 \neq \mathbf{0}$. This set is **linearly dependent** if and only if there is some j > 1 such that \mathbf{v}_j is a linear combination of the preceding vectors $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

This says that

- 1. If one of the vectors, say \mathbf{v}_j can be written as a linear combo of the ones that come before it, the set is linearly dependent, and
- 2. if the set is linearly dependent, it must be possible to write one of the vectors as a linear combo of the others.

Example

Determine if the set $\{\bm{p}_1, \bm{p}_2, \bm{p}_3\}$ is linearly dependent or independent in $\mathbb{P}_2,$ where

$$p_1 = 1$$
, $p_2 = 2t$, and $p_3 = t - 3$.
Note that $\vec{p}_3 = \pm \vec{p}_2 - 3\vec{p}_1$.
Since \vec{p}_3 is a linear combo of \vec{p}_1 and \vec{p}_2 ,
he set is Jinearly dependent.
A linear dependence relation is
 $3\vec{p}_1 - \pm \vec{p}_2 + \vec{p}_3 = \vec{O}$

Definition:

Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ in *V* is a **basis** of *H* provided

(i) $\ensuremath{\mathcal{B}}$ is linearly independent, and

(ii) $H = \text{Span}(\mathcal{B})$.

Remark: We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

June 28, 2023 17/54

A Basis for \mathbb{R}^2 Recall that $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and any vector \mathbf{x} in \mathbb{R}^2 can be written as $\mathbf{x} = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = x_1 \begin{vmatrix} 1 \\ 0 \end{vmatrix} + x_2 \begin{vmatrix} 0 \\ 1 \end{vmatrix}$ Moreover, the equation $c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is only satisfied when $c_1 = 0$ and $c_2 = 0$. So the set of vectors $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a **basis** for \mathbb{R}^2 .

This set of two vectors $\{e_1, e_2\}$, along with the two operations **vector addition** and **scalar multiplication**, is all that is needed to build all of \mathbb{R}^2 !

Standard or Elementary Basis in \mathbb{R}^n

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^n . This is called the **standard basis** or the **elementary basis** for \mathbb{R}^n .

The examples in \mathbb{R}^3 and \mathbb{R}^4 are

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}, \text{ and } \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}, \right\}$$

respectively.

When we want an ordered basis, we order these in the obvious way, $\{e_1, e_2, \dots, e_n\}$.

June 28, 2023

19/54

Other Vector Spaces

The set $\{1, t, t^2, t^3\}$ is a basis² for \mathbb{P}_3 .

Notice that for any vector \mathbf{p} in \mathbb{P}_3 ,

$$\mathbf{p}(t) = p_0 \mathbf{1} + p_1 t + p_2 t^2 + p_3 t^3.$$

This is a linear combination of 1, t, t^2 , and t^3 . We already know that the zero polynomial

$$\mathbf{0}(t) = \mathbf{01} + \mathbf{0}t + \mathbf{0}t^2 + \mathbf{0}t^3.$$

That is, the equation

 $c_0 + c_1 t + c_2 t^2 + c_3 t^3 = 0 \quad \Leftrightarrow \quad c_0 = c_1 = c_2 = c_3 = 0$

²The set $\{1, t, ..., t^n\}$ is called the **standard basis** for $\mathbb{P}_n \land \mathbb{P} \land \mathbb{P$

Other Vector Spaces

The set
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 is a basis for $M_{2 \times 2}$.

The exercise is left to the reader. It must be shown that • every matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be written as a linear combination of these vectors and

► this is a linearly independent set.

Prelude to a Spanning Set Theorem

Example: Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be vectors in a vector space *V*, and suppose that

(1) $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and (2) $\mathbf{v}_3 = \mathbf{v}_1 - 2\mathbf{v}_2$.

Show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. We have to show that for any vector to in H, to is in Spon {VI, V2}. This means that is can be written as a linear combro of Vi and Vz. Since this in H, $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$ June 28, 2023 22/54

Spanning Set Theorem

Theorem

Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ be a set in a vector space V and H = Span(S).

a. If one of the vectors in *S*, say \mathbf{v}_k is a linear combination of the other vectors in *S*, then the subset of *S* obtained by eliminating \mathbf{v}_k still spans *H*.

June 28, 2023

24/54

b. If $H \neq \{0\}$, then some subset of *S* is a basis for *H*.

If we start with a spanning set, we can eliminate *duplication* to construct a **basis**.

Column Space

Find a basis for the column space matrix *B* that is in reduced row echelon form

 $B = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$ Label the Columns $\vec{b}_1, \dots, \vec{b}_5, s_{0}$ $B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 & \vec{b}_4 & b_5 \end{bmatrix}$ Col (B) = Span [b, bz, bz, b, bs]. bz= 4b, so we can remove bz by = Zb, -b, so we can renove by

< ロ > < 同 > < 回 > < 回 >

(b, b3, bs) is linearly independent So (b, b, b, bs) is a basis for Col(B).

Using the rref

Theorem:

If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ are row equivalent matrices, then Nul A = Nul B. That is, the equations

 $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$

have the same solution set.

Remark: This means that $\{a_1, ..., a_n\}$ and $\{b_1, ..., b_n\}$ have exactly the same linear dependence relationships!

Remark: We've actually already used this when we used an rref to characterize a null space.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 28, 2023

27/54

A Basis for a Column Space

Theorem

Let *A* be an $m \times n$ matrix. The pivot columns of a matrix *A* form a basis of Col(A).

Caveat: This means we can use row reduction to identify a basis, but the vectors in the basis will be from the original matrix *A*.

Example

Consider the matrix A shown with a row equivalent rref. Find a basis for Col(A).

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

We just need the pivot columns.
These are 1, 3, and 5. A basis
for Col(A) is
$$\left\{ \begin{bmatrix} 1\\3\\2\\5 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\2\\5 \end{bmatrix}, \begin{bmatrix} -1\\5\\2\\8\\8 \end{bmatrix} \right\}.$$

Basis for a Row Space

Theorem:

If two matrices A and B are row equivalent, then their row spaces are the same.

Remark: This tells us that a basis for the row space of an $m \times n$ matrix *A* is the set of nonzero rows of its rref.

Remark: Note how this is different from the column space. For Col(A), take the vectors from A, but for Row(A) take the vectors from the rref.

June 28, 2023

30/54

Find a basis for Row(A)

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis is the nonzero rows of the rref. A basis for $\operatorname{Row}(A)$ is $\left\{ \begin{array}{c} \binom{1}{4} \\ 0 \\ \binom{2}{2} \end{array} \right\}, \left[\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \end{array}], \left[\begin{array}{c} 0 \\ 0 \end{array}], \left[\begin{array}{c} 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \end{array}], \left[\begin{array}{c} 0 \end{array}], \left[\begin{array}{c} 0 \\ 0 \end{array}], \left[\begin{array}{c} 0 \end{array}$

June 28, 2023 31/54

< ロ > < 同 > < 回 > < 回 >

Bases for Col(A), Row(A), and Nul(A)

Given a matrix A, find the rref. Then

- The pivot columns of the original matrix A give a basis for Col(A).
- ► The nonzero rows of rref(*A*) give a basis for Row(*A*).
- Use the rref to solve $A\mathbf{x} = \mathbf{0}$ to identify a basis for Nul(A).

June 28, 2023

32/54

Find a basis for Nul(A)

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

We need solutions to $A\bar{\chi} = \bar{O}$
From the ref
 $\chi_1 = -\bar{Y}\chi_2 - 2\chi_1$
 $\chi_2 - \text{free}$
 $\chi_3 = \chi_1$
 $\chi_4 - \text{free}$
 $\chi_5 = O$

June 28, 2023 33/54

2

For
$$\vec{x}$$
 in Nul(A)

$$\vec{x} = \begin{bmatrix} -4x_2 & -2x_4 \\ x_2 \\ x_4 \\ x_5 \\ c \end{bmatrix} = \begin{bmatrix} -4x_2 \\ x_2 \\ 0 \\ 0 \\ c \end{bmatrix} + \begin{bmatrix} -2x_4 \\ 0 \\ x_4 \\ x_5 \\ c \end{bmatrix}$$

$$= \chi_2 \begin{bmatrix} -4 \\ 0 \\ 0 \\ c \end{bmatrix} + \chi_4 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ c \end{bmatrix}$$
A basis for Nul(A) is $\begin{pmatrix} -4 \\ 1 \\ 0 \\ c \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ c \end{bmatrix}$

◆□▶ ◆●▶ ◆ ●▶ ◆ ● ▶ ● ● つへで June 28, 2023 34/54