# June 8 Math 3260 sec. 51 Summer 2023

#### Section 1.5: Solution Sets of Linear Systems

We said that a linear system  $A\mathbf{x} = \mathbf{b}$  is **homogeneous** if  $\mathbf{b} = \mathbf{0}$ . That is, a homogeneous system is one of the form

#### $A\mathbf{x} = \mathbf{0}$

for some  $m \times n$  matrix A and where **0** is the zero vector in  $\mathbb{R}^m$ .

#### **Two Theorems**

- (1) The homogeneous equation  $A\mathbf{x} = \mathbf{0}$  is always consistent because the trivial solution  $\mathbf{x} = \mathbf{0}$  is a solution.
- (2) Moreover, it has nontrivial solutions if and only if the system has at least one free variable.

### Homogeneous Linear Systems

We can determine whether a homogeneous system  $A\mathbf{x} = \mathbf{0}$  has nontrivial solutions using an augmented matrix  $[A \mathbf{0}]$ . We looked at some examples.

The augmented matrix  $\begin{bmatrix} 2 & 1 & 0 \\ 1 & -3 & 0 \end{bmatrix}$  is row equivalent to  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ . So the solution set is {(0,0)}. There are no nontrivial solutions.

June 7, 2023 2/47

### Homogeneous Linear Systems

Using the augmented matrix and row operations gives

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We can see that there are nontrivial solutions because there are three variables but only two pivot columns.  $x_3$  is a free variable.

# Solution of Homogeneous Linear System $\begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ . The rref can be used to describe the solution set in various ways.

Parametric description:  $\begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = 0 \\ x_2 & \text{is free} \end{cases}$ 

**Parametric Vector Form:**  $\mathbf{x} = t \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}, t \in \mathbb{R}$ In terms of span\*:  $\mathbf{x} \in \text{Span} \left\{ \begin{array}{c|c} \frac{7}{3} \\ 0 \\ 1 \end{array} \right\}$ 

The symbol "∈" means *is an element of*.

\* Later, we'll say that we're describing the set as a subspace of  $\mathbb{R}^m$ .



June 7, 2023 5/47

(c) 
$$x_1 - 2x_2 + 5x_3 = 0$$

The augmented matrix  $\begin{bmatrix} 1 & -2 & 5 & 0 \end{bmatrix}$  is already an rref. There are nontrivial solutions because there are two free variables. We expressed the solution set

**Parametric description:**  $\begin{cases} x_1 = 2x_2 - 5x_3 \\ x_2, x_3 & \text{are free} \end{cases}$ 

**Parametric Vector Form:**  $\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ -5 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}, s, t \in \mathbb{R}$ 

In terms of span:  $\mathbf{x} \in \text{Span} \left\{ \begin{array}{c|c} 2 \\ 1 \\ 0 \end{array}, \begin{array}{c|c} -5 \\ 0 \\ 1 \end{array} \right\}$ 

This is a plane in  $\mathbb{R}^3$  that contains the points (0, 0, 0), (2, 1, 0), and (-5, 0, 1). • • • • • • • • • • • •

# Geometry



Figure: Plot of the plane  $\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$ . The blue vectors are in the directions of (2, 1, 0) and (-5, 0, 1). The white vector is *normal* (i.e., perpendicular) to the plane.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

 $3x_1 + 5x_2 - 4x_3 = 7$  $-3x_1 - 2x_2 + 4x_3 = -1$  $6x_1 + x_2 - 8x_3 = -4$ We can use an any mented matrix  $\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix} \xrightarrow{\text{cref}} \begin{bmatrix} 1 & 0 & -4 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ The solutions in parametric description are

June 7, 2023 8/47

ヘロト 不通 とうき とうとう ほう

but's convert to X1=-1+=X3 parametric vector form  $\chi_z = 2$ x3 is free

 $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 + \frac{1}{3}X_3 \\ 2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{3}X_3 \\ 0 \\ X_3 \end{bmatrix}$  $= \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} + \chi_3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 

 $\vec{X} = \begin{bmatrix} -1 \\ z \\ 0 \end{bmatrix} + E \begin{bmatrix} 4/3 \\ 0 \\ 1 \end{bmatrix}$ , EEIR

< □ ▶ < @ ▶ < 重 ▶ < 重 ▶ 重 のへで June 7, 2023 9/47



in red, and the vector  $(\frac{4}{3}, 0, 1)$  is shown in green.

Solutions of Nonhomogeneous Systems Note that the solution in this example has the form  $p_{arconcetric}$  $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ 

with **p** and **v** fixed vectors and *t* a varying parameter. Also note that the t**v** part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

#### Definition

The vector **p** satisfying the nonhomogeneous system  $A\mathbf{p} = \mathbf{b}$  is called a **particular solution**.

The term  $t\mathbf{v}$  is called a solution to the associated homogeneous equation.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# General Solution Nonhomogeneous Equation

#### Theorem

Suppose the equation  $A\mathbf{x} = \mathbf{b}$  is consistent for a given **b**. Let **p** be a particular solution. Then the solution set of  $A\mathbf{x} = \mathbf{b}$  is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h,$$

where  $\mathbf{v}_h$  is any solution of the associated homogeneous equation  $A\mathbf{x} = \mathbf{0}$ .

**Remark:** We can use a row reduction technique to get all parts of the solution in one process.

June 7, 2023

# Example

Find the solution set of the following system. Express the solution set in parametric vector form.

$$x_{1} - 2x_{2} + x_{4} = 2$$

$$3x_{1} - 6x_{2} + x_{3} - x_{4} = 7$$
We can use an anymented matrix
$$\begin{pmatrix} 1 & -2 & 0 & 1 & 2 \\ 3 & -6 & 1 & -1 & 7 \end{pmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & -2 & 0 & 1 & 2 \\ 0 & 0 & 1 & -4 & 1 \end{bmatrix}$$
Describing the solutions
$$x_{1} = 2 + 2X_{2} - X_{4}$$

$$X_{2} - \text{free}$$

June 7, 2023 13/47

X2 = 1 + 4×4 xn - free

Converting to parametric vector form





The solutions are



< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ June 7, 2023 15/47

### Section 1.7: Linear Independence

We already know that a homogeneous equation  $A\mathbf{x} = \mathbf{0}$  can be thought of as an equation in the column vectors of the matrix  $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$  as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}.$$

And, we know that at least one solution (the trivial one  $x_1 = x_2 = \cdots = x_n = 0$  always exists.

**Remark:** The existence, or not, of a nontrivial solution is a property of the set of vectors  $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ .

> June 7, 2023

# Definition: Linear Independence

#### **Definition:**

An indexed set of vectors  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$  in  $\mathbb{R}^n$  is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

If a set of vectors is not linearly independent, we say that it is **linearly** dependent.

June 7, 2023

# Linear Dependence & Independence

We can restate this definition:

#### **Definition:**

The set  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$  is said to be **linearly dependent** if there exists a set of weights  $c_1, c_2, \dots, c_p$ , at least one of which is *nonzero*, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

**Remark:** The phrase "*at least one of which is nonzero*" is a reference to a **nontrivial solution**.

#### **Definition:**

An equation  $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$ , with at least one  $c_i \neq 0$ , is called a **linear dependence relation**.

### Theorem on Linear Independence

#### **Theorem:**

The columns of a matrix *A* are linearly **independent** if and only if the homogeneous equation  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution.

**Remark:** This follows from the definition of linear independence. This connects a homogeneous system  $A\mathbf{x} = \mathbf{0}$  with a property of the columns of *A* as a set of vectors.

• • • • • • • • • • • • •

June 7, 2023

### Example

(a) Let 
$$\mathbf{v}_1 = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$
, and  $\mathbf{v}_2 = \begin{bmatrix} 1\\ -2 \end{bmatrix}$ 

Determine if the set  $\{\bm{v}_1, \bm{v}_2\}$  is linearly dependent or linearly independent.

An option is to create a northix with V. and Vz as columns Say A= [V, Vz]. Consider the homogeneous equ. AX=0. The augmented matrix is  $\begin{bmatrix} z & i & o \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} i & 0 & o \\ o & i & o \end{bmatrix}$ 3

June 7, 2023

AX= 0 has no notrivial solutions Hence the columns of A are linearly independent. That is,  $\{\vec{v}_1, \vec{v}_2\}$  is linearly independent

### Example

(b) Let 
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
,  $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$  and  $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 

Determine if the set  $\{v_1, v_2, v_3\}$  is linearly dependent or linearly independent.

Note 
$$\vec{v}_1 + \vec{v}_2 = \vec{v}_3$$
. We can create  
a linear dependence relation by  
subtracting  $\vec{v}_3$  to get  
 $\vec{v}_1 + \vec{v}_2 - \vec{v}_3 = \vec{0}$ 

<ロト <回 > < 回 > < 回 > < 回 > … 回

June 7, 2023

The coefficients are 1, 1 and -1, least one of them is nonzero so at

[V, Vz, Vz] is linearly

dependent.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ June 7, 2023 23/47

# Example

(c) Determine if the set of vectors is linearly dependent or linearly independent. If dependent, find a linear dependence relation.

$$\begin{cases} \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} \end{cases} = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \}$$
Coll then  $\vec{v}_1$  in the order given.  
Let  $A = [\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4]$  and consider  $A\vec{x} = \vec{0}$ .  
The argumented metrix

The almost are linearly dependent since the system has free variable (s). The solution to AX=0 satisfies

X、= ち×y  $X_{2} = -2 X_{4}$ X3 - = = X1 Xy is free

We can write  $-\frac{1}{3} X_{4} \overline{V}_{1} - 2 X_{4} \overline{V}_{2} + \frac{2}{3} X_{4} \overline{V}_{3} + X_{4} \overline{V}_{4} = \vec{O}$ Setting  $X_{4} = -3$  gives the  $\vec{O} = \vec{O} = \vec{O} = \vec{O}$  $\int_{\text{June 7, 2023}} 25/47$  linear dependence relation

 $\vec{v}_1 + 6\vec{v}_2 - z\vec{v}_3 - 3\vec{v}_4 = \vec{0}$ 

Note: This isn't the only possible lin. dependence relation. Le could choose a dufferent they value (e.g. Xy=1). The coefficients can be different, but they'll all have a common ratio relation ship.

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで June 7, 2023 26/47

### Theorem

#### Theorem

An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

**Example:** Let **u** and **v** be any nonzero vectors in  $\mathbb{R}^3$ . Show that if **w** is any vector in Span{**u**, **v**}, then the set {**u**, **v**, **w**} is linearly **dependent**.

Since 
$$\vec{w}$$
 is in Span  $(\vec{u}, \vec{v})$ ,  
 $\vec{w} = C_{1}\vec{u} + C_{2}\vec{v}$  for some scalars  
 $C_{1}$  and  $C_{2}$ . We can reason get  $M^{-s}$   
to get

June 7, 2023 27/47

$$c_1\vec{u} + c_2\vec{v} - \vec{w} = \vec{0}$$
.  
This is a linear dependence relation  
because the coefficient of  $\vec{w}$  is  
 $-1$ , which is not zero.  
Hence  $(\vec{u}, \vec{v}, \vec{w})$  is necessarily  
linearly dependent.

-

### Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \text{ and } \mathbf{v}_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

Each set  $\{v_1, v_2\}$ ,  $\{v_1, v_3\}$ , and  $\{v_2, v_3\}$  is linearly independent. (You can easily verify this.)

However,

$$v_3 = v_2 - v_1$$
 i.e.  $v_1 - v_2 + v_3 = 0$ ,

so the set  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  is linearly dependent.

#### This means that you can't just consider two vectors at a time.

June 7, 2023

## **Two More Theorems**

#### Theorem:

If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if  $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$  is a set of vector in  $\mathbb{R}^n$ , and p > n, then the set is linearly dependent.

For example, if you have 7 vectors,  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5, \mathbf{v}_6, \mathbf{v}_7\}$ , and each of these is a vector in  $\mathbb{R}^5$ , i.e.,  $\mathbf{v}_1 = \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \\ v_{41} \\ v_{51} \end{bmatrix}$  and so forth, then they must be **linearly dependent** because 7 > 5.

June 7, 2023

## **Two More Theorems**

#### Theorem:

Any set of vectors that contains the zero vector is linearly **dependent**.

Consider the set of vectors  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{0}\}$  in  $\mathbb{R}^n$ . Note that

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_p + 1\mathbf{0} = \mathbf{0}$$

is a **linear dependence relation** because the last coefficient  $c_{p+1} = 1$  is nonzero. It doesn't matter what the other vectors are or what the values of *p* and *n* are relative to one another!

# Examples

Without doing any computations, determine, with justification, whether the given set is linearly dependent or linearly independent.

(a) 
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\-5 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3 \end{bmatrix} \right\}$$
  
This is 4 vectors in  $\mathbb{R}^3$ . Then are linearly dependent. because 473.

June 7, 2023 32/47

イロト 不得 トイヨト イヨト 二日



(b) 
$$\left\{ \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\-8\\1 \end{bmatrix}, \right\}$$
  
This set contains  $\tilde{O}$ . It is  
Jinearly dependent.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 少 Q (\*) June 7, 2023 33/47