June 6 Math 3260 sec. 51 Summer 2023

Section 1.3: Vector Equations

We defined vectors (specifically real vectors) as $n \times 1$ column matrices. The set of all vectors of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

constitutes the set \mathbb{R}^n (read "R n").

For example
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 is a vector in \mathbb{R}^2 , $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is a vector in \mathbb{R}^3 , and so forth.

June 5, 2023 1/56

Vectors in \mathbb{R}^n

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The numbers, $x_1, x_2, ..., x_n$ in the vector are called **components** or **entries**. For vectors in \mathbb{R}^n , these are elements of the real numbers (denoted \mathbb{R}).

Scalars: \mathbb{R}^n is an example of something called a **vector space**. Such a structure is always associated with another set (known as a *field*) of objects called **scalars**.

Our set of scalars will be \mathbb{R} .

Some Matrix & Vector Notation

If $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ is a collection of vectors in \mathbb{R}^m , then we can express the $m \times n$ matrix having these vectors as its columns

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

June 5, 2023

3/56

Note that the number a_{ij} is the *i*th component of the vector \mathbf{a}_{j} .

Equivalence & Operations
Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ be in \mathbb{R}^n and c is a scalar.
Equivalence: $\mathbf{u} = \mathbf{v} \iff u_i = v_i$ for each $i = 1, ..., n$
Scalar Multiplication: $c\mathbf{u} = \begin{bmatrix} cu_1 \\ \vdots \\ cu_n \end{bmatrix}$

vector Addition:
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} \vdots \\ u_n + v_n \end{bmatrix}$$

The Zero Vector (denoted **0** or $\vec{0}$) is the vector whose entries are all zeros.

June 5, 2023 4/56

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(iii)
$$u + 0 = 0 + u = u$$
 (vii) $c(du) = d(cu) = (cd)u$

(iv)
$$u + (-u) = -u + u = 0$$
 (viii) $1u = u$

Remark: These properties follow easily from the algebraic properties on \mathbb{R} . They provide a structure that we will later associate with **vector spaces.**

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ June 5, 2023 5/56

Linear Combination & Span

Definition

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = \mathbf{c}_1 \mathbf{v}_1 + \cdots + \mathbf{c}_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

Definition

Let $S = {\mathbf{v}_1, ..., \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of the vectors $\mathbf{v}_1, ..., \mathbf{v}_p$ is the **span** of the set *S*. It is denoted by

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\operatorname{Span}(S).$$

イロト イポト イヨト イヨト

Equivalent Statements

Suppose **b**, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are vectors in \mathbb{R}^m . The following are equivalent:

- **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ },
- **b** = $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ for some scalars c_1, \ldots, c_p ,
- the vector equation $x_1 \mathbf{v}_1 + \cdots + x_p \mathbf{v}_p = \mathbf{b}$ has a solution,
- the linear system of equations whose augmented matrix is
 [v₁ ··· v_ρ b] is consistent.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1\\ 4\\ -2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 5\\ -5\\ k \end{bmatrix}$. For which value(s) of
 k , if any, is \mathbf{b} in Span { $\mathbf{v}_1, \mathbf{v}_2$ }?
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For what k is $\mathbf{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2$.
For $\mathbf{c} = \mathbf{c} + \mathbf{$

The system is only consistent if k-10=0, i.e., k=10 bis in span (Vi, Vz) if k= 10.

Some Geometry

Recall: The vectors in \mathbb{R}^2 represent the points in the Cartesian plane. Give a geometric description of the subset of \mathbb{R}^2 given by Span $\left\{ \left| \begin{array}{c} 1 \\ 0 \end{array} \right] \right\}$. 17 × is in Spa {[']} then $\vec{\chi} = \chi_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ 0 \end{bmatrix}$ Allowing X, to vary, this gives the x-axis.

June 5, 2023 10/56

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The set of all points (x, y) with

y = 0.

<ロ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ Q () June 5, 2023 11/56

$\mbox{Span}\{u\}$ in \mathbb{R}^3

If **u** is any nonzero vector in \mathbb{R}^3 , then Span{**u**} is a line through the origin parallel to **u**.

Figure: A nonzero vector **u** and the line Span{**u**} in \mathbb{R}^3 .

June 5, 2023

$\mbox{Span}\{\boldsymbol{u},\boldsymbol{v}\}\mbox{ in }\mathbb{R}^3$

If **u** and **v** are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

Figure: A vector $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$. If we let *a* and *b* vary, the collection of vectors Span{ \mathbf{u}, \mathbf{v} } is a plane.

June 5, 2023

Example

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers *a* and *b*, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

be want to show that

$$\begin{bmatrix} G\\b \end{bmatrix} = \chi_1 \begin{bmatrix} 1\\ 1 \end{bmatrix} + \chi_2 \begin{bmatrix} 0\\ 2 \end{bmatrix}$$
for some χ_1, χ_2 for all possible G, b .
This is true if the system when ever
metrix $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ is always consistent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{bmatrix} 1 & 0 & a \\ 1 & 2 & b \end{bmatrix} - R_1 + R_2 \Rightarrow R_2 \begin{bmatrix} 1 & 0 & a \\ 0 & 2 & b - a \end{bmatrix}$ The third alumn will never be a pivot column, hence the system is consistent. That is, [a] is in Span {t, v}. $\begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & \frac{b-\alpha}{z} \end{bmatrix}$ Note 1 R2 + R2 $\begin{bmatrix} a \\ b \end{bmatrix} = a \vec{h} + \begin{pmatrix} b - a \\ z \end{pmatrix} \vec{V} .$ <ロ> < 四 > < 四 > < 四 > < 三 > < 三 > < 三

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Definition

Let *A* be an $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n (each in \mathbb{R}^m), and let \mathbf{x} be a vector in \mathbb{R}^n . Then the product of *A* and \mathbf{x} , denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in **x**. That is

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n.$$

Remark: Note that based on the definition of scalar multiplication and vector addition, the product is a vector in \mathbb{R}^m .

June 5, 2023

Example: Find the product Ax.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

$$\vec{a}_{1} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \quad \vec{a}_{2} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \quad \vec{a}_{3} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

$$A_{1}^{2} = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 1 \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix} + (1) \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ -4 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

$$\lim_{x \to \infty} 5.2023 \quad 17/56$$

↓ロ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ◆ □ ト ○ Q ○
June 5, 2023 18/56

Example: Find the product Ax.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$\overrightarrow{a}_{1} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix} \overrightarrow{a}_{2} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

$$A \overrightarrow{x} = -3 \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

$$A \overrightarrow{x} = -3 \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} -6 \\ 3 \\ 6 \end{bmatrix} + \begin{bmatrix} 8 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$(1 + 67 + 1 = 1 = 2) = 200$$

$$June 5,2023 = 19/56$$

Example

Is the product $A\mathbf{x}$ defined if $A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$?

This is not defined.

The number of entries in the vector has to match the number of columns in the matrix. This is not true for this matrix A and vector \mathbf{x} .

June 5, 2023

Linear Systems, Vector Equations, & Matrix Equations Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

June 5, 2023 22/56

 $\begin{bmatrix} 2 & -3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ r x L

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで June 5, 2023 23/56

Theorem

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n , and **b** is in \mathbb{R}^m , then the matrix equation

$A\mathbf{x} = \mathbf{b}$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

• • • • • • • • • • •

Corollary

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of *A*.

Remark

In other words, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$, then the corresponding linear system, $A\mathbf{x} = \mathbf{b}$, is consistent if and only if **b** is in Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.

June 5, 2023

Example

-

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}.$$

$$A \stackrel{*}{\chi} = \stackrel{*}{b} \quad \text{Solvable}$$
This will hold if the system what any monted matrix $[A \stackrel{*}{b}]$ is consistent.
$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \quad u \stackrel{*}{R_1 + R_2 = R_3} \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & (0 & b_2 + 4)b_1 \\ 0 & 7 & 5 & b_3 + 3b_1 \end{bmatrix}$$

.

The system is only consistent if $-2b_{1}+b_{2}-2b_{3}=0$ Aix=b will be solvable if b_1 satisfies - 2b, + b₂ - 2b₃ = 0 ヘロト ヘロト ヘヨト June 5, 2023 27/56

we can state this as b belonging to a given Span. $- 2b_{1} + b_{2} - 2b_{3} = 0$ Twink of by as basic and bz , b3 as free variabler. $b_1 = \frac{1}{2}b_2 - b_3$

June 5, 2023 28/56

イロン イ理 とく ヨン ト ヨン・

$$= b_{z} \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + b_{3} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

We can say that AX = Is is solvable if b is Spon $\left\{ \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Theorem (first in a string of equivalency theorems)

Theorem

Let *A* be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

(a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.

(b) Each **b** in \mathbb{R}^m is a linear combination of the columns of *A*.

(c) The columns of A span \mathbb{R}^m .

(d) A has a pivot position in every row.

Remark: That last statement, (d), is about *coefficient* matrix A. It's not about an augmented matrix $[A \ \mathbf{b}]$.

June 5, 2023

A Special Product

Definition

Consider two vectors
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ in \mathbb{R}^n . The **dot**
product of \mathbf{x} and \mathbf{y} , denoted
 $\mathbf{x} \cdot \mathbf{y}$,
is defined by
 $\mathbf{x} \cdot \mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$.

Remark: Note that the dot product of two vectors is a scalar. This is an example of an *inner product*. It's sometimes called a *scalar product*.

June 5, 2023 31/56

Computing Ax

The dot product can be used as an alternative way of computing a product $A\mathbf{x}$. If A is an $m \times n$ matrix and \mathbf{x} is a vector in \mathbb{R}^n , then the *i*th component of the product $A\mathbf{x}$ is the dot product of the *i*th row of A and the vector \mathbf{x} .

For example

$$\begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} (1)(2) + (0)(1) + (-3)(-1) \\ (-2)(2) + (-1)(1) + (4)(-1) \end{bmatrix} = \begin{bmatrix} 5 \\ -9 \end{bmatrix}$$

4 D K 4 B K 4 B K 4

Evaluate

Use the dot product approach to compute each product.

$$\begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} a(-3) + 4(z) \\ -1(-3) + 1(z) \\ o(-3) + 3(z) \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1x_1 + 0x_2 + 0x_3 \\ 0x_1 + 1x_2 + 0x_7 \\ 0x_1 + 0x_2 + 1x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Identity Matrix

Definition: Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else—i.e. one that looks like

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

the $n \times n$ identity matrix and denote it by I_n . (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^n

$$I_n \mathbf{x} = \mathbf{x}.$$

June 5, 2023

Properties of the Matrix Product

Theorem

If *A* is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and *c* is any scalar, then

(a)
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
, and

(b)
$$A(c\mathbf{u}) = cA\mathbf{u}$$
.

Remark: These two properties are a pretty **big deal**! These are the two properties that constitute being <u>Linear</u> (as in *Linear Algebra*).

• • • • • • • • • • • •

Section 1.5: Solution Sets of Linear Systems

Definition

A linear system is said to be **homogeneous** if it can be written in the form

 $A\mathbf{x} = \mathbf{0}$

for some $m \times n$ matrix A and where **0** is the zero vector in \mathbb{R}^m .

Theorem

Theorem: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution, $\mathbf{x} = \mathbf{0}$, called the **trivial solution**.

Homogeneous Linear Systems

We know that the homogeneous system

is always consistent because $\mathbf{x} = \mathbf{0}$ (in \mathbb{R}^n) is necessarily a solution.

The interesting question is:

Does $A\mathbf{x} = \mathbf{0}$ have any **nontrivial** solutions?

Theorem

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Homogeneous Linear Systems

Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

Consider the augmented moting (a) $2x_1 + x_2 = 0$ $x_1 - 3x_2 = 0$ $\begin{bmatrix} 2 & 1 & 0 \\ 1 & -3 & 0 \end{bmatrix} \xrightarrow{\text{met}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ There are no non-trivial solutions

The solution set is { (0,0)}.

.

<□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </td>

June 5, 2023
39/56

(b)
$$3x_1 + 5x_2 - 4x_3 = 0$$

 $-3x_1 - 2x_2 + 4x_3 = 0$
 $6x_1 + x_2 - 8x_3 = 0$

Using a augmented matrix

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{bmatrix}$$
tref
$$\begin{bmatrix}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$X_{1,1}X_{2,1}X_{3}$$

 $\chi_1 = \frac{4}{3} \chi_3$ X z = 0 X3 - is free We can write $\vec{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}X_3 \\ 0 \\ X_3 \end{bmatrix} = \begin{bmatrix} 4_{13} \\ 0 \\ X_3 \end{bmatrix}$

The solution set contains all vectors of the form $\vec{X} = X_3 \begin{bmatrix} 4/3\\0\\1 \end{bmatrix}$, x_3 in \mathbb{R} .

June 5, 2023 41 / 56

3

イロン イ理 とくほ とくほ とう

(c) $x_1 - 2x_2 + 5x_3 = 0$ $\begin{bmatrix} 1 & -2 & 5 & 0 \end{bmatrix}$ X, is basic, X2, X3 are free so there are non-trivial solutions $X_1 = ZX_2 - SX_3$ X2, X3 - free solutions set sty. $\begin{pmatrix} X_{1} \\ X_{2} \\ X_{3} \end{pmatrix} = \begin{pmatrix} 2X_{2} - 5X_{3} \\ X_{2} \\ X_{3} \end{pmatrix} \longrightarrow \langle B \rangle \langle B$ June 5, 2023 42/56

 $= \begin{bmatrix} 2X_{2} \\ X_{2} \end{bmatrix} + \begin{bmatrix} -5X_{3} \\ 0 \\ X_{3} \end{bmatrix}$

 $= \chi_{2} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \chi_{3} \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$ $\tilde{\chi}$ x_2, x_3 in \mathbb{R}

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで June 5, 2023 43/56

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x} = x_3 \mathbf{v}$. Example (c)'s solution set consisted of vectors that look like $\mathbf{x} = x_2 \mathbf{u} + x_3 \mathbf{v}$. Instead of using the variables x_2 and/or x_3 we often substitute **parameters** such as *s* or *t*.

Parametric Vector Form of a Solution Set

The forms

$$\mathbf{x} = s\mathbf{u}$$
, or $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$

are called parametric vector forms.

Remark: Since these are **linear combinations**, an alternative way to express the solution sets would be

Span $\{\mathbf{u}\}$ or Span $\{\mathbf{u}, \mathbf{v}\}$.

June 5, 2023