June 8 Math 3260 sec. 51 Summer 2023

Section 1.5: Solution Sets of Linear Systems

We said that a linear system $A \mathbf{x}=\mathbf{b}$ is homogeneous if $\mathbf{b}=\mathbf{0}$. That is, a homogeneous system is one of the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.

Two Theorems

(1) The homogeneous equation $A \mathbf{x}=\mathbf{0}$ is always consistent because the trivial solution $\mathbf{x}=\mathbf{0}$ is a solution.
(2) Moreover, it has nontrivial solutions if and only if the system has at least one free variable.

Homogeneous Linear Systems

We can determine whether a homogeneous system $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions using an augmented matrix $[A 0]$. We looked at some examples.
(a) $\begin{aligned} 2 x_{1}+x_{2} & =0 \\ x_{1}-3 x_{2} & =0\end{aligned}$

The augmented matrix $\left[\begin{array}{rrr}2 & 1 & 0 \\ 1 & -3 & 0\end{array}\right]$ is row equivalent to $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.
So the solution set is $\{(0,0)\}$. There are no nontrivial solutions.

Homogeneous Linear Systems

(b) $\begin{aligned} 3 x_{1}+5 x_{2}-4 x_{3} & =0 \\ -3 x_{1}-2 x_{2}+4 x_{3} & =0 \\ 6 x_{1}+x_{2}-8 x_{3} & =0\end{aligned}$

Using the augmented matrix and row operations gives

$$
\left[\begin{array}{rrrr}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{rrrr}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We can see that there are nontrivial solutions because there are three variables but only two pivot columns. x_{3} is a free variable.

Solution of Homogeneous Linear System
 $\left[\begin{array}{cccc}1 & 0 & -\frac{4}{3} & 0\end{array}\right] \quad 0$

$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$. The rref can be used to describe the solution set in $\left.\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$
various ways.
Parametric description: $\left\{\begin{array}{l}x_{1}=\frac{4}{3} x_{3} \\ x_{2}=0 \\ x_{3}=\text { is free }\end{array}\right.$
Parametric Vector Form: $\mathbf{x}=t\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right], \quad t \in \mathbb{R}$
In terms of span*: $\mathbf{x} \in \operatorname{Span}\left\{\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]\right\}$
The symbol " ϵ " means is an element of.

* Later, we'll say that we're describing the set as a subspace of \mathbb{R}^{m}.

Geometry $\mathbf{x}=t\left(\frac{4}{3}, 0,1\right)$ in \mathbb{R}^{3}

Figure: Plot of the line $\mathbf{x}=t\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]$. The point $\left(\frac{4}{3}, 0,1\right)$ is shown in green.
(c) $x_{1}-2 x_{2}+5 x_{3}=0$

The augmented matrix [$\left.\begin{array}{cccc}1 & -2 & 5 & 0\end{array}\right]$ is already an rref. There are nontrivial solutions because there are two free variables. We expressed the solution set
Parametric description: $\left\{\begin{aligned} x_{1} & =2 x_{2}-5 x_{3} \\ x_{2}, x_{3} & \text { are free }\end{aligned}\right.$
Parametric Vector Form: $\quad \mathbf{x}=s\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}-5 \\ 0 \\ 1\end{array}\right], \quad s, t \in \mathbb{R}$
In terms of span: $\mathbf{x} \in \operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-5 \\ 0 \\ 1\end{array}\right]\right\}$
This is a plane in \mathbb{R}^{3} that contains the points $(0,0,0),(2,1,0)$, and $(-5,0,1)$.

Geometry

Figure: Plot of the plane $\mathbf{x}=s\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right]$. The blue vectors are in the directions of $(2,1,0)$ and $(-5,0,1)$. The white vector is normal (i.e., perpendicular) to the plane.

Nonhomogeneous Systems
Find all solutions of the nonhomogeneous system of equations

$$
\begin{gathered}
3 x_{1}+5 x_{2}-4 x_{3}=7 \\
-3 x_{1}-2 x_{2}+4 x_{3}=-1 \\
6 x_{1}+x_{2}-8 x_{3}=-4
\end{gathered}
$$

we con use an augmented matrix

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right] \xrightarrow[\text { TI 92 }]{\operatorname{rref}}\left[\begin{array}{cccc}
1 & 0 & -\frac{4}{3} & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The solutions in parametric

$$
=\operatorname{sig}^{n}
$$ here description are

$x_{1}=-1+\frac{4}{3} x_{3}$ $x_{2}=2$
x_{3} is free

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1+\frac{4}{3} x_{3} \\
2 \\
x_{3}
\end{array}\right] }=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
&=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right] \\
& \vec{x}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right], t \in \mathbb{R}
\end{aligned}
$$

Lets convert to parametric vector form

Geometry $\mathbf{x}=(-1,2,0)+t\left(\frac{4}{3}, 0,1\right)$ in \mathbb{R}^{3}

Figure: Plot of the line $\mathbf{x}=\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{l}\frac{4}{3} \\ 0 \\ 1\end{array}\right]$. The point $(-1,2,0)$ is shown in red, and the vector $\left(\frac{4}{3}, 0,1\right)$ is shown in green.

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t v$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

Definition

The vector \mathbf{p} satisfying the nonhomogeneous system $A \mathbf{p}=\mathbf{b}$ is called a particular solution.

The term $t \mathbf{v}$ is called a solution to the associated homogeneous equation.

General Solution Nonhomogeneous Equation

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h},
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Remark: We can use a row reduction technique to get all parts of the solution in one process.

Example
Find the solution set of the following system. Express the solution set in parametric vector form.

$$
\begin{aligned}
x_{1} & -2 x_{2}+x_{4} \\
3 x_{1} & =2 \\
3 x_{2}+x_{3}-x_{4} & =7
\end{aligned}
$$

We can use ar augmented matrix

$$
\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & 2 \\
3 & -6 & 1 & -1 & 7
\end{array}\right] \xrightarrow[T I-52]{\text { ref }}\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & 2 \\
0 & 0 & 1 & -4 & 1
\end{array}\right]
$$

Describing the solutions

$$
\begin{aligned}
& x_{1}=2+2 x_{2}-x_{4} \\
& x_{2} \text {-free }
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=1+4 x_{4} \\
& x_{4}-\text { free }
\end{aligned}
$$

Converting to parametric vector form.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2+2 x_{2}-x_{4} \\
x_{2} \\
1+4 x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-x_{4} \\
0 \\
4 x_{4} \\
x_{4}
\end{array}\right]} \\
& =\underbrace{\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]}_{\vec{P}}+\underbrace{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
4 \\
1
\end{array}\right]}_{\vec{V}_{h}}
\end{aligned}
$$

The solutions are

$$
\vec{x}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
4 \\
1
\end{array}\right]
$$

$s, t \in \mathbb{R}$.

Section 1.7: Linear Independence

We already know that a homogeneous equation $A \mathbf{x}=\mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

And, we know that at least one solution (the trivial one $x_{1}=x_{2}=\cdots=x_{n}=0$) always exists.

Remark: The existence, or not, of a nontrivial solution is a property of the set of vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

Definition: Linear Independence

Definition:

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.

If a set of vectors is not linearly independent, we say that it is linearly dependent.

Linear Dependence \& Independence

We can restate this definition:

Definition:

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$, at least one of which is nonzero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

Remark: The phrase "at least one of which is nonzero" is a reference to a nontrivial solution.

Definition:

An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Theorem on Linear Independence

Theorem:

The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Remark: This follows from the definition of linear independence. This connects a homogeneous system $\mathbf{A x}=\mathbf{0}$ with a property of the columns of A as a set of vectors.

Example
(a) Let $\quad \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \quad$ and $\quad \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$

Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent or linearly independent.
An option is to. Create a matrix with \vec{V}_{1} and \vec{V}_{2} as columns. Say $A=\left[\vec{V}_{1} \vec{V}_{2}\right]$.
Consider the homo ogene ohs equ. $A \vec{x}=\overrightarrow{0}$.
The augmented matrix is

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$A \vec{x}=\overrightarrow{0}$ has no notrivial solutions
Hence the columns of A are linearly independent.

That is, $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is
linearly independent.

Example
(b) Let $\quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \quad$ and $\quad \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent or linearly independent.

Note $\vec{V}_{1}+\vec{V}_{2}=\vec{V}_{3}$. we can create
a linear dependence relation by subtracting. \vec{V}_{3} to get

$$
\vec{V}_{1}+\vec{V}_{2}-\vec{V}_{3}=\overrightarrow{0}
$$

The coefficients are 1,1 and -1 , so at least one of them is nonzero..
$\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$ is linearly dep indent.

Example
(c) Determine if the set of vectors is linearly dependent or linearly independent. If dependent, find a linear dependence relation.

$$
\left\{\left[\begin{array}{l}
2 \\
3 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]\right\}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}
$$

Call them \vec{V}_{i} in the order given.
Let $A=\left[\begin{array}{llll}\vec{V}_{1} & \vec{V}_{2} & \vec{V}_{3} & \vec{V}_{4}\end{array}\right]$ and consider $A \vec{x}=\overrightarrow{0}$
The augmented matrix

$$
\left[\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 2 & 0 \\
0 & 1 & 3 & 0 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 / 3 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 / 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

June 7, $2023 \quad 24 / 47$

The columns are linearly dependent since the system has free variable (s).

The solution to $A \vec{x}=\overrightarrow{0}$ satisfies

$$
\begin{aligned}
& x_{1}=\frac{-1}{3} x_{4} \\
& x_{2}=-2 x_{4} \\
& x_{3}=\frac{2}{3} x_{4}
\end{aligned}
$$

x_{4} is free
we con write

$$
-\frac{1}{3} x_{4} \vec{V}_{1}-2 x_{4} \vec{V}_{2}+\frac{2}{3} x_{4} \vec{V}_{3}+X_{4} \vec{V}_{4}=\overrightarrow{0}
$$

Setting $x_{4}=-3$ gives the
linear dependence relation

$$
\vec{V}_{1}+6 \vec{V}_{2}-2 \vec{V}_{3}-3 \vec{V}_{4}=\overrightarrow{0}
$$

Note: This int the only possible lin. dependence relation. Use could choose a different tu value (e.g. $x_{4}=1$). The coefficients can be different, but they 11 all have a common ratio relation ship.

Theorem
Theorem
An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^{3}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Since \vec{w} is in $\operatorname{span}\{\vec{u}, \vec{v}\}$,
$\vec{\omega}=C_{1} \vec{u}+c_{2} \vec{v}$ for some scalars
c_{1} and c_{2}. We con rearrange th: s
to set

$$
c_{1} \vec{u}+c_{2} \vec{v}-\vec{w}=\overrightarrow{0} .
$$

This is a linear dependence relation because. the coefficient of \vec{v} is -1, which is notzers.

Hence $\{\vec{u}, \vec{v}, \vec{\omega})$ is necessarily linearly dependent.

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Each set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$, and $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. (You can easily verify this.)

However,

$$
\mathbf{v}_{3}=\mathbf{v}_{2}-\mathbf{v}_{1} \quad \text { i.e. } \quad \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}
$$

so the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent.
This means that you can't just consider two vectors at a time.

Two More Theorems

Theorem:

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

For example, if you have 7 vectors, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}, \mathbf{v}_{7}\right\}$, and each of these is a vector in \mathbb{R}^{5}, i.e., $\mathbf{v}_{1}=\left[\begin{array}{l}v_{11} \\ v_{21} \\ v_{31} \\ v_{41} \\ v_{51}\end{array}\right]$ and so forth, then they must be linearly dependent because $7>5$.

Two More Theorems

Theorem:

Any set of vectors that contains the zero vector is linearly dependent.

Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}, \mathbf{0}\right\}$ in \mathbb{R}^{n}. Note that

$$
0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{p}+10=\mathbf{0}
$$

is a linear dependence relation because the last coefficient $c_{p+1}=1$ is nonzero. It doesn't matter what the other vectors are or what the values of p and n are relative to one another!

Examples
Without doing any computations, determine, with justification, whether the given set is linearly dependent or linearly independent.
(a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]\right\}$

This is 4 vectors in \mathbb{R}^{3}. Thess ane
linearly dependent. because $4>3$.

Examples
(b) $\left\{\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ -8 \\ 1\end{array}\right],\right\}$

This set contains \vec{O}. It is linearly dependent.

