June 6 Math 3260 sec. 51 Summer 2023

Section 1.3: Vector Equations

We defined vectors (specifically real vectors) as $n \times 1$ column matrices. The set of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

constitutes the set \mathbb{R}^{n} (read " $R \mathrm{n}$ ").
For example $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a vector in $\mathbb{R}^{2},\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is a vector in \mathbb{R}^{3}, and so forth.

Vectors in \mathbb{R}^{n}

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

The numbers, $x_{1}, x_{2}, \ldots, x_{n}$ in the vector are called components or entries. For vectors in \mathbb{R}^{n}, these are elements of the real numbers (denoted \mathbb{R}).

Scalars: \mathbb{R}^{n} is an example of something called a vector space. Such a structure is always associated with another set (known as a field) of objects called scalars.

Our set of scalars will be \mathbb{R}.

Some Matrix \& Vector Notation

If $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ is a collection of vectors in \mathbb{R}^{m}, then we can express the $m \times n$ matrix having these vectors as its columns

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Note that the number $a_{i j}$ is the $i^{\text {th }}$ component of the vector \mathbf{a}_{j}.

Equivalence \& Operations

Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ be in \mathbb{R}^{n} and c is a scalar.
Equivalence: $\mathbf{u}=\mathbf{v} \Leftrightarrow u_{i}=v_{i}$ for each $i=1, \ldots, n$

$$
\begin{gathered}
\text { Scalar Multiplication: } \quad c \mathbf{u}=\left[\begin{array}{c}
c u_{1} \\
\vdots \\
c u_{n}
\end{array}\right] \\
\text { Vector Addition: } \quad \mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right]
\end{gathered}
$$

The Zero Vector (denoted $\mathbf{0}$ or $\overrightarrow{0}$) is the vector whose entries are all zeros.

Algebraic Properties on \mathbb{R}^{n}

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d^{1}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $\quad(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \quad$ (vi) $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} \quad$ (viii) $1 \mathbf{u}=\mathbf{u}$

Remark: These properties follow easily from the algebraic properties on \mathbb{R}. They provide a structure that we will later associate with vector spaces.
${ }^{1}$ The term $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Linear Combination \& Span

Definition

A linear combination of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ in \mathbb{R}^{n} is a vector \mathbf{y} of the form

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{1}, \ldots, c_{p} are often called weights.

Definition

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is the span of the set S. It is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}(S)
$$

Equivalent Statements

Suppose $\mathbf{b}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{m}. The following are equivalent:

- \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$,
$-\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$ for some scalars c_{1}, \ldots, c_{p},
- the vector equation $x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}$ has a solution,
- the linear system of equations whose augmented matrix is $\left[\mathbf{v}_{1} \cdots \mathbf{v}_{p} \mathbf{b}\right]$ is consistent.

Example
Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 4 \\ -2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}5 \\ -5 \\ k\end{array}\right]$. For which values) of k, if any, is \mathbf{b} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?

For what k is $\vec{b}_{b}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$?
For what k is the system w/ augmented matrix $\quad\left[\vec{v}, \vec{v}_{2} \vec{b}\right]$ consistent?

$$
\begin{aligned}
& \text { Consistent? } \\
& {\left[\begin{array}{ccc}
1 & -1 & 5 \\
1 & 4 & -5 \\
2 & -2 & k
\end{array}\right] \begin{array}{l}
-R_{1}+R_{2} \rightarrow R_{2} \\
-2 R_{1}+R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{ccc}
1 & -1 & 5 \\
0 & 5 & -10 \\
0 & 0 & k-10
\end{array}\right]}
\end{aligned}
$$

June 5, $2023 \quad$ '8/56

The system is only consistent if

$$
k-10=0 \text {, ie., } k=10
$$

\vec{b} is in Span $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ if

$$
k=10
$$

Some Geometry
Recall: The vectors in \mathbb{R}^{2} represent the points in the Cartesian plane.
Give a geometric description of the subset of \mathbb{R}^{2} given by $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.

If \vec{x} is in $\operatorname{Spa}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ then

$$
\vec{x}=x_{1}\left[\begin{array}{l}
i \\
0
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]
$$

Allowing x_{1} to vary, this gives the x-axis.

The set of all points (x, y) with $y=0$.

$\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}

If \mathbf{u} is any nonzero vector in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}\}$ is a line through the origin parallel to \mathbf{u}.

Figure: A nonzero vector \mathbf{u} and the line $\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}.

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^{3}

If \mathbf{u} and \mathbf{v} are nonzero, and nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

$\mathbf{w}=\mathrm{au}+\mathrm{b} \mathbf{v}$

Figure: A vector $\mathbf{w}=a \mathbf{u}+b \mathbf{v}$. If we let a and b vary, the collection of vectors $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane.

Example

Let $\mathbf{u}=(1,1)$ and $\mathbf{v}=(0,2)$ in \mathbb{R}^{2}. Show that for every pair of real numbers a and b, that (a, b) is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
we wont to show that

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

for some x_{1}, x_{2} for all possible a, b.
This is true if the system wo augmented matrix $\left[\begin{array}{lll}\vec{u} & \vec{v} & {\left[\begin{array}{l}a \\ b\end{array}\right]}\end{array}\right]$ is always consistent.

$$
\left[\begin{array}{lll}
1 & 0 & a \\
1 & 2 & b
\end{array}\right]-R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{lll}
1 & 0 & a \\
0 & 2 & b-a
\end{array}\right]
$$

The third column will nerve be a pivot column, hence the system is consistent. That is, $\left[\begin{array}{l}a \\ b\end{array}\right]$ is in Span $\{\vec{u}, \vec{v}\}$.

Note $\frac{1}{2} R_{2} \rightarrow R_{2} \quad\left[\begin{array}{ccc}1 & 0 & a \\ 0 & 1 & \frac{b-a}{2}\end{array}\right]$

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=a \vec{u}+\left(\frac{b-a}{2}\right) \vec{v}
$$

Section 1.4: The Matrix Equation $A \mathbf{x}=\mathbf{b}$.

Definition

Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, $\cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

Remark: Note that based on the definition of scalar multiplication and vector addition, the product is a vector in \mathbb{R}^{m}.

Example: Find the product $A \mathbf{x}$.

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right] \mathbf{x}=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right] \\
& \overrightarrow{a_{1}}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \vec{a}_{3}=\left[\begin{array}{c}
-3 \\
4
\end{array}\right] \\
& \begin{array}{c}
A \vec{x}
\end{array}=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
-3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{c}
5 \\
-9
\end{array}\right]
$$

Example: Find the product $A \mathbf{x}$.

$$
\begin{aligned}
A=\left[\begin{array}{rr}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{r}
-3 \\
2
\end{array}\right] \\
\vec{a}_{1}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \quad \vec{a}_{2}=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right] \\
A \vec{x}=-3\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right] \\
=\left[\begin{array}{c}
-6 \\
3 \\
0
\end{array}\right]+\left[\begin{array}{l}
8 \\
2 \\
6
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
\end{aligned}
$$

Example

Is the product $A \mathbf{x}$ defined if $A=\left[\begin{array}{rr}2 & 4 \\ -1 & 1 \\ 0 & 3\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right]$?
This is rot defined

The number of entries in the vector has to match the number of columns in the matrix. This is not true for this matrix A and vector \mathbf{x}.

Linear Systems, Vector Equations, \& Matrix Equations Write the linear system as a vector equation and then as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$.

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3} & =2 \\
x_{1}+x_{2}+ & =-1
\end{aligned}
$$

As a vector equation

$$
x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

As a matrix equation

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]} \\
\vec{x} \quad \vec{b} \\
A=\left[\begin{array}{rrr}
2 & -3 & 1 \\
1 & .1 & 0
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \vec{b}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{gathered}
$$

Theorem

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$,
\cdots, \mathbf{a}_{n}, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

Corollary

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Remark

In other words, if $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then the corresponding linear system, $A \mathbf{x}=\mathbf{b}$, is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example
Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where
$A=\left[\begin{array}{rrr}1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7\end{array}\right]$
we wont

$$
A \vec{x}=\vec{b} \text { Solvable }
$$

This will hold if the system wi angmarted motion $\left[\begin{array}{ll}A & b\end{array}\right]$ is consistent.

$$
\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right] \begin{aligned}
& 4 R_{1}+R_{2} \rightarrow R_{2} \\
& 3 R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2} \leftrightarrow R_{3} \quad\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1}
\end{array}\right] \\
& -2 R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1} \\
0 & 0 & 0 & b_{2}-2 b_{1}-2 b_{3}
\end{array}\right]
\end{aligned}
$$

The system is only consistent if

$$
-2 b_{1}+b_{2}-2 b_{3}=0
$$

So $A \cdot \vec{x}=\vec{b}$ will be sol vale if

$$
\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \text { satisfies }-2 b_{1}+b_{2}-2 b_{3}=0
$$

we con state this as \vec{b} belonging to a given Span.

$$
-2 b_{1}+b_{2}-2 b_{3}=0
$$

Twink of b_{1} as basic and b_{2}, b_{3} as fire vaicbler.

$$
\begin{gathered}
b_{1}=\frac{1}{2} b_{2}-b_{3} \\
{\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} b_{2} \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-b_{3} \\
0 \\
b_{3}
\end{array}\right]}
\end{gathered}
$$

$$
=b_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

we can say that $A \vec{x}=\vec{b}$ is sol vale if \vec{b} is in

$$
\operatorname{Spon}\left\{\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

Theorem (first in a string of equivalency theorems)

Theorem

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.

Remark: That last statement, (d), is about coefficient matrix A. It's not about an augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$.

A Special Product

Definition
Consider two vectors $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ in \mathbb{R}^{n}. The dot
product of \mathbf{x} and \mathbf{y}, denoted

$$
\mathbf{x} \cdot \mathbf{y}
$$

is defined by

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Remark: Note that the dot product of two vectors is a scalar. This is an example of an inner product. It's sometimes called a scalar product.

Computing $A \mathbf{x}$

The dot product can be used as an alternative way of computing a product $A \mathbf{x}$. If A is an $m \times n$ matrix and \mathbf{x} is a vector in \mathbb{R}^{n}, then the $i^{\text {th }}$ component of the product $A \mathbf{x}$ is the dot product of the $i^{\text {th }}$ row of A and the vector \mathbf{x}.

For example

$$
\left[\begin{array}{rrr}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
(1)(2)+(0)(1)+(-3)(-1) \\
(-2)(2)+(-1)(1)+(4)(-1)
\end{array}\right]=\left[\begin{array}{r}
5 \\
-9
\end{array}\right]
$$

Evaluate
Use the dot product approach to compute each product.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
2(-3)+4(2) \\
-1(-3)+1(2) \\
0(-3)+3(2)
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 x_{1}+0 x_{2}+0 x_{3} \\
0 x_{1}+1 x_{2}+0 x_{3} \\
0 x_{1}+0 x_{2}+1 x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{aligned}
$$

Identity Matrix

Definition: Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else-i.e. one that looks like

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

the $n \times n$ identity matrix and denote it by I_{n}. (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^{n}

$$
I_{n} \mathbf{x}=\mathbf{x}
$$

Properties of the Matrix Product

Theorem

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is any scalar, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$, and
(b) $A(c \mathbf{u})=c A \mathbf{u}$.

Remark: These two properties are a pretty big deal! These are the two properties that constitute being Linear (as in Linear Algebra).

Section 1.5: Solution Sets of Linear Systems

Definition

A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.

Theorem

Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, $\mathbf{x}=\mathbf{0}$, called the trivial solution.

Homogeneous Linear Systems

We know that the homogeneous system

$$
A \mathbf{x}=\mathbf{0}
$$

is always consistent because $\mathbf{x}=\mathbf{0}$ (in \mathbb{R}^{n}) is necessarily a solution.
The interesting question is:

$$
\text { Does } A \mathbf{x}=\mathbf{0} \text { have any nontrivial solutions? }
$$

Theorem

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Homogeneous Linear Systems
Example:
Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(a) $\begin{aligned} 2 x_{1}+x_{2} & =0 \\ x_{1}-3 x_{2} & =0\end{aligned} \quad$ Consider the augmented

$$
\begin{array}{ccc}
x_{1}-3 x_{2}=0 \\
{\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & -3 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}
\end{array}
$$

There are no non trivial solutions

The solution set is $\{(0,0)\}$.
$3 x_{1}+5 x_{2}-4 x_{3}=0$
(b) $-3 x_{1}-2 x_{2}+4 x_{3}=0$
$6 x_{1}+x_{2}-8 x_{3}=0$

Using on angmecrted matrix

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{llll}
1 & 0 & -4 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{3} will be free, so there are non trivia solutions. Solving for

$$
x_{1}, x_{2}, x_{3}
$$

$$
\begin{aligned}
& x_{1}=\frac{4}{3} x_{3} \\
& x_{2}=0
\end{aligned}
$$

x_{3} - is free
we can write $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\frac{4}{3} x_{3} \\ 0 \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}4 / 3 \\ 0 \\ 1\end{array}\right]$

The solution set contains all vectors of the form

$$
\vec{x}=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right], x_{3} \text { in } \mathbb{R}
$$

(c) $x_{1}-2 x_{2}+5 x_{3}=0$

$$
\left[\begin{array}{llll}
1 & -2 & 5 & 0
\end{array}\right]
$$

x_{1} is basic, x_{2}, x_{3} are free so there are non trivial solutions

$$
\begin{aligned}
& x_{1}=2 x_{2}-5 x_{3} \\
& x_{2}, x_{3}-\text { free }
\end{aligned}
$$

solutions satisfy

$$
\begin{aligned}
& \text { owns satisfy } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{aligned}
$$

June 5, $2023 \quad 42 / 56$

$$
\begin{gathered}
=\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
\vec{x}= \\
x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] \\
x_{2}, x_{3} \quad \text { in } \mathbb{R}
\end{gathered}
$$

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x}=x_{3} \mathbf{v}$. Example (c)'s solution set consisted of vectors that look like $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$. Instead of using the variables x_{2} and/or x_{3} we often substitute parameters such as s or t.

Parametric Vector Form of a Solution Set

The forms

$$
\mathbf{x}=s \mathbf{u}, \quad \text { or } \quad \mathbf{x}=s \mathbf{u}+t \mathbf{v}
$$

are called parametric vector forms.

Remark: Since these are linear combinations, an alternative way to express the solution sets would be

$$
\operatorname{Span}\{\mathbf{u}\} \text { or } \operatorname{Span}\{\mathbf{u}, \mathbf{v}\} .
$$

