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Chapter 1

The Vector Spaces Rn

We will begin our study of linear algebra by introducing the vector spaces
Rn, which are also known as the Euclidean n–spaces. As a student in an
introductory linear algebra course, you have probably completed Calculus I
and you are probably comfortable with working in the mathematical settings
of R and R2. You have learned to visualize R as the number line. It is a one–
dimensional object – a line that has infinite length. You have also learned
to visualize R2 as the Cartesian plane. It is a two–dimensional object – an
infinite flat plane. Perhaps you have also completed (or are concurrently
taking) Calculus III and, if so, you have learned to visualize R3 as three–
dimensional space. As human beings, we have the ability to form visual
pictures of R, R2, and R3 because the physical world that we live in is three–
dimensional. When it comes to trying to visualize R4 (or Rn for any n ≥ 4),
we don’t have the ability to form visual pictures. However, as will be seen,
we can still equip ourselves with the mathematical tools that are needed to
address problems involving Rn when n ≥ 4 .

1.1 The Vector Space R2

1.1.1 What is a Vector in R2?

If P = (p1, p2) and Q = (q1, q2) are two points in R2, then the directed line
segment from P to Q is the arrow that points from P to Q. We denote this

directed line segment by
−→
PQ. It is called a directed line segment because it

is thought of as “beginning” at the point P and “ending” at the point Q. As

1



2 CHAPTER 1. THE VECTOR SPACES Rn

an example, the directed line segment from the point P = (2, 3) to the point
Q = (5, 10) is pictured in Figure 1.1.

Figure 1.1: Directed Line Segment
−→
PQ

Two directed line segments are said to be equivalent to each other if
they both have the same length and both point in the same direction. For

example the directed line segment
−→
PQ from the point P = (2, 3) to the

point Q = (5, 10) is equivalent to the directed line segment
−→
RS from the

point R = (6, 1) to the point S = (9, 8) because
−→
PQ and

−→
RS both have

the same length and both point in the same direction. The reason that
−→
PQ

and
−→
RS both have the same length and both point in the same direction is

that the ending point of each of these directed line segments is reached from
the starting point by moving 3 units to the right and 7 units upward, as
illustrated in Figure 1.2.

Now that we have described what a directed line segment is and what it
means for two directed line segments to be equivalent, we can describe what
we mean by a vector: A vector in R2 is an ordered pair of real numbers that
describes both a length (also called a “magnitude”) and a direction. We use
the triangular bracket notation ⟨x1,x2⟩ for vectors, so as not to confuse vectors
with points. (The rounded bracket notation (x1, x2) is used for points.)
When we want to give a name to a vector, we use a notation such as x⃗ or x.
Thus we could write x⃗ = ⟨x1,x2⟩ or x = ⟨x1,x2⟩. The real numbers, x1 and
x2, are called the entries or the components of the vector x⃗ = ⟨x1, x2⟩.
If x⃗ = ⟨x1,x2⟩ is a vector in R2, then we can visualize x⃗ by drawing its
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Figure 1.2: Equivalence of
−→
PQ and

−→
RS

standard representative, which is the directed line segment from the point
O = (0, 0) to the point X = (x1, x2). We can also visualize x⃗ = ⟨x1,x2⟩ by
drawing any other representative of x⃗. This is done by choosing any point
P = (p1, p2) and then drawing the directed line segment from P to the point
Q = (p1 + x1, p2 + x2).

To illustrate: The standard representative of the vector x⃗ = ⟨3, 7⟩ is the
directed line segment

−−→
OX that is pictured in Figure 1.3. The directed line

segments
−→
PQ and

−→
RS that are pictured in Figure 1.2 are also representatives

of the vector x⃗ = ⟨3, 7⟩.

Figure 1.3: Standard Representative of Vector x⃗ = ⟨3, 7⟩
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Exercise 1.1.1. Draw a picture of the standard representative of the vector
x⃗ = ⟨−3, 4⟩. Then draw a picture of the representative of x⃗ that is based at
the point P = (1, 2). (To do this you will need to find the point Q such that
−→
PQ is a representative of x⃗.)

Exercise 1.1.2. What vector is represented by the directed line segment
−→
PQ

from the point P = (3, 1) to the point Q = (−4,−1)? Draw a picture of the
standard representative of this vector.

Exercise 1.1.3. In parts 1–5 below, four points (P,Q,R, and S) are given.

Draw the directed line segments
−→
PQ and

−→
RS and determine whether or not−→

PQ and
−→
RS represent the same vector. If they do not represent the same

vector, then state whether this is because they don’t have the same length or
don’t point in the same direction (or both).

1. P = (−7,−7), Q = (4,−3) , R = (−1, 7) , S = (10, 11)

2. P = (1,−6), Q = (−7,−5) , R = (−6,−8) , S = (−14,−7)

3. P = (−2, 6), Q = (−8, 7) , R = (−8,−5) , S = (−1,−5)

4. P = (−8, 0), Q = (5, 6) , R = (3, 3) , S = (−10,−3)

5. P = (4, 7), Q = (−8,−8) , R = (0, 1) , S = (−4,−4)

1.1.2 Addition of Vectors

Having defined what is meant by a vector in R2, we will define two operations
on vectors. One operation is called vector addition. It is used to add two
vectors in R2 to obtain another vector in R2. The other operation is called
scalar multiplication. It is used to multiply a vector in R2 by a real number
(referred to as a scalar) in order to obtain another vector in R2. We will first
describe vector addition.

If x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩ are two vectors in R2, then we define the
vector sum x⃗+ y⃗ to be the vector

x⃗+ y⃗ = ⟨x1 + y1, x2 + y2⟩ .

It is easy to compute the sum of two given vectors. For example, suppose
that x⃗ = ⟨4,−4⟩ and y⃗ = ⟨5, 0⟩. Then the vector sum of x⃗ and y⃗ is

x⃗+ y⃗ = ⟨4 + 5,−4 + 0⟩ = ⟨9,−4⟩ .
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Although the calculations that are done to perform vector addition are
straightforward, it is important to understand what is really going on with
these operations by drawing some pictures. Let us first consider the example

x⃗ = ⟨4,−4⟩
y⃗ = ⟨5, 0⟩

x⃗+ y⃗ = ⟨9,−4⟩ .

Figure 1.4: Picture of x⃗+ y⃗ = y⃗ + x⃗

Figure 1.4 shows the standard representatives of the vectors x⃗ = ⟨4,−4⟩,
y⃗ = ⟨5, 0⟩, and x⃗ + y⃗ = ⟨9,−4⟩. Also pictured are the representative of
x⃗ based at the point (5, 0) and the representative of y⃗ based at the point
(4,−4). These four directed line segments form a parallelogram with sides
formed by the vectors x⃗ and y⃗ . The diagonal of the parallelogram is the
vector x⃗+ y⃗. The idea here is that to draw x⃗+ y⃗, we start at the point (0, 0),
then travel along the vector x⃗ to the point (4,−4) , and then travel from
(4,−4) along the vector y⃗ to arrive at the point (9,−4). On the other hand,
to draw y⃗ + x⃗, we start at (0, 0), then travel along the vector y⃗ to the point
(5, 0), and then travel from (5, 0) along the vector x⃗ to arrive at the point
(9,−4). So x⃗+ y⃗ is the same as y⃗+ x⃗. It is easily seen by direct computation
that x⃗ + y⃗ is the same as y⃗ + x⃗, but the parallelogram picture is a helpful
visual aid in seeing why this is true geometrically.
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The above example illustrates the general procedure for drawing a picture
of the vector sum of any two given vectors x⃗ and y⃗. This procedure, is called
the Parallelogram Method of Vector Addition.

The Parallelogram Method of Vector Addition
(Refer to Figure 1.5.)

To illustrate the vector sum of vectors x⃗ and y⃗:

1. Draw pictures of the standard representative
−−→
OX of x⃗, and the standard

representative
−−→
OY of y⃗.

2. Draw the representative of x⃗ based at the point Y and draw the rep-
resentative of y⃗ based at the point X. These two representatives will
both end at a common point R.

3. After completing the first two steps, you should have a picture of a
parallelogram, unless the vectors x⃗ and y⃗ point in the same or opposite
directions, in which case you will just have a picture of a line segment.

In either case, the directed line segment
−→
OR is the standard represen-

tative of the vector x⃗+ y⃗.

Figure 1.5: The Parallelogram Method of Vector Addition
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Exercise 1.1.4. For each pair of vectors, x⃗ and y⃗, given in parts 1–7, com-
pute x⃗+ y⃗ and then draw a picture to illustrate the Parallelogram Method of
Vector Addition for x⃗+ y⃗.

1. x⃗ = ⟨3,−4⟩, y⃗ = ⟨4,−2⟩

2. x⃗ = ⟨0, 1⟩, y⃗ = ⟨−3,−4⟩

3. x⃗ = ⟨3, 0⟩, y⃗ = ⟨0,−1⟩

4. x⃗ = ⟨−3, 3⟩, y⃗ = ⟨0, 3⟩

5. x⃗ = ⟨−3, 3⟩, y⃗ = ⟨−3, 3⟩

6. x⃗ = ⟨−3, 3⟩, y⃗ = ⟨6,−6⟩

7. x⃗ = ⟨−3, 3⟩, y⃗ = ⟨3,−3⟩

1.1.3 The Zero Vector and Additive Inverses

The zero vector in R2 is the vector ⟨0, 0⟩. It differs from any other vector
in R2 in that it is the only vector that does not have any length and does not
point in any direction. It is represented by a point rather than by a directed
line segment. Whereas any other vector in R2 is a one–dimensional object
(because it has a dimension of length), the zero vector is a zero–dimensional
object (because it has no length). We will use the notation 0⃗2 = ⟨0, 0⟩ to
denote the zero vector in R2.

Our first observation about the zero vector is that it is the additive
identity vector in R2. What this means is that if x⃗ is any vector in R2, then
x⃗+0⃗2 = x⃗. This is easily seen to be true because if x⃗ = ⟨x1, x2⟩ is any vector
in R2 then

x⃗+ 0⃗2 = ⟨x1, x2⟩+ ⟨0, 0⟩ = ⟨x1 + 0, x2 + 0⟩ = ⟨x1, x2⟩ = x⃗.

Our second observation about the zero vector is that if x⃗ is any vector in
R2, then there is some other vector in R2, called the additive inverse of x⃗
and denoted by −x⃗, such that x⃗ + (−x⃗) = 0⃗2. If we are given a particular
vector x⃗ = ⟨x1, x2⟩, it is easily seen that the additive inverse of x⃗ is −x⃗ =
⟨−x1,−x2⟩ because

⟨x1, x2⟩+ ⟨−x1,−x2⟩ = ⟨x1 − x1, x2 − x2⟩ = ⟨0, 0⟩ .
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For example the additive inverse of the vector x⃗ = ⟨−4, 1⟩ is −x⃗ = ⟨4,−1⟩
because ⟨−4, 1⟩+ ⟨4,−1⟩ = ⟨0, 0⟩.

Exercise 1.1.5. What is the additive inverse of the vector ⟨−4, 4⟩? What is
the additive inverse of the vector ⟨3, 0⟩? What is the additive inverse of the
vector ⟨0, 0⟩?

Having defined vector addition and also having defined what we mean by
the additive inverse of a vector, we can now define vector subtraction. If x⃗
and y⃗ are two vectors, then we define the vector difference x⃗− y⃗ to be the
sum of x⃗ and the additive inverse of y⃗. In other words,

x⃗− y⃗ = x⃗+ (−y⃗) .

So, for example if x⃗ = ⟨−4, 1⟩ and y⃗ = ⟨3, 5⟩, then

x⃗− y⃗ = x⃗+ (−y⃗) = ⟨−4, 1⟩+ ⟨−3,−5⟩ = ⟨−7,−4⟩ .

Exercise 1.1.6. For the vectors x⃗ = ⟨−5,−1⟩ and y⃗ = ⟨6, 3⟩, compute x⃗− y⃗
and y⃗ − x⃗.

1.1.4 Scalar Multiples of Vectors

If x⃗ = ⟨x1, x2⟩ is a vector in R2 and c is a real number (also called a scalar),
then we define the scalar multiple of the vector x⃗ by the scalar c to be the
vector

cx⃗ = ⟨cx1, cx2⟩ .

For example if x⃗ = ⟨2,−3⟩ and c = 3, then the scalar multiple of x⃗ by c
is

3x⃗ = ⟨3 (2) , 3 (−3)⟩ = ⟨6,−9⟩ .

Just as drawing pictures helps us to understand the concept of vector
addition, it also helps us to understand the concept of scalar multiplication.
For example, if x⃗ = ⟨2,−3⟩, then

3x⃗ = ⟨6,−9⟩ = ⟨2,−3⟩+ ⟨2,−3⟩+ ⟨2,−3⟩ = x⃗+ x⃗+ x⃗

and it can be seen (as illustrated in Figure 1.6), that the vector 3x⃗ points in
the same direction as the vector x⃗ and has 3 times the length of the vector
x⃗.



1.1. THE VECTOR SPACE R2 9

Figure 1.6: 3x⃗ = x⃗+ x⃗+ x⃗

As another example, if x⃗ = ⟨2,−3⟩, then −2x⃗ = ⟨−4, 6⟩ and it can be
seen in Figure 1.7 that the vector −2x⃗ points in the opposite direction of the
vector x⃗ and has 2 times the length of x⃗.

In general, if x⃗ is any nonzero vector in R2 and c is any nonzero scalar,
then

• cx⃗ points in the direction of x⃗ when c > 0 and in the opposite direction
(i.e., 180◦) of x⃗ when c < 0.

• the length of cx⃗ is |c| times the length of x⃗.

We can summarize the cases involving the zero vector or the zero scalar.
In particular, if c is any scalar, then

c⃗02 = c ⟨0, 0⟩ = ⟨0, 0⟩ = 0⃗2.

Likewise, if x⃗ = ⟨x1, x2⟩ is any vector, then

0x⃗ = 0 ⟨x1, x2⟩ = ⟨0, 0⟩ = 0⃗2.

Exercise 1.1.7. For the vector x⃗ = ⟨2, 4⟩:

1. Compute 3x⃗ and draw a picture that shows both x⃗ and 3x⃗.
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Figure 1.7: Picture of x⃗ and −2x⃗

2. Compute −2x⃗ and draw a picture that shows both x⃗ and −2x⃗.

3. Compute 0x⃗ and draw a picture that shows both x⃗ and 0x⃗.

Exercise 1.1.8. Fill in the blanks to correctly complete the sentences below.

1. If x⃗ is any vector in R2 with x⃗ ̸= 0⃗2, then the vector 2x⃗ points in the
direction of x⃗ and has times the length of x⃗.

2. If x⃗ is any vector in R2 with x⃗ ̸= 0⃗2, then the vector 1
3
x⃗ points in the

direction of x⃗ and has times the length of x⃗.

3. If x⃗ is any vector in R2 with x⃗ ̸= 0⃗2, then the vector −3x⃗ points in the
direction of x⃗ and has times the length of x⃗.

4. If x⃗ is any vector in R2 with x⃗ ̸= 0⃗2, then the vector −1
5
x⃗ points in the

direction of x⃗ and has times the length of x⃗.

5. If x⃗ is any vector in R2, then 0x⃗ = .

6. If c is any scalar, then c⃗02 = .

Exercise 1.1.9. For each of the vector pairs x⃗ and y⃗ and each of the scalar
pairs c and d given below, compute cx⃗+dy⃗. Draw a picture that contains cx⃗,
dy⃗ and cx⃗+ dy⃗.
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1. x⃗ = ⟨−4,−4⟩, y⃗ = ⟨−3,−2⟩, c = 1, d = 4.

2. x⃗ = ⟨−4,−2⟩, y⃗ = ⟨−4, 4⟩, c = 3, d = 5.

3. x⃗ = ⟨0, 2⟩, y⃗ = ⟨−2,−5⟩, c = −5, d = −1.

4. x⃗ = ⟨−4, 5⟩, y⃗ = ⟨0, 3⟩, c = 2, d = −5.

1.1.5 Linear Combinations in R2

Given a pair of vectors x⃗ and y⃗ in R2 and a pair of scalars, c and d, we
have a special name for a vector of the form cx⃗ + dy⃗, like those appearing
in Exercise 1.1.9. We refer to cx⃗+ dy⃗ as a linear combination of the vectors
x⃗ and y⃗. More generally, whenever we use these two key operations that
we’ve defined, vector addition and scalar multiplication, on any collection
of vectors (not just two) we call the result a linear combination. We can
even apply the phrase when dealing with a single vector. That is, given a
vector x⃗, and a scalar c, the vector cx⃗ is a linear combination of the vector x⃗.
On occasion, we will be interested in the collection of all linear combinations
of a set of vectors. In such cases, we allow the scalars to vary over all real
numbers.

Example 1.1.1. Let e⃗1 = ⟨1, 0⟩. Give a geometric description of the set of
all linear combinations of the vector e⃗1.

We note that if we plot vector e⃗1 as a directed line segment from the point
(0, 0) to the point (1, 0), we get a horizontal line segment. If x⃗ is any linear
combination of e⃗1, then

x⃗ = ce⃗1 = ⟨c(1), c(0)⟩ = ⟨c, 0⟩.

If c = 0, we get the zero vector. For c ̸= 0 we get a horizontal vector that we
could plot as a directed line segment starting at the origin and ending at the
point (c, 0) on the horizontal (a.k.a. the x)-axis. If c < 0, our line segment
would terminate at some point on the negative x-axis, and if c > 0, our line
segment would terminate at some point on the positive x-axis. Hence, if we
allow c to vary over all real numbers, we could associate the set of all linear
combination of e⃗1 with the whole x-axis. Thus, we can say that the set of all
linear combinations of e⃗1 is the x-axis in our Cartesian plane.
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Exercise 1.1.10. Using the reasoning demonstrated in Example 1.1.1, give
a geometric description of the collection of all linear combinations of each
vector.

1. e⃗2 = ⟨0, 1⟩

2. u⃗ = ⟨1, 1⟩

1.1.6 Magnitude, Dot Product, and Orthogonality

If x⃗ = ⟨x1, x2⟩ is a vector in R2, then the length of x⃗ can be determined by
using the Pythagorean Theorem. If we draw the standard representative of
x⃗ (or any representative of x⃗), we can see that x⃗ is the hypotenuse of a right
triangle with side lengths |x1| and |x2|. (We have put absolute values on x1

and x2 in case either one of these numbers is negative, since lengths cannot
be negative.) This is illustrated in Figure 1.8.

Figure 1.8: ∥x⃗∥2 = x2
1 + x2

2

Using the notation ∥x⃗∥ to denote the length of x⃗, the Pythagorean The-
orem tells us that

∥x⃗∥2 = |x1|2 + |x2|2 .

Since |x1|2 = x2
1 and |x2|2 = x2

2, we can drop the absolute values in the above
equation and just write the equation as

∥x⃗∥2 = x2
1 + x2

2.
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Taking the square root of both sides of the above equation gives

∥x⃗∥ = ±
√
x2
1 + x2

2,

but since ∥x⃗∥ is a length, it cannot be negative and we thus have

Length of x⃗ = ∥x⃗∥ =
√

x2
1 + x2

2.

The length of x⃗ is also called the magnitude of x⃗.

Definition 1.1.1. The magnitude (also called length) of a vector x⃗ =
⟨x1, x2⟩ in R2 is denoted by ∥x⃗∥ and is defined to be

∥x⃗∥ =
√

x2
1 + x2

2.

As an example, suppose that x⃗ = ⟨1, 5⟩. Then the length of x⃗ is

∥x⃗∥ =
√
12 + 52 =

√
26 ≈ 5.099.

As another example, the length of x⃗ = ⟨−3, 1⟩ is

∥x⃗∥ =

√
(−3)2 + 12 =

√
10 ≈ 3.162.

We have a special name for a vector having length one. We call such a vector
a unit vector. (In some settings, such as physics, it’s even customary to use
different notation, such as û instead of u⃗ to indicate that a vector is a unit
vector.) Unit vectors can be useful for applications in which the direction
of a vector is critical but the magnitude is of little interest. For c ̸= 0, a
nonzero vector x⃗ and its scalar multiple cx⃗ are parallel—they have the same
direction or opposite (180◦) directions. Since scalar multiplication affects
magnitude, ∥cx⃗∥ = |c|∥x⃗∥, given any nonzero vector x⃗ we can obtain a unit
vector parallel to x⃗ (see Exercise 1.1.14).

Exercise 1.1.11. Draw pictures of each of the following vectors and compute
their lengths.

1. x⃗ = ⟨−4, 3⟩

2. x⃗ = ⟨−3, 4⟩
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3. x⃗ = ⟨−6, 4⟩

4. x⃗ = ⟨1, 0⟩

5. x⃗ = ⟨0, 0⟩.

Exercise 1.1.12. force number 1 on next line

1. Explain why, if x⃗ is any vector in R2, the additive inverse of x⃗ has the
same length as x⃗. In other words, explain why

∥−x⃗∥ = ∥x⃗∥ .

2. Explain why, if x⃗ and y⃗ are any two vector in R2, the vectors x⃗− y⃗ and
y⃗ − x⃗ have the same length. In other words, explain why

∥x⃗− y⃗∥ = ∥y⃗ − x⃗∥ .

Exercise 1.1.13. force number 1 on next line

1. Let x⃗ = ⟨−3, 4⟩. Compute the lengths of x⃗ and 2x⃗.

2. Let x⃗ = ⟨−3, 4⟩. Compute the lengths of x⃗ and −3x⃗.

3. Explain why, if x⃗ is any vector in R2 and c is any scalar, then the
length of cx⃗ is equal to the absolute value of c times the length of x⃗. In
other words, explain why

∥cx⃗∥ = |c| ∥x⃗∥ .

Exercise 1.1.14. force number 1 on next line

1. Show that ⟨1, 0⟩ and ⟨0, 1⟩ are unit vectors.

2. Determine whether each of the following vectors is a unit vector.

a.
〈
3
5
,−4

5

〉
b. ⟨1,−1⟩
c.
〈

1√
2
, 1√

2

〉
d.
〈
− 1√

5
,− 2√

5

〉
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3. Show that if θ is any angle, the vector ⟨cos θ, sin θ⟩ is a unit vector.

4. Consider x⃗ = ⟨6, 8⟩. Find a positive number c such that cx⃗ is a unit
vector.

5. Suppose x⃗ = ⟨x1, x2⟩ is any nonzero vector. Find a positive number c
such that cx⃗ is a unit vector.

Next, we will derive an algebraic criterion for determining whether or not
two vectors in R2 are perpendicular to each other. This criterion will be seen
to involve the “dot product” of the two vectors.

We say that two non–zero vectors, x⃗ and y⃗, in R2 are perpendicular
to each other if their standard representatives (or any representatives based
at the same point) form a 90◦ angle. Figure 1.9 shows the standard repre-
sentatives of the vectors x⃗ = ⟨−2, 4⟩ and y⃗ = ⟨2, 0⟩. These vectors are not
perpendicular to each other, because they do not form a 90◦ angle. Fig-
ure 1.10 shows the standard representatives of the vectors z⃗ = ⟨−2, 2⟩ and
w⃗ = ⟨−1,−1⟩, which are perpendicular to each other because they do form
a 90◦ angle.

Figure 1.9: x⃗ and y⃗ are not perpendicular.
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Figure 1.10: z⃗ and w⃗ are perpendicular.

The key observation that we need to obtain an algebraic criterion for
perpendicularity is that two vectors, x⃗ and y⃗, are perpendicular to each
other if and only if ∥x⃗+ y⃗∥ = ∥x⃗− y⃗∥. The reason for this can be seen
by examining Figures 1.11, 1.12 and 1.13. Recall that we can illustrate the
addition of two vectors x⃗ and y⃗ by using the parallelogram method. We draw
two copies of x⃗ and two copies of y⃗ to form a parallelogram. The diagonals of
this parallelogram are the vectors x⃗+ y⃗ and x⃗− y⃗, as seen in each of Figures
1.11, 1.12, and 1.13. In Figure 1.11, the vectors x⃗ and y⃗ form a right (= 90◦)
angle and the parallelogram is actually a rectangle. The two diagonals of
the rectangle have equal length, meaning that ∥x⃗+ y⃗∥ = ∥x⃗− y⃗∥. In Figure
1.12, the vectors x⃗ and y⃗ form an acute (< 90◦) angle and it can be seen
that ∥x⃗+ y⃗∥ > ∥x⃗− y⃗∥. In Figure 1.13, the vectors x⃗ and y⃗ form an obtuse
(> 90◦) angle and it can be seen that ∥x⃗+ y⃗∥ < ∥x⃗− y⃗∥. Thus, x⃗ and y⃗ are
perpendicular to each other if and only if ∥x⃗+ y⃗∥ = ∥x⃗− y⃗∥.
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Figure 1.11: ∥x⃗+ y⃗∥ = ∥x⃗− y⃗∥
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Figure 1.12: ∥x⃗+ y⃗∥ > ∥x⃗− y⃗∥
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Figure 1.13: ∥x⃗+ y⃗∥ < ∥x⃗− y⃗∥
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Having established that x⃗ and y⃗ are perpendicular to each other if and
only if ∥x⃗+ y⃗∥ = ∥x⃗− y⃗∥, we are prepared to derive the promised algebraic
criterion for perpendicularity. We will do this by computing ∥x⃗+ y⃗∥2 and
∥x⃗− y⃗∥2 and setting these equal to each other. (When working with vector
lengths, it is often convenient to work with squares of lengths rather than
with the lengths themselves so that we do not need to deal with square roots
throughout our computations.)

Suppose that x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩. Then x⃗+y⃗ = ⟨x1 + y1, x2 + y2⟩
and we have

∥x⃗+ y⃗∥2 = (x1 + y1)
2 + (x2 + y2)

2

= x2
1 + 2x1y1 + y21 + x2

2 + 2x2y2 + y22

=
(
x2
1 + x2

2

)
+
(
y21 + y22

)
+ 2 (x1y1 + x2y2)

= ∥x⃗∥2 + ∥y⃗∥2 + 2 (x1y1 + x2y2) .

By a similar calculation we also have

∥x⃗− y⃗∥2 = ∥x⃗∥2 + ∥y⃗∥2 − 2 (x1y1 + x2y2) .

If x⃗ and y⃗ are perpendicular to each other, then it must be the case that
∥x⃗+ y⃗∥2 = ∥x⃗− y⃗∥2, and this implies (from the calculations above) that

∥x⃗∥2 + ∥y⃗∥2 + 2 (x1y1 + x2y2) = ∥x⃗∥2 + ∥y⃗∥2 − 2 (x1y1 + x2y2) .

The above equation simplifies to

4 (x1y1 + x2y2) = 0,

which simplifies to
x1y1 + x2y2 = 0.

The quantity x1y1 + x2y2 is called the dot product of x⃗ and y⃗. It is
denoted by x⃗ · y⃗. We have discovered that x⃗ and y⃗ are perpendicular to each
other if and only if x⃗ · y⃗ = 0.

To illustrate with examples, consider the vectors x⃗ = ⟨−2, 4⟩ and y⃗ =
⟨2, 0⟩ that are pictured in Figure 1.9. The dot product of these vectors,
which are not perpendicular to each other, is

x⃗ · y⃗ = (−2) (2) + (4) (0) = −4 ̸= 0.
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The vectors z⃗ = ⟨−2, 2⟩ and w⃗ = ⟨−1,−1⟩ pictured in Figure 1.10, which
are perpendicular to each other, have dot product

z⃗ · w⃗ = (−2) (−1) + (2) (−1) = 0.

We have defined the concept of perpendicularity by saying that two vec-
tors are perpendicular if their standard representatives form a 90◦ angle. If
one (or both) of the vectors is the zero vector, then this concept does not
apply, because there is no well–defined angle between two vectors when one
of the vectors is the zero vector. (To determine an angle between two vectors,
both of the vectors must have a positive length.) However, for any vector
x⃗ = ⟨x1, x2⟩ in R2, we have

x⃗ · 0⃗2 = ⟨x1, x2⟩ · ⟨0, 0⟩ = (x1) (0) + (x2) (0) = 0.

For this reason, we will define the concept of orthogonality by saying that
two vectors, x⃗ and y⃗, in R2 are orthogonal to each other if x⃗ · y⃗ = 0. Thus,
two non–zero vectors in R2 are orthogonal to each other if and only if they
are perpendicular to each other and, by definition, the zero vector, 0⃗2, is
orthogonal to every vector in R2.

Exercise 1.1.15. Draw pictures of each of the following pairs of vectors, x⃗
and y⃗. For each pair, compute x⃗ · y⃗ and state whether or not x⃗ and y⃗ are
orthogonal to each other.

1. x⃗ = ⟨0,−4⟩, y⃗ = ⟨−4,−1⟩

2. x⃗ = ⟨1, 0⟩, y⃗ = ⟨3, 3⟩

3. x⃗ = ⟨−4, 6⟩, y⃗ =
〈
−1,−2

3

〉
4. x⃗ = ⟨−4, 6⟩, y⃗ = ⟨−5,−2⟩

5. x⃗ = ⟨−2, 1⟩, y⃗ = ⟨−3,−6⟩

6. x⃗ = ⟨1, 5⟩, y⃗ = ⟨0, 0⟩

Exercise 1.1.16. For any vector x⃗ = ⟨x1, x2⟩ in R2:

1. Explain why it must be true that x⃗ · x⃗ ≥ 0.

2. Explain why the only possible way to have x⃗ · x⃗ = 0 is if x⃗ = 0⃗2.
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3. Show that x⃗ · x⃗ = ∥x⃗∥2.

The dot product is sometimes called a scalar product because it is an
operation that is computed on two vectors that produces a scalar output.
The dot product satisfies select algebraic properties. In particular, the dot
product is commutative,

x⃗ · y⃗ = y⃗ · x⃗,

distributes over vector addition,

x⃗ · (y⃗ + z⃗) = x⃗ · y⃗ + x⃗ · z⃗,

and scalar multiplication can be factored out of the dot product,

c(x⃗ · y⃗) = (cx⃗) · y⃗ = x⃗ · (cy⃗).

These properties can easily be established from the definition of the dot
product (see Exercise 1.1.17).

Exercise 1.1.17. Let x⃗ = ⟨x1, x2⟩, y⃗ = ⟨y1, y2⟩, and z⃗ = ⟨z1, z2⟩ be any
vectors in R2 and c be any scalar. Show that

1. x⃗ · y⃗ = y⃗ · x⃗

2. x⃗ · (y⃗ + z⃗) = x⃗ · y⃗ + x⃗ · z⃗

3. c(x⃗ · y⃗) = (cx⃗) · y⃗ = x⃗ · (cy⃗)

1.1.7 Direction

We have defined a vector in R2 to be an object whose essence is that it
describes a magnitude and a direction. We have formally defined what we
mean by the magnitude of a vector. Having given a precise meaning to
the concept of “magnitude”, we should also give a precise meaning to the
concept of “direction”. In R2, we can describe the direction of a given vector
by measuring the angles that the standard representative of the vector makes
with the coordinate axes. The definition of direction that we give below will
be seen to involve these angles. The fact that these angles are involved may
not be evident to you as you read the upcoming definition, but we will bring
out that fact in the example and exercises that follow.
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Definition 1.1.2. The direction vector of any non–zero vector x⃗ in R2 is
defined to be the unit vector

x⃗U =
1

∥x⃗∥
x⃗.

Recall that a unit vector is a vector whose magnitude is 1. To be sure
that we understand Definition 1.1.2, note that if x⃗ is any non–zero vector
in R2, then 1

∥x⃗∥ is a positive scalar, which means that the direction vector

x⃗U = 1
∥x⃗∥ x⃗ points in the same direction as x⃗. Furthermore,

∥x⃗U∥ =

∥∥∥∥ 1

∥x⃗∥
x⃗

∥∥∥∥ =
1

∥x⃗∥
∥x⃗∥ = 1,

and hence x⃗U is a unit vector. Most textbooks do not have a special notation
to denote the direction vector that we have denoted by x⃗U . We have chosen to
use this notation because the subscript “U” reminds us that we are referring
to a unit vector (and the x⃗ part of the notation reminds us that this unit
vector points in the same direction as x⃗).

At first glance, Definition 1.1.2 may seem to be a bit unsatisfactory. We
have defined the direction vector of a given vector, x⃗, to be another vector
– in particular the unit vector that points in the same direction as x⃗ . So it
almost seems as though the definition we have given is circular – using the
concept of direction to define the concept of direction. Our instinct is that
we should be defining the concept of direction by measuring certain angles.
Indeed, in R2 (or R3), we easily could define direction in terms of angles.
However, Definition 1.1.2 is the one that most easily generalizes to Rn when
n > 3, where we find it difficult to envision angles. Let us put our minds at
ease about this by looking at an example that illustrates that our definition
of direction actually does encapsulate information about angles and agrees
with our understanding of trigonometry in R2.

Example 1.1.2. The standard representative of the vector x⃗ = ⟨3, 7⟩ is
shown in Figure 1.14. Note that the magnitude of x⃗ is

∥x⃗∥ =
√
32 + 72 =

√
58.

We have labelled the angle θ1 that the vector x⃗ makes with the positive x1 axis
(with θ1 measured from the positive x1 axis to the vector x⃗) and we have also
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labelled the angle θ2 that the vector x⃗ makes with the positive x2 axis (with
θ2 measured from the positive x2 axis to the vector x⃗).

3
x1

7

x2

(3,7)

θ1

θ2

58

3

7

Figure 1.14: The Vector x⃗ = ⟨3, 7⟩

By looking at Figure 1.14 and using our knowledge of right triangle trigonom-
etry, we can see that

cos (θ1) =
3√
58

and thus

θ1 = cos−1

(
3√
58

)
≈ 66.8◦.

Likewise,

cos (θ2) =
7√
58

and thus

θ2 = cos−1

(
7√
58

)
≈ 23.2◦.

See Figure 1.15.
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3
x1

7

x2

(3,7)

θ1  66.8
◦

θ2  23.2
◦

58

3

7

Figure 1.15: Direction Angles of of x⃗ = ⟨3, 7⟩

The important observation that we wish to make is that

cos (θ1) =
3√
58

=
x1

∥x⃗∥

cos (θ2) =
7√
58

=
x2

∥x⃗∥
.

Definition 1.1.2 defines the direction vector of the vector x⃗ = ⟨3, 7⟩ to be
the unit vector

x⃗U =
1

∥x⃗∥
x⃗ =

1√
58

⟨3, 7⟩ =
〈

3√
58

,
7√
58

〉
and we thus see that the direction vector of x⃗ is

x⃗U = ⟨cos (θ1) , cos (θ2)⟩ .

The numbers cos (θ1) and cos (θ2) are called the direction cosines of the vector
x⃗. The angles θ1 and θ2 are called the direction angles of x⃗.

Although we have considered a specific example here, we can be more
general. If x⃗ = ⟨x1, x2⟩ is any non–zero vector in R2, then the direction
vector of x⃗ is x⃗U where

x⃗U =
1

∥x⃗∥
x⃗ =

1

∥x⃗∥
⟨x1, x2⟩ =

〈
x1

∥x⃗∥
,
x2

∥x⃗∥

〉
= ⟨cos (θ1) , cos (θ2)⟩ .
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In the above equation, θ1 and θ2 are the direction angles of x⃗. These are the
angles that the standard representative of x⃗ makes with the positive x1 and x2

axes, respectively, assuming that the angles are measured such that the initial
side of the angle is at the axis and the terminal side of the angle is x⃗.

Note that since x⃗U = 1
∥x⃗∥ x⃗, then

x⃗ = ∥x⃗∥ x⃗U .

This is a rather nice expression of x⃗. We originally defined the concept of
vector by saying that a vector is an object that describes both a magnitude and
a direction. Now that we have given a precise definition of magnitude (∥x⃗∥)
and a precise definition of direction vector (x⃗U), we can read the equation
x⃗ = ∥x⃗∥ x⃗U as

x⃗ = (Magnitude of x⃗) times (Direction vector of x⃗).

Motivated by the above example, we will now provide formal definitions
of the concepts of direction cosine and direction angle for a vector in R2.

Definition 1.1.3. For a non–zero vector x⃗ = ⟨x1, x2⟩ in R2, we define the
direction cosines of x⃗ to be the numbers

x1

∥x⃗∥
and

x2

∥x⃗∥
.

Thus the direction cosines of x⃗ are the components of the direction vector x⃗U .
We define the direction angles of x⃗ to be the angles

θ1 = cos−1

(
x1

∥x⃗∥

)
and θ2 = cos−1

(
x2

∥x⃗∥

)
.

Remark 1.1.1. Because the inverse cosine function has range [0◦, 180◦], the
direction angles of a vector in R2 are always such that 0◦ ≤ θ1 ≤ 180◦ and
0◦ ≤ θ2 ≤ 180◦.

Remark 1.1.2. If we are given the non–zero vector x⃗ = ⟨x1, x2⟩, we can
compute the magnitude of x⃗ and the direction cosines of x⃗. They are

cos (θ1) =
x1

∥x⃗∥
and cos (θ2) =

x2

∥x⃗∥
.
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Then we can then find the direction angles of x⃗ using

θ1 = cos−1

(
x1

∥x⃗∥

)
and θ2 = cos−1

(
x2

∥x⃗∥

)
.

Conversely, if we are given the magnitude of x⃗ and the direction angles
of x⃗, then we can compute x⃗ using

x⃗ = ∥x⃗∥ x⃗U = ∥x⃗∥ ⟨cos (θ1) , cos (θ2)⟩ .

Exercise 1.1.18. For each of the following vectors x⃗ in R2, draw a picture
of the standard representative of x⃗ and then find

• the magnitude of x⃗

• the direction cosines of x⃗

• the direction vector x⃗U , of x⃗, and

• the direction angles, θ1 and θ2, of x⃗.

(Express the angles in degrees – not radians.) Label ∥x⃗∥ and the direction
angles, θ1 and θ2, in your picture.

1. x⃗ = ⟨5, 3⟩

2. x⃗ = ⟨4, 4⟩

3. x⃗ = ⟨−7, 5⟩

4. x⃗ = ⟨−2,−4⟩

5. x⃗ = ⟨3, 0⟩

Exercise 1.1.19. In each part below, the magnitude of a vector x⃗ is given
and its direction angles are also given. Draw a picture of the vector. (You
should be able to do this just using the given information). Then use the fact
that x⃗ = ∥x⃗∥ x⃗U to write x⃗ in the form x⃗ = ⟨x1, x2⟩.

1. ∥x⃗∥ = 4 and direction angles are θ1 = 45◦ and θ2 = 45◦

2. ∥x⃗∥ = 2 and direction angles are θ1 = 90◦ and θ2 = 0◦
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3. ∥x⃗∥ = 1 and direction angles are θ1 = 30◦ and θ2 = 120◦

4. ∥x⃗∥ = 4 and direction angles are θ1 = 135◦ and θ2 = 45◦

5. ∥x⃗∥ = 2 and direction angles are θ1 = 135◦ and θ2 = 135◦

Exercise 1.1.20. Show that if x⃗ = ⟨x1, x2⟩ is a non–zero vector in R2 with
direction angles θ1 and θ2, then

cos2 (θ1) + cos2 (θ2) = 1.

Exercise 1.1.21. Find the vector y⃗ in R2 that has magnitude 5 and points
in the same direction as the vector x⃗ = ⟨3, 6⟩.

1.1.8 Distance Between Vectors

The magnitude of a vector in R2 corresponds to length when we envision a
vector as a directed line segment. For the standard representation of x⃗ =
⟨x1, x2⟩, the magnitude ∥x⃗∥ is the distance between the terminal point at
(x1, x2) and the origin. So we can think of ∥x⃗∥ as a measure of the distance
between the vector x⃗ and the zero vector 0⃗2. We can extend this notion to
define the distance between any two vectors x⃗ and y⃗ in R2. If we consider
the standard representations of two vectors, x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩,
then the difference y⃗− x⃗ has a representation with initial point at (y1, y2) and
terminal point at (x1, x2) as shown in Figure 1.16. We can define the distance
between the vectors x⃗ and y⃗ by the magnitude of this vector. That is, the
distance between x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩ is the distance between their
terminal points when considering their standard representations as directed
line segments.

Definition 1.1.4. If x⃗ and y⃗ are vectors in R2, we will denote the distance
between the vectors dist(y⃗, x⃗). This distance,

dist(y⃗, x⃗) = ∥y⃗ − x⃗∥.

Remark 1.1.3. In an elementary algebra setting, you likely would have seen
a pair of points denoted by (x1, y1) and (x2, y2), and you would have learned
that the distance between them was given by the formula

Distance =
√

(x2 − x1)2 + (y2 − y1)2.
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We are using a different notational convention here by denoting our points
(x1, x2) and (y1, y2), but hopefully it is clear that our distance between two
vectors matches the familiar formula.

Exercise 1.1.22. Show that dist(y⃗, x⃗) is equal to dist(x⃗, y⃗) for any pair of
vectors x⃗ and y⃗.

Exercise 1.1.23. Find the distance between each set of vectors.

1. x⃗ = ⟨1, 1⟩, y⃗ = ⟨−2, 1⟩

2. x⃗ = ⟨2, 3⟩, y⃗ = ⟨0, 0⟩

3. x⃗ =
〈
2,−1

2

〉
, y⃗ = ⟨0, 8⟩

4. x⃗ = ⟨1,−1⟩, y⃗ = ⟨−2, 2⟩

1.2 The Vector Space R3

Now that we are familiar with the algebraic and geometric structure of the
vector space R2, we can comfortably extend the ideas to include a third
component—or dimension. Extending on our definition of a vector in R2, we
define a vector, x⃗, in R3 as an ordered triple of real numbers x⃗ = ⟨x1, x2, x3⟩.
As before, we will call the real numbers, x1, x2, and x3, the entries or com-
ponents of the vector x⃗. Figure 1.17 depicts the point (4, 5, 6) and the vector
x⃗ = ⟨4, 5, 6⟩ in R3.
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Figure 1.16: The distance between the vectors x⃗ and y⃗ is defined by the
magnitude of their difference, ∥y⃗ − x⃗∥ (or ∥x⃗− y⃗∥).

Figure 1.17: The point (4, 5, 6) and the vector x⃗ = ⟨4, 5, 6⟩ in R3
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Given that we can perceive three spatial dimensions in the world around
us (up/down, left/right, forward/back), some geometric intuition can be used
when working with vectors in R3. However, graphs and drawings are two
dimensional renderings used to depict three dimensional objects, hence we
will primarily rely on algebraic manipulations when we interact with vectors
in R3. We will continue to work with scalars (real numbers) along with
vectors in R3.

As we did in R2, we will define the two critical operations of vector
addition and scalar multiplication. Letting x⃗ = ⟨x1, x2, x3⟩ and y⃗ =
⟨y1, y2, y3⟩ be any vectors in R3 and c be any scalar, we define

• the vector sum x⃗+ y⃗ = ⟨x1 + y1, x2 + y2, x3 + y3⟩, and

• the scalar multiple cx⃗ = ⟨cx1, cx2, cx3⟩.

The additive identity vector 0⃗3 = ⟨0, 0, 0⟩ is called the zero vector in R3,
and given any vector x⃗ = ⟨x1, x2, x3⟩ in R3, the vector

−x⃗ = −⟨x1, x2, x3⟩ = ⟨−x1,−x2,−x3⟩

is its additive inverse. As before, we define vector subtraction as vector
addition with an additive inverse. Thus

x⃗− y⃗ = x⃗+ (−y⃗) = ⟨x1 − y1, x2 − y2, x3 − y3⟩

If we combine vectors in R3 using the operations of vector addition and
scalar multiplication, we refer to the resulting vectors as linear combina-
tions.

Example 1.2.1. Consider the pair of vectors x⃗ = ⟨1, 0, 3⟩ and y⃗ = ⟨−6, 3, 2⟩,
in R3. Evaluate the sum x⃗+ y⃗, difference x⃗− y⃗, and the scalar multiplies 3x⃗
and −2y⃗. Show that x⃗+ (−x⃗) = 0⃗3.

We have

• x⃗+ y⃗ = ⟨1− 6, 0 + 3, 3 + 2⟩ = ⟨−5, 3, 5⟩,

• x⃗− y⃗ = ⟨1 + 6, 0− 3, 3− 2⟩ = ⟨7,−3, 1⟩,

• 3x⃗ = 3 ⟨1, 0, 3⟩ = ⟨3(1), 3(0), 3(3)⟩ = ⟨3, 0, 9⟩, and

• −2y⃗ = −2 ⟨−6, 3, 2⟩ = ⟨−2(−6),−2(3),−2(2)⟩ = ⟨12,−6,−4⟩.
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Also, note that −x⃗ = ⟨−1, 0,−3⟩ so that

x⃗+ (−x⃗) = ⟨1− 1, 0 + 0, 3− 3⟩ = ⟨0, 0, 0⟩ = 0⃗3.

Exercise 1.2.1. For each pair of vectors x⃗ and y⃗, evaluate 2x⃗, x⃗ + y⃗, and
x⃗− 3y⃗.

1. x⃗ = ⟨1, 1,−1⟩, y⃗ = ⟨−2, 1, 4⟩

2. x⃗ = ⟨2, 3, 4⟩, y⃗ = ⟨0, 0, 0⟩

3. x⃗ =
〈
4, 2,−1

2

〉
, y⃗ = ⟨1, 0, 8⟩

4. x⃗ = ⟨0, 0,−2⟩, y⃗ = ⟨3,−4, 2⟩

1.2.1 Magnitude, Dot Product, and Orthogonality

As with R2, we can identify certain geometric properties associated with
vectors in R3—even if access to illustrations is limited. Similar to our ex-
perience in R2, we can associate the vector ⟨x1, x2, x3⟩ with a directed line
segment emanating from the origin (0, 0, 0) in a Cartesian coordinate system
(i.e., the xyz-space) and terminating at the point (x1, x2, x3). As such, we
can assign the length of such a line segment and consider it the length of the
vector x⃗ = ⟨x1, x2, x3⟩. Using the same language and notation we define the
length, also called the magnitude, of a vector

Length of x⃗ = ∥x⃗∥ =
√

x2
1 + x2

2 + x2
3.

As in R2, a vector x⃗ in R3 having magnitude 1 is called a unit vector. The
vector u⃗ =

〈
−1

3
, 2
3
,−2

3

〉
is an example of a unit vector in R3 because

∥u⃗∥ =

√(
−1

3

)2

+

(
2

3

)2

+

(
−2

3

)2

=

√
1 + 4 + 4

9
=

√
9

9
= 1.

Example 1.2.2. Find the length of x⃗, y⃗ and −y⃗ where x⃗ = ⟨1, 0, 3⟩ and
y⃗ = ⟨−6, 3, 2⟩. We have

• ∥x⃗∥ =
√
12 + 02 + 32 =

√
10 ≈ 3.162,

• ∥y⃗∥ =
√

(−6)2 + 32 + 22 =
√
49 = 7, and
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• ∥ − y⃗∥ =
√

62 + (−3)2 + (−2)2 =
√
49 = 7.

We define the dot product of two vectors, x⃗ = ⟨x1, x2, x3⟩ and y⃗ =
⟨y1, y2, y3⟩, in R3 as

x⃗ · y⃗ = x1y1 + x2y2 + x3y3,

and we say that two vectors in R3 are orthogonal if their dot product is
zero.

Example 1.2.3. Determine whether x⃗ = ⟨1, 0, 3⟩ and y⃗ = ⟨−6, 3, 2⟩ are
orthogonal in R3.

We compute their dot product

x⃗ · y⃗ = 1(−6) + 0(3) + 3(2) = 0,

and conclude that they are orthogonal.

While the geometry is more complicated in R3 than in R2, the dot product
of two nonzero vectors has a similar connection to an angle between them
(or their standard representations in a coordinate system). Note that for the
pair of vectors in Example 1.2.3, we find that

∥x⃗+ y⃗∥ =
√

(−5)2 + 32 + 52 =
√
59 =

√
72 + (−3)2 + 12 = ∥x⃗− y⃗∥.

This example suggests that a familiar geometric result from R2 also holds in
R3. Namely, that for any pair of nonzero vectors, x⃗ and y⃗, in R3, x⃗ · y⃗ = 0, if
and only if ∥x⃗+ y⃗∥ = ∥x⃗− y⃗∥. This is in fact true and can be demonstrated
algebraically using the same computational approach seen in section 1.1.6.
This is left to the reader as Exercise 1.2.3 below.

Exercise 1.2.2. For each pair of vectors in exercise 1.2.1, determine whether
the pair is orthogonal or not orthogonal.

Exercise 1.2.3. Let x⃗ = ⟨x1, x2, x3⟩ and y⃗ = ⟨y1, y2, y3⟩. Apply the process
used in section 1.1.6 to show that ∥x⃗+ y⃗∥2 = ∥x⃗− y⃗∥2 if and only if x1y1 +
x2y2 + x3y3 = 0.

1.2.2 Direction

In Section 1.1.7, we defined the concepts of direction angles, direction cosines,
and direction vector of a given non–zero vector in R2. It was seen that
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those definitions are sensible because they agree with our understanding of
trigonometry. These definitions easily generalize to R3, where they also agree
with trigonometry (although, as has been pointed out, visualization is a bit
more difficult in R3 than in R2).

Definition 1.2.1. The direction vector of any non–zero vector x⃗ in R3 is
defined to be the unit vector

x⃗U =
1

∥x⃗∥
x⃗.

Definition 1.2.2. For a non–zero vector x⃗ = ⟨x1, x2, x3⟩ in R3, we define
the direction cosines of x⃗ to be the numbers

x1

∥x⃗∥
,

x2

∥x⃗∥
, and

x3

∥x⃗∥

Thus the direction cosines of x⃗ are the components of the direction vector x⃗U .
We define the direction angles of x⃗ to be the angles

θ1 = cos−1

(
x1

∥x⃗∥

)
, θ2 = cos−1

(
x2

∥x⃗∥

)
, and θ3 = cos−1

(
x3

∥x⃗∥

)
.

Example 1.2.4. The vector x⃗ = ⟨4, 5, 6⟩ is pictured in Figure 1.17. The
magnitude of this vector is

∥x⃗∥ =
√
42 + 52 + 62 =

√
77.

The angle, θ1, from the positive x1 axis to the vector x⃗ satisfies

cos (θ1) =
4√
77

.

The angle, θ2, from the positive x2 axis to the vector x⃗ satisfies

cos (θ2) =
5√
77

.

The angle, θ3, from the positive x3 axis to the vector x⃗ satisfies

cos (θ3) =
6√
77

.
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Thus the direction vector of x⃗ is

x⃗U =
1√
77

⟨4, 5, 6⟩ =
〈

4√
77

,
5√
77

,
6√
77

〉
The direction angles of x⃗ are

θ1 = cos−1

(
4√
77

)
≈ 62.88◦

θ2 = cos−1

(
5√
77

)
≈ 55.26◦

θ3 = cos−1

(
6√
77

)
≈ 46.86◦.

Exercise 1.2.4. For each of the following vectors, x⃗, in R3, find

• the magnitude of x⃗

• the direction cosines of x⃗

• the direction vector, x⃗U , of x⃗, and

• the direction angles, θ1, θ2, and θ3, of x⃗

1. x⃗ = ⟨2,−5, 7⟩

2. x⃗ = ⟨1, 0, 0⟩

3. x⃗ = ⟨0, 1, 0⟩

4. x⃗ = ⟨1, 1, 1⟩

5. x⃗ = ⟨1, 2, 4⟩

Exercise 1.2.5. Find the vector, x⃗ = ⟨x1, x2, x3⟩ in R3 that has magnitude√
2 and direction angles θ1 = 90◦, θ2 = 45◦, and θ3 = 45◦.

Exercise 1.2.6. Show that if x⃗ = ⟨x1, x2, x3⟩ is a non–zero vector in R3 with
direction angles θ1, θ2, and θ3, then

cos2 (θ1) + cos2 (θ2) + cos2 (θ3) = 1.

Exercise 1.2.7. Find the vector y⃗ in R3 that has magnitude 3 and points in
the opposite direction of the vector x⃗ = ⟨−3, 0, 4⟩.
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1.2.3 Distance Between Vectors in R3

The distance between vectors in R3 is defined by the obvious extension of
this concept from R2.

Definition 1.2.3. For any pair of vectors, x⃗ and y⃗, in R3, the distance
between these vectors is denoted dist(y⃗, x⃗), and is defined by

dist(y⃗, x⃗) = ∥y⃗ − x⃗∥.

Exercise 1.2.8. Find the distance between each pair of vectors.

1. x⃗ = ⟨−3, 4,−5⟩, y⃗ = ⟨0, 0, 0⟩

2. x⃗ = ⟨1, 0, 1⟩, y⃗ = ⟨3,−2, 1⟩

3. x⃗ = ⟨1, 0, 0⟩, y⃗ = ⟨0, 0, 1⟩

4. x⃗ = ⟨2,−4, 5⟩, y⃗ = ⟨0, 3, 3⟩

Exercise 1.2.9. Let x⃗ = ⟨1, 0, 1⟩ and y⃗ = ⟨y1, 3,−2⟩. Find all values of y1
such that dist(x⃗, y⃗) = 8.

1.3 The Vector Spaces Rn In General

We began our discussion on the construction of the vector spaces Rn by fo-
cusing exclusively on R2 – a setting in which our intuition can be guided by
drawing pictures to help us understand the main concepts. We then extended
these ideas to define vectors in R3. While drawing pictures is somewhat of
an option in R3 (though it requires more artistic ability—or better yet, a
good computer graphics package), we introduced R3 by extending the alge-
braic concepts. To extend further to Rn when n ≥ 4, we mostly have to
abandon graphs and pictures altogether, but we can still readily perform the
mathematical manipulations that are needed to conceptualize and address
problems involving Rn.

Let’s recall the various steps we went through in defining and charac-
terizing the vector space R2. First, we needed two sets of objects and two
operations:

• We defined objects called vectors having the form x⃗ = ⟨x1, x2⟩ where
x1 and x2 are real numbers which we called the entries (or compo-
nents) of the vector.
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• We defined objects called scalars. For us, scalars are real numbers
(this is the set from which the entries of a vector come).

• We defined the operation vector addition allowing us to take two
vectors x⃗ and y⃗ and form a new vector x⃗+ y⃗.

• And we defined scalar multiplication allowing us to take a vector x⃗
and a scalar c and form a new vector cx⃗.

This gave us the algebraic foundation for R2. We said that when we use these
two operations on vectors, we form linear combinations. Then, we added
some additional notions and operations related to geometric properties.

• We defined the magnitude of a vector in R2, which we equate with
length (since vectors can be associated with line segments), and we
defined the direction of a vector in R2 in such a way that the definition
is compatible with right triangle trigonometry.

• We defined the distance between vectors in R2 and saw that this corre-
sponded to the distance between points in the plane when those points
were the terminal points of standard representations of the vectors,
viewed as directed line segments.

• We defined the dot product and the property of being orthogonal.
We saw that with nonzero vectors, the dot product relates to an angle
between vectors. In particular, two nonzero, orthogonal vectors are
perpendicular.

Our construction of the vector spaces Rn will be analogous to the con-
struction of R2: Given some integer n ≥ 2, the vector space Rn will consist
of two types of objects on which we define two types of operations.

• We define a set of objects called vectors, which have the form

x⃗ = ⟨x1, x2, . . . , xn⟩

where x1, x2, . . . , xn are real numbers called the entries (or compo-
nents) of the vector x⃗;

• We define objects called scalars. As before, scalars are real numbers
(this is the set from which the entries of a vector come).
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• We define an operation called vector addition which is used to add
two vectors in Rn to obtain another vector in Rn. For vectors x⃗ =
⟨x1, x2, . . . , xn⟩ and y⃗ = ⟨y1, y2, . . . , yn⟩ in Rn, this operation is defined
by

x⃗+ y⃗ = ⟨x1 + y1, x2 + y2, . . . , xn + yn⟩ .

• We define an operation called scalar multiplication which is used to
multiply a vector in Rn by a scalar to obtain another vector in Rn.
For a vector x⃗ = ⟨x1, x2, . . . , xn⟩ in Rn and a scalar c, this operation is
defined by

cx⃗ = ⟨cx1, cx2, . . . , cxn⟩ .

As we did in R2, when we use the operations of vector addition and scalar
multiplication with vectors in Rn we refer to the result as a linear combi-
nation. A formal definition of the concept of a linear combination is given
below.

Definition 1.3.1. Let S = {x⃗1, x⃗2, . . . , x⃗k} be a set of one or more (k ≥ 1)
vectors in Rn. A linear combination of these vectors is any vector of the
form

c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k,

where c1, . . . , ck are scalars. The coefficients, c1, . . . , ck, are often called the
weights.

Example 1.3.1. Show that v⃗ = ⟨2, 0, 3,−3⟩ is a linear combination of x⃗1 =
⟨1, 0, 0, 0⟩ and x⃗2 = ⟨0, 0,−1, 1⟩, and identify the weights.

We have to show that there are scalars c1 and c2 such that v⃗ = c1x⃗1+c2x⃗2.
We can set up the equation and then attempt to identify a solution. Note that

c1x⃗1 + c2x⃗2 = c1⟨1, 0, 0, 0⟩+ c2⟨0, 0,−1, 1⟩ = ⟨c1, 0,−c2, c2⟩.

Comparing this to our vector v⃗,

⟨2, 0, 3,−3⟩ = ⟨c1, 0,−c2, c2⟩,

we see that this requires c1 = 2 and c2 = −3. This demonstrates that v⃗ is a
linear combination of x⃗1 and x⃗2, and we’ve found the weights to be c1 = 2
and c2 = −3. In summary,

v⃗ = 2x⃗1 − 3x⃗2.
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Next, we add notions and operations that provide additional geometric
structure to Rn. (Our three-dimensional experience may keep us from draw-
ing pictures of lines and other objects in higher dimensions, but we won’t
let that stop us for imagining them and discussing things like lengths and
angles.)

• We define the magnitude of a vector x⃗ = ⟨x1, x2, . . . , xn⟩ in Rn to be

∥x⃗∥ =
√

x2
1 + x2

2 + · · ·+ x2
n.

• We define the distance between two vectors x⃗ and y⃗ in Rn to be

dist(x⃗, y⃗) = ∥x⃗− y⃗∥.

• We define the dot product of two vectors x⃗ = ⟨x1, x2, . . . , xn⟩ and
y⃗ = ⟨y1, y2, . . . , yn⟩ in Rn to be

x⃗ · y⃗ = x1y1 + x2y2 + · · ·+ xnyn.

Two vectors x⃗ and y⃗ in Rn will be said to be orthogonal to each other
if x⃗ · y⃗ = 0.

We can equate the magnitude of a vector with length (by imagining a
vector in Rn as a directed line segment in some coordinate system with
n axes). We will use the term unit vector to refer to a vector having
magnitude one. As we did in R2, we define the direction vector of a vector
x⃗ = ⟨x1, x2. . . . , xn⟩ in Rn to be the vector

x⃗U =
1

∥x⃗∥
x⃗

and we define the direction cosines of x⃗ to be the numbers

cos (θi) =
xi

∥x⃗∥
, i = 1, 2, . . . , n.

The direction cosines of x⃗ are the components of x⃗U . That is

x⃗U = ⟨cos (θ1) , cos (θ2) , . . . , cos (θn)⟩ .
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This allows us to write x⃗ = ⟨x1, x2. . . . , xn⟩ in the convenient form

x⃗ = ∥x⃗∥ x⃗U = (Magnitude of x⃗) times (Direction vector of x⃗).

We can also define the direction angles of x⃗ as

θi = cos−1

(
xi

∥x⃗∥

)
, i = 1, 2, . . . , n.

However, since most problems that involve the measurement of angles take
place in the setting of R2 or R3, we usually don’t have much need to refer to
direction angles in Rn when n > 3.

We can say that two nonzero vectors x⃗ and y⃗ in Rn are parallel to each
other if there is a scalar c such that y⃗ = cx⃗. And, we can equate orthogonality
of nonzero vectors with being perpendicular to each other (again, in some
plane in some coordinate system with n axes).

Example 1.3.2. Let x⃗ = ⟨1, 2, 1,−1, 0, 4⟩ and y⃗ = ⟨0, 3,−2, 2, 1, 1⟩ be vectors
in R6. Find x⃗+ y⃗, ∥x⃗∥, and determine if x⃗ and y⃗ are orthogonal.

Using the operations as defined, we have

x⃗+ y⃗ = ⟨1 + 0, 2 + 3, 1− 2,−1 + 2, 0 + 1, 4 + 1⟩ = ⟨1, 5,−1, 1, 1, 5⟩ ,

∥x⃗∥ =
√

12 + 22 + 12 + (−1)2 + 02 + 42 =
√
23 ≈ 4.7958, and

x⃗ · y⃗ = 1(0) + 2(3) + 1(−2) + (−1)(2) + 0(1) + 4(1) = 6.

Since x⃗ · y⃗ = 6 ̸= 0, we know that x⃗ and y⃗ are not orthogonal vectors in R6.

Exercise 1.3.1. For each pair of vectors x⃗ and y⃗ in Rn,

i. identify the value of n,

ii. evaluate x⃗+ y⃗ and x⃗− y⃗.

iii. evaluate x⃗ · y⃗, and state whether the vectors are orthogonal or not, and

iv. if the pair is orthogonal, confirm that ∥x⃗ + y⃗∥ = ∥x⃗ − y⃗∥, and if the
pair is not orthogonal, confirm that ∥x⃗+ y⃗∥ ≠ ∥x⃗− y⃗∥
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v. evaluate dist(x⃗, y⃗)

1. x⃗ = ⟨1,−1, 0, 2⟩, y⃗ = ⟨−1, 1, 1, 1⟩

2. x⃗ = ⟨−1, 1, 1, 1, 1,−1⟩, y⃗ = ⟨0, 1,−1, 2, 0, 0⟩

3. x⃗ = ⟨−3, 0, 4, 1, 2⟩, y⃗ = ⟨4, 2, 2, 0, 2⟩

4. x⃗ =
〈
1
3
,−2

3
, 2
3

〉
, y⃗ = ⟨4, 1,−1⟩

1.3.1 Algebraic Properties of the Dot Product

The properties of the dot product that we saw in R2 also hold in Rn for
n ≥ 2. In particular, for any vectors x⃗, y⃗ and z⃗ in Rn and scalar c

• x⃗ · y⃗ = y⃗ · x⃗

• x⃗ · (y⃗ + z⃗) = x⃗ · y⃗ + x⃗ · z⃗,

• x⃗ · (cy⃗) = c(x⃗ · y⃗),

• x⃗ · x⃗ ≥ 0 with x⃗ · x⃗ = 0 only if x⃗ = 0⃗n.

1.3.2 Span

The operations of vector addition and scalar multiplication will feature promi-
nently through out our study of linear algebra, and when we combine these
operations we collectively refer to the result as a linear combination—see
Definition 1.3.1. In Section 1.1.5, it was mentioned that we may wish to con-
sider allowing the weights in a linear combination to vary. When we allow
the weights (a.k.a. coefficients) in a linear combination to be variable, we
obtain what is called a span.

Definition 1.3.2. Let S = {v⃗1, v⃗2, . . . , v⃗k} be a set of one or more (k ≥ 1)
vectors in Rn. The set of all possible linear combinations of the vectors in S
is called the span of S. It is denoted Span(S) or by Span{v⃗1, v⃗2, . . . , v⃗k}.

To say that a vector y⃗ in Rn is in Span{v⃗1, v⃗2, . . . , v⃗k}, which we can write
symbolically as

y⃗ ∈ Span{v⃗1, v⃗2, . . . , v⃗k},
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is to say that there is some set of scalars, c1, c2, . . . , ck, such that

y⃗ = c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k.

To illustrate, let’s look back at Example 1.1.1. In that example, we
were asked to give a geometric characterization of the collection of all linear
combinations of the vector e⃗1 = ⟨1, 0⟩ in R2. Since a linear combination
of this vector is any vector of the form ⟨c, 0⟩, we reasoned that we could
associate these vectors with all of the points on the horizontal axis in R2.
We can say that Span{e⃗1} is the horizontal axis in R2. Likewise, for the
vector e⃗2 = ⟨0, 1⟩, we can say that Span{e⃗2} is the vertical axis in R2. See
Figure 1.3.2.

Span{e

1}=horizontal axis

Span{e

2}=vertical axis

1

1

e

1

e

2

Example 1.3.3. Consider the pair of vectors e⃗1 = ⟨1, 0⟩ and e⃗2 = ⟨0, 1⟩ in
R2. Show that R2 = Span{e⃗1, e⃗2}.

First, note that any vector in Span{e⃗1, e⃗2}, say

c1e⃗1 + c2e⃗2 = ⟨c1, c2⟩,
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is necessarily a vector in R2. Next, given any vector x⃗ = ⟨x1, x2⟩ in R2, we
can write

x⃗ = ⟨x1, 0⟩+ ⟨0, x2⟩ = x1⟨1, 0⟩+ x2⟨0, 1⟩ = x1e⃗1 + x2e⃗2.

It follows that x⃗ ∈ Span{e⃗1, e⃗2}. Thus every vector in R2 is in Span{e⃗1, e⃗2},
and vice versa. It follows that R2 = Span{e⃗1, e⃗2}.
Remark 1.3.1. Example 1.3.3 hints at a profound result that we will explore
in more depth in Chapter 4. Specifically, it shows that all of R2 can be
constructed from a set of building blocks, for example a set of vectors like
{e⃗1, e⃗2}, by using the two critical operations. The set {e⃗1, e⃗2} is particularly
easy to work with, and we’ll give this a special name in Chapter 3, but it is
not the only set of building blocks we can use. For example, we can also say
that R2 = Span{u⃗1, u⃗2} where u⃗1 = ⟨1, 1⟩ and u⃗2 = ⟨1,−1⟩. Note that if
x⃗ = ⟨x1, x2⟩ is any vector in R2, we can write

x⃗ =

(
x1 + x2

2

)
u⃗1 +

(
x1 − x2

2

)
u⃗2. (1.1)

Exercise 1.3.2. Verify the claim at the end of Remark 1.3.1. That is, show
that the equation (1.1) is true for any vector x⃗ = ⟨x1, x2⟩ in R2, where
u⃗1 = ⟨1, 1⟩ and u⃗2 = ⟨1,−1⟩.
Example 1.3.4. Consider the three vectors e⃗1 = ⟨1, 0, 0⟩, e⃗2 = ⟨0, 1, 0⟩ and
e⃗3 = ⟨0, 0, 1⟩ in R3. Describe the subset Span{e⃗1, e⃗3} of R3.

A vector x⃗ ∈ Span{e⃗1, e⃗3} will have the form

x⃗ = c1e⃗1 + c2e⃗3 = ⟨c1, 0, 0⟩+ ⟨0, 0, c2⟩ = ⟨c1, 0, c2⟩.
If we allow the values of c1 and c2 to vary over all real numbers, we see
that Span{e⃗1, e⃗3} contains all vectors in R3 whose second entry is zero. If we
equate R3 with Cartesian three-space, i.e., the set of all real triples (x, y, z)—
then a geometric interpretation of Span{e⃗1, e⃗3} is the xz-plane.

Exercise 1.3.3. 1. If u⃗ = ⟨1, 0, 1⟩, determine whether the following vec-
tors are elements of Span{u⃗}.

(a) v⃗ = ⟨2, 0, 2⟩
(b) y⃗ = ⟨1, 0, 2⟩
(c) 0⃗3 = ⟨0, 0, 0⟩

2. Suppose x⃗1 and x⃗2 are nonzero vectors in Rn. Show that the zero vector,
0⃗n, is an element of Span{x⃗1, x⃗2}.
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1.4 Additional Exercises

(Jump to Solutions)

1. For x⃗ in Rn and scalar c in R, use the definition of the magnitude to
show that ∥cx⃗∥ = |c|∥x⃗∥.

2. Consider the vector x⃗ = ⟨1,−1, 0, 3⟩ in R4. Determine the value(s) of
p such that the vector y⃗ = ⟨p, 1, 2, p⟩ is orthogonal to x⃗.

3. Let x⃗ = ⟨−2, 0, 2, 4, 5⟩, and z⃗ = ⟨4, 6,−3, 2, 2⟩. Find a vector y⃗ in R5

such that
x⃗+ y⃗ = z⃗

4. For each pair of vectors, determine whether they are parallel, orthogo-
nal, or neither parallel nor orthogonal.

(a) x⃗ = ⟨1,−1, 3⟩, y⃗ = ⟨−2, 2,−6⟩
(b) x⃗ = ⟨0, 4, 0,−2⟩, y⃗ = ⟨1, 2, 3, 4⟩
(c) x⃗ = ⟨1, 1, 0, 1, 1⟩, y⃗ = ⟨−2, 2,−2, 2, 2⟩
(d) x⃗ = ⟨2,−2, 8, 6, 12, 0⟩, y⃗ = ⟨−1, 1,−4,−3,−6, 0⟩
(e) x⃗ = ⟨2, 0,−2, 1⟩, y⃗ = ⟨0, 1, 0, 0⟩

5. Let x⃗ = ⟨1, 1, 2, 1⟩. Find all possible scalars, c such that ∥cx⃗∥ = 1.

6. Suppose that the vector u⃗ in Rn is orthogonal to every other vector in
Rn. Explain why it must be that u⃗ = ⟨0, 0, . . . , 0⟩. That is, u⃗ = 0⃗n,
the zero vector in Rn.

7. Let u⃗ = ⟨−3, 5, 2⟩ and x⃗ = ⟨1,−1,−4⟩. Determine whether y⃗ =
⟨0, 1,−5⟩ is a linear combination of u⃗ and x⃗.

8. Let z⃗1 = ⟨1, 2⟩ and z⃗2 = ⟨2, 1⟩. Show that if x⃗ = ⟨x1, x2⟩ is any vector
in R2, then x⃗ is in Span{z⃗1, z⃗2}. (Hint: find coefficients c1 and c2 such
that x⃗ = c1z⃗1 + c2z⃗2.)

9. For each statement, indicate whether the statement is true or false.
Give a brief explanation or reason for each conclusion.

(a) If x⃗ is a vector in R4 such that ∥x⃗∥ = 1, then ∥2x⃗∥ = 24.
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(b) For a vector x⃗ in Rn, the vector −x⃗ is the scalar product −1x⃗.

(c) For any pair of vectors x⃗ and y⃗ in R3, ∥x⃗+ y⃗∥ = ∥x⃗∥+ ∥y⃗∥.
(d) If a vector x⃗ in Rn is orthogonal to itself, it must be the zero

vector.

(e) If {u⃗1, u⃗2, . . . , u⃗k} is any set of vectors in Rn, then 0⃗n is an element
of {u⃗1, u⃗2, . . . , u⃗k}.

(f) If {u⃗1, u⃗2, . . . , u⃗k} is any set of vectors in Rn, then 0⃗n is an element
of Span{u⃗1, u⃗2, . . . , u⃗k}.

10. Let x⃗ be any nonzero element of R5. Explain the difference between
the set {x⃗} and the set Span{x⃗}.

11. Use the dot product and the fact that ∥x⃗∥2 = x⃗ · x⃗ to prove the
Pythagorean Theorem. The Pythagorean Theorem states

if x⃗ and y⃗ are orthogonal, then ∥x⃗+ y⃗∥2 = ∥x⃗∥2 + ∥y⃗∥2.
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Chapter 2

Systems of Linear Equations

Central to the study of linear algebra is the desire to solve systems of equa-
tions having multiple variables and a special structure known as linearity. In
fact, the further elements of linear algebra that we consider here (vectors, ma-
trices, vector spaces, linear transformations, etc.) will arise as abstractions
motivated by the need to understand and solve systems of linear equations.
Let us begin by defining linear equation and system of linear equations.

2.1 Linear Equations and Linear Systems

The reader may recognize equations of the form a1x + a2y = b and a1x +
a2y+a3z = b from experience with algebra and geometry and recall that such
equations provide an algebraic representation of a line (in R2) or a plane (in
R3). We understand that the characters x, y, and z represent variables
and that a1, a2, a3, and b represent constants. We can call the first a linear
equation in two variables and the second a linear equation in three variables.
Here, we won’t restrict ourselves to two, three, or any set number of variables,
but we can consider these examples prototypes for linear equations. Rather
than representing different variables with distinct characters (e.g., x, and y),
we will usually use a single character along with subscripts, x1, x2, . . . , xn.
We’ll see that it’s no coincidence that this notation matches the notation we
used for the entries of a vector in Rn.

Definition 2.1.1. A linear equation in the n variables x1, x2, . . . , xn is an
equation that can be written in the form

a1x1 + a2x2 + · · ·+ anxn = b,

45



46 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

where a1, a2, . . . , an and b are real numbers (scalars). The numbers a1, . . . , an
are called the coefficients, and b can be called the constant term.

A critical characteristic of a linear equation is that it is constructed by
applying exactly two types of operations to the variables: multiplying by
scalars, and adding variables. (It’s also no coincidence that these two op-
erations, scalar multiplication and vector addition, featured prominently in
our discussion of vectors in Rn.) This means that in a linear equation we
will not see various other types of operations, such as multiplying variables
by one another, raising variables to powers (other than one), and applying
trigonometric, exponential or logarithmic functions to them. To illustrate,
note that each of

4x1 + 3x2 − x3 = 8,
1

2
x1 +

√
2x2 = 0, and x1 + x2 = −2x3 + 3x4 + 2

is a linear equation, whereas each of
√
2x1 + x2 = 3, x1x2x3 = 1, and ln(x1) = x2 + x3 + x4

is not a linear equation.
We will define a system of linear equations as a collection of one or

more linear equations in the same variables considered together.

2x1 + x2 − 3x3 + x4 = −3
−x1 + 3x2 + 4x3 − 2x4 = 8

(2.1)

is an example of a system of two linear equations in four variables.

x1 − 2x2 + x3 = 0
+ 3x2 − 2x3 = 3

x1 + x2 − x3 = 3
(2.2)

is an example of a system of three linear equations in three variables. We
can write a generic system consisting of m equations in n variables as

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
... +

... +
. . . +

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

. (2.3)

Going forward, we will see that some simple conventions used to write (2.3)
will facilitate our work with systems of linear equations. In particular:
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• We isolate the constant term in each equation on one side of the equa-
tion with all variables on the other.

• We align like variables vertically, even leaving space when a variable
does not appear in an equation (e.g., in the second equation of (2.2)
where x1 does not appear).

• When using a double indexed character to represent coefficients, aij,
the first index indicates which equation the coefficient appears in, and
the second index corresponds to which variable it scales.

We will classify the system (2.3) as homogeneous if each bi = 0. That is,
a homogeneous system is one in which every constant term is zero. If at
least one bi ̸= 0, we will call the system nonhomogeneous. While each
equation contributes to the system, when analyzing or solving a system, we
consider all the equations together as a whole . With this in mind, we define
a solution and the solution set for a system of linear equations.

Definition 2.1.2. A solution of (2.3) is as an ordered n-tuple of real num-
bers, (s1, s2, . . . , sn), having the property that upon substitution,

x1 = s1, x2 = s2, · · · , xn = sn,

every equation in the system reduces to an identity. The collection of all
solutions of (2.3) is called the solution set of the system.

Definition 2.1.3. The n-tuple consisting of all zeros, (0, 0, . . . , 0), is a so-
lution of any homogeneous linear system in n variables. We call this the
trivial solution. A solution, (s1, s2, . . . , sn) having at least one si ̸= 0 is
called a nontrivial solution.

Example 2.1.1. Consider the linear system (2.2) above. Let us show that
(1,−1,−3) is a solution of this system.

If we set x1 = 1, x2 = −1, and x3 = −3, the equations become

1 − 2(−1) + (−3) = 1 + 2 − 3 = 0
+ 3(−1) − 2(−3) = − 3 + 6 = 3

1 + (−1) − (−3) = 1 − 1 + 3 = 3
.

All three equations are satisfied.
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In this chapter, we will develop a method for finding all solutions of any
system of linear equations - in other words for finding the solution set of the
system. It turns out that the solution set of system (2.2) is the set

S = {(2 + t, 1 + 2t, 3t) | t ∈ R}.

Since t is allowed to be any real number, the system (2.2) has infinitely many
solutions. Note that if we set t = −1 then we obtain the solution (1,−1,−3).
To verify that every member of the set S is a solution of system (2.2), we can
set x1 = 2 + t, x2 = 1 + 2t, and x3 = 3t while allowing t to be an arbitrary
real number. Upon substitution, we have

2 + t − 2(1 + 2t) + 3t = 2− 2 + (1− 4 + 3)t = 0
+ 3(1 + 2t) − 2(3t) = 3 + (6− 6)t = 3

2 + t + 1 + 2t − 3t = 2 + 1 + (1 + 2− 3)t = 3
.

We see that for any value of the parameter t, all three equations of sys-
tem (2.2) are satisfied. Thus every ordered triple in the set S is a solution
of system (2.2).

There are three conventions we can use to represent the solution set of a
system of linear equations. They are

• set builder notation

• parametric form

• vector parametric form.

We will illustrate each of these methods of representing solution sets using
the system of equations (2.2) that was studied in Example 2.1.1.

If we want to describe the solution set of system (2.2) using set builder
notation, then we say that the solution set is

S = {(2 + t, 1 + 2t, 3t) | t ∈ R}. (2.4)

This is the convention that we used to describe the solution set in Example
2.1.1. The vertical bar (pipe) in the set builder notation is interpreted to
mean “such that”. The interpretation of (2.4) in words is: “The solution
set of the linear system (2.2) is the set of all ordered triples of the form
(2 + t, 1 + 2t, 3t) such that t can be any real number.”
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To represent the solution set of system (2.2) in parametric form, we
write

x1 = 2 + t (2.5)

x2 = 1 + 2t

x3 = 3t

t ∈ R.

To represent the solution set of system (2.2) in vector parametric form,
we think of the components (x1, x2, and x3) as being the components of a
vector x⃗ = ⟨x1, x2, x3⟩ and we write

x⃗ = ⟨2 + t, 1 + 2t, 3t⟩ (2.6)

t ∈ R.

The three ways of describing the solution set are equivalent to each other.
The t that appears in all three methods of describing the solution set is called
a parameter. When using the parametric form or the vector parametric
form, we sometimes omit writing “t ∈ R” and take it to be understood
that the parameter, t, is allowed to be any real number. However, it is not
conventional to omit writing “t ∈ R” when using the set building notation.

Note that since

⟨2 + t, 1 + 2t, 3t⟩ = ⟨2, 1, 0⟩+ ⟨t, 2t, 3t⟩ = ⟨2, 1, 0⟩+ t⟨1, 2, 3⟩,

then an alternative way to write the vector parametric form (2.6) is

x⃗ = ⟨2, 1, 0⟩+ t⟨1, 2, 3⟩. (2.7)

A useful feature of using the form (2.7) is that this form allows us to easily
see that the solution set (interpreted as a set of vectors) consists of linear
combinations of the vectors ⟨2, 1, 0⟩ and ⟨1, 2, 3⟩ where the weight on the
vector ⟨2, 1, 0⟩ is 1 and the vector ⟨1, 2, 3⟩ can have any (real number) weight.

Exercise 2.1.1. move to next line

1. The solution set of the system

2x1 + 4x2 + 2x3 + 2x4 = −4
x1 + 2x2 + 2x3 + 6x4 = −5
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has parametric description

x1 = 1− 2s+ 4t
x2 = s,
x3 = −3− 5t
x4 = t,

s, t ∈ R

Convert this to vector parametric form.

2. The solution set of the system

3x1 + x2 − 2x3 + 4x4 + 2x5 = −2
x1 + x2 + 2x3 − 2x4 + x5 = −4
2x1 − x2 − 8x3 + 11x4 + 2x5 = −2

is the set of all five-tuples (x1, x2, x3, x4, x5) such that

x1 = 4 + 2x3 − 3x4, x2 = −2− 4x3 + 5x4, x5 = −6

and x3 and x4 can be any real number. Give a parametric description
and a vector parametric description of the solution set.

The solution set of a system is of far more interest than the number of
equations it has or the way that it is written. We will say that two systems of
equations are equivalent if they have the same solution set. Here, we state
without proof an important theorem about solutions to systems of linear
equations.

Theorem 2.1.1. The Solution Set Trichotomy Theorem
For a system of linear equations, exactly one of the following holds:

i. The solution set is empty;

ii. There exists a unique solution; or

iii. There are infinitely many solutions.

Although we are not able to provide a proof of Theorem 2.1.1 at this
point, the reason that the theorem is true will become evident as we proceed
through this chapter and develop the tools that are needed to find solution
sets of systems of linear equations. In the course of doing this, we will discover
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that the only three possibilities regarding solutions sets of linear systems are
those listed in Theorem 2.1.1. We will refer to a system of equations whose
solution set is empty, case i., as inconsistent. A system having at least one
solution, cases ii. and iii. will be called consistent. To distinguish between
the two types of consistent systems, case iii. systems are sometimes called
dependent.

Remark 2.1.1. The Solution Set Trichotomy Theorem 2.1.1 gives reference
to two BIG questions that arise in any problem solving area of mathematics.

1. Does a problem even have a solution?

2. If a problem has a solution, is that solution unique?

We call these questions of existence and uniqueness, and we frequently
refer back to them.

Remark 2.1.2. Every homogeneous system is consistent since the solution
set contains at least the trivial solution. Usually, the interesting question
when encountering a homogeneous system is whether it also permits nontriv-
ial solutions.

While Theorem 2.1.1 holds for linear systems of any size, systems having
two equations and two variables provide a familiar and intuitive geometric
representation of the three solution categories.

2.1.1 Systems of Two Equations with Two Variables

The reader will recognize that an equation of the form a1x1 + a2x2 = b,
with at least one of a1 or a2 nonzero, can be associated with a line in the
x1x2-plane. Hence, we can equate a system of two linear equations with two
variables (with similar minor assumptions about the coefficients),

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

,

with a pair of lines in R2. We recall that a pair of lines in the plane will exhibit
exactly one of three relationships: they are parallel and never intersect, they
will intersect at exactly one point, or they are concurrent (i.e., both equations
describe the same line). Since a solution is defined as an ordered pair of real
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Figure 2.1: Lines determined by two linear equations in two variables illus-
trating the three possible geometric relationships.

numbers that satisfy both equations in the system, we see that the solution
set of a system of two equations in two variables will either be empty (the
equations describe parallel lines), consist of a unique ordered pair (the lines
have one point of intersection), or will contain infinitely many pairs (all points
on the common line). Figure 2.1 illustrates the three types of solution sets
stated in Theorem 2.1.1 for systems involving two equations in two variables.

Exercise 2.1.2. For each system, plot the lines determined by the equations
together on the same set of axes and determine whether the system is in-
consistent or consistent. If the system is consistent, state whether there is a
unique solution or infinitely many solutions.

1.
3x1 + x2 = 0
x1 − 3x2 = −1

2.
x1 + x2 = 1

2

4x1 + 3x2 = −1

3.
4x1 + 6x2 = 3
6x1 + 9x2 = 0

4.
6x1 + 9x2 = 0
4x1 + 6x2 = 0

Exercise 2.1.3. Consider the system of two equations,

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

. (2.8)
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Explain why the system is guaranteed to be consistent with a unique solution
whenever a11a22 ̸= a21a12.(Hint: A pair of lines in the plane are guaranteed
to intersect exactly once if they have different slopes.)

2.2 Solving a System of Linear Equations

In this section, we will consider a methodical approach to solving a linear
system of equations. Recall that two systems are called equivalent if they
have the same solution set. With this in mind, consider the pair of systems

x1 + 2x2 − x3 = 2
3x1 + x2 − x3 = 2
−x1 − 3x2 = −7

and
x1 + 2x2 − x3 = 2

x2 + x3 = 5
x3 = 3

. (2.9)

Although it is not obvious, these are equivalent. Tasked with finding the
solution set, the reader will probably agree that the system on the right has
a structure that greatly simplifies that process. In fact, without any effort,
we see that any solutions will have to include x3 = 3. This can be substituted
into the second equation—we’ll call this “back substitution”—to obtain

x2 = 5− x3 = 5− 3 = 2,

and with these values known, one more back substitution yields

x1 = 2− 2x2 + x3 = 2− 2(2) + 3 = 1.

We find that the system is consistent and has the unique solution (1, 2, 3).
Two features of the system that facilitate this substitution process are the
triangular, or inverted stair-step, format of the equations and the fact that
the left most variable in each equation has a coefficient of 1. In fact, a third
system equivalent to this pair is

x1 = 1
x2 = 2

x3 = 3
.

This formulation has the additional property that, in addition to there being
nothing below the left-most variable in each equation, there is nothing above
the left-most variable in each equation. We can identify the solution set with
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no added effort. The critical question is: given a system, how can we obtain
an equivalent system with such an advantageous structure?

Given any linear system, there are three operations that we can perform
that will preserve the solutions set, i.e., result in an equivalent system. We
can

1. multiply an equation by any nonzero constant,

2. interchange the position of any two equations, and

3. replace an equation with the sum of itself and a multiple of any other
equation.

We can refer to these operations as 1. scaling, 2. swapping, and 3. replacing.
Note that when we refer to the sum of two equations, we mean adding like
terms, the common variables and constant terms. To illustrate, consider the
system on the left in equation (2.9). If we scale the third equation by the
factor −1, the resulting system is

x1 + 2x2 − x3 = 2
3x1 + x2 − x3 = 2
x1 + 3x2 = 7

. (2.10)

Now, in our system (2.10), if we swap the second and third equation, the
resulting system is

x1 + 2x2 − x3 = 2
x1 + 3x2 = 7
3x1 + x2 − x3 = 2

. (2.11)

From (2.11), if we replace the third equation with the sum of itself and −3
times the first equation1, we obtain

x1 + 2x2 − x3 = 2
x1 + 3x2 = 7

− 5x2 + 2x3 = −4
.

1To see the details, we can line up the third equation and −3 times the first equation
and combine like terms

third
(-3)first

new third

3x1 + x2 − x3 = 2
−3x1 − 6x2 + 3x3 = −6
0x1 − 5x2 + 2x3 = −4

.



2.2. SOLVING A SYSTEM OF LINEAR EQUATIONS 55

It is worth noting here that this sequence of operations has eliminated the
variable x1 from the third equation. If our goal is to obtain the stair-step
structure, we have made progress.

2.2.1 Gaussian Elimination

Here, we will describe a methodical process for reducing a given system of
equations to one having the desirable structure seen on the right in (2.9).
The goal is to use our three operations to eliminate variables (induce zero
coefficients), so that we can use back substitution to identify the solution
set. This process is referred to as Gaussian elimination in honor of German
mathematician Carl Friedrich Gauss (1777–1855), though reference to the
process can be found in the ancient Chinese mathematics text The Nine
Chapters on the Mathematical Art composed sometime between the 10th
and 2nd century BCE. Rather than attempt to describe the process in the
abstract, let’s work through an example problem. We will begin with a
system of equations and perform a sequence of our three operations. At
each step in the process, we can label our equations E1, E2, . . . in the order
they appear at that step. We can use the following notation to indicate the
operation we choose at that step.

• If we swap equations Ei and Ej, we will write Ei ↔ Ej.

• If we scale equation Ei by the nonzero constant k, we will write kEi →
Ei.

• If we replace equation Ej with the sum of itself and the number k times
equation Ei, we will write kEi + Ej → Ej.

Let’s begin with the following system of three equations in three variables

2x1 + x2 + x3 = 8
x1 + x2 + x3 = 6
x1 − 2x2 = −4

. (2.12)

The general idea is to use the left most variable in the top equation to
eliminate this variable from all equations below it. Then, we leave the first
equation fixed, move down and use the left most variable in the second equa-
tion to eliminate this variable from all equations below it. We continue this
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process until we have obtained the inverted stair-step format, and we follow
up with back substitution to identify the solution set.

It would be advantageous to have the coefficient of x1 in the top equation
to be 1. To this end, let us swap the order of the first and second equation2.
Recall that we can signify this operation by writing E1 ↔ E2. The result is

E1 ↔ E2

x1 + x2 + x3 = 6
2x1 + x2 + x3 = 8
x1 − 2x2 = −4

. (2.13)

Next, we can eliminate the variable x1 from the second and third equation
with an appropriate replacement. To remove x1 from the second equation,
we need to add −2x1, so we will replace the second equation with the sum
of itself and −2 times the first equation. After this operation, we have

−2E1 + E2 → E2

x1 + x2 + x3 = 6
− x2 − x3 = −4

x1 − 2x2 = −4
. (2.14)

Similarly, if we replace the third equation with the sum of itself and −1 times
the first equation, we have

−E1 + E3 → E3

x1 + x2 + x3 = 6
− x2 − x3 = −4
− 3x2 − x3 = −10

. (2.15)

At this stage, we have achieved the initial goal. The variable x1 appears in
only the top equation. Let’s continue by performing the same process on the
subsystem we get by keeping the first equation fixed. That is, we will play
this same game on the smaller embedded system consisting of the current
second and third equations. Let’s scale the second equation by −1 to get a
coefficient of 1 on x2.

−1E2 → E2

x1 + x2 + x3 = 6
x2 + x3 = 4

− 3x2 − x3 = −10
. (2.16)

2We could also choose to swap the first and third equation or even to scale the first
equation by 1

2 . While we’ll take a methodical approach, we don’t claim that a choice made
at a given step is the only choice we could make.
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Now, we can eliminate x2 from the third equation by replacing the third
equation with the sum of itself and 3 times the second equation.

3E2 + E3 → E3

x1 + x2 + x3 = 6
x2 + x3 = 4

2x3 = 2
. (2.17)

Finally, we scale the third equation and proceed with the back substitution.

1

2
E3 → E3

x1 + x2 + x3 = 6
x2 + x3 = 4

x3 = 1
. (2.18)

Now, we see that the system has a solution and that x3 = 1. We can perform
back substitution to obtain

x2 = 4− x3 = 4− 1 = 3, and x1 = 6− x2 − x3 = 6− 3− 1 = 2.

The system has a unique solution which we can express as an ordered triple

(x1, x2, x3) = (2, 3, 1); in parametric form
x1 = 2
x2 = 3
x3 = 1

; or in vector parametric

form x⃗ = ⟨2, 3, 1⟩.
Before moving on, let’s go though the process again with the system

x1 + 4x2 + 3x3 = 1
2x1 + x2 − x3 = 2
−x1 + 3x2 + 4x3 = 0

. (2.19)

We have a coefficient of 1 on x1 in the first equation. That is advantageous.
We can use x1 in that top equation to eliminate this variable in the second
and third. As before, we’ll accomplish this with the replacement operations
k2E1 + E2 → E2 and k3E1 + E3 → E3 with the choices of k2 and k3 that
result in 0x1.

−2E1 + E2 → E2

x1 + 4x2 + 3x3 = 1
− 7x2 − 7x3 = 0

−x1 + 3x2 + 4x3 = 0
. (2.20)

E1 + E3 → E3

x1 + 4x2 + 3x3 = 1
− 7x2 − 7x3 = 0

7x2 + 7x3 = 1
. (2.21)
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We can scale the second equation to obtain a coefficient of 1 on x2.

−1

7
E2 → E2

x1 + 4x2 + 3x3 = 1
x2 + x3 = 0
7x2 + 7x3 = 1

. (2.22)

Then we can use x2 in the second equation to eliminate x2 from the third
equation.

−7E2 + E3 → E3

x1 + 4x2 + 3x3 = 1
x2 + x3 = 0

0 = 1
. (2.23)

Something interesting has happened; our third equation reads as

0x1 + 0x2 + 0x3 = 1, i.e., 0 = 1,

which is false for all possible values of x1, x2, and x3. It was not initially
obvious, but the system (2.19) is inconsistent. Our result, an obviously false
equation such as “0 = 1,” is typical of an inconsistent system.

Exercise 2.2.1. Perform the Gaussian elimination process on each system
of equations. At each step, use the operation notation (Ei ↔ Ej, kEi → Ei,
kEi + Ej → Ej) to clearly indicate the operation you have selected. If the
system is consistent, state the solution in either parametric form or in vector
parametric form.

1.
2x1 + 3x2 = 1
−x1 + 6x2 = −2

2.
x1 + 2x2 + 2x3 = 1
3x1 + x2 − x3 = −2
x1 + x2 − 2x3 = 0

3.
3x1 + x2 − x3 = −2
x1 + x2 − 2x3 = 0
2x1 + x3 = 1
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2.3 Matrices

We might notice in the examples above that, aside from the symbol “−” on
a negative coefficient, the variable names, and arithmetic symbols “+” and
“=” are carried along at each step as part of the formal expression of the
equations while the actual operations affect the coefficients. In this section,
we introduce a mathematical object called a matrix (plural matrices) that
will serve as a tool in performing our elimination process. Matrices will allow
us to perform the elimination process by focusing on the critical features of
the system, the coefficients and the constant terms, while ignoring some of
the formal notation.

Definition 2.3.1. A matrix is a rectangular array of numbers of the form
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Each number, aij, is called an entry or an element of the matrix. If the
matrix has m rows and n columns, we say that the size or dimension of
the matrix is “m by n” and write m× n.

Remark 2.3.1. In writing the size of a matrix, the first number always
indicates the number of rows and the second the number of columns. This
is the convention that everyone has agreed to, and we will follow suit. In
keeping with this tradition, when we use double subscript notation like aij to
indicate an entry in a matrix, the first subscript, i, indicates its row and the
second, j, its column.

Remark 2.3.2. Matrices are typically labeled using capital letters, A, B,
etc., and we often state the size when referring to a matrix. For example, if

A =

 1 −1 3 2
4 0 2 6
−3 7 1 1

 , and B =


1 0
3 2
−2 5
9 1

 ,

we say A is a 3 × 4 matrix and B is a 4 × 2 matrix. We commonly use
an uppercase-lowercase convention when referring to the entries in a matrix.
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That is, we would use the notation aij to refer to the entries in A and bij to
refer to the entries in B. Recalling that the first index indicates the row and
the second the columns, we can identify select entries

a11 = 1, a12 = −1, a21 = 4, b12 = 0, b21 = 3, and b32 = 5.

Remark 2.3.3. The notation A = [aij] is a common shorthand to refer to a
matrix A having entries aij, especially if the size of the matrix is known or
not of immediate interest.

2.3.1 Coefficient and Augmented Matrices

Given a system of linear equations, we can immediately associate with it a
pair of matrices. Recall our generic system (2.3) consisting of m equations
in n variables

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
... +

... +
. . . +

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

.

The coefficient matrix for the system (2.3) is the m× n matrix
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


whose entries are the coefficients of the variables in the equations. The
number of rows of the coefficient matrix is determined by the number of
equations in the system. The number of columns of the coefficient matrix
is equal to the number of variables. When we follow the earlier convention
for writing a system of linear equations, we can easily identify the coefficient
matrix.

The augmented matrix for the system (2.3) is the m× (n+ 1) matrix
obtained from the coefficient matrix by adding (i.e., augmenting it with) an
extra column whose entries are the constant terms (right hand side values)
of the equations. To distinguish a matrix as the augmented matrix of some
system, it is convenient to include a delimiter, such as a dashed or solid line,
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just to the left of the right most column. While not strictly necessary, it
has the advantage of immediately signaling to the reader that the matrix is
intended to represent an augmented matrix. If we follow this convention, the
augmented matrix for the system (2.3) can be written as

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 . (2.24)

Example 2.3.1. Write the coefficient and augmented matrices for the two
systems of equations in (2.9). Those equations were

x1 + 2x2 − x3 = 2
3x1 + x2 − x3 = 2
−x1 − 3x2 = −7

and
x1 + 2x2 − x3 = 2

x2 + x3 = 5
x3 = 3

.

For the system on the left, the matrices are

Coefficient:

 1 2 −1
3 1 −1

−1 −3 0

 , Augmented:

 1 2 −1 2
3 1 −1 2

−1 −3 0 −7

 .

For the system on the right, the matrices are

Coefficient:

 1 2 −1
0 1 1
0 0 1

 , Augmented:

 1 2 −1 2
0 1 1 5
0 0 1 3

 .

Remark 2.3.4. Note that we place a zero in the matrix corresponding to any
position in which a variable is missing. We leave blank spaces when writing
a system of equations, but we do not leave blank spaces in a matrix.

Exercise 2.3.1. Write the coefficient and the augmented matrix for each
system of equations.

1.
x1 + 2x2 + 2x3 = 1
3x1 + x2 − x3 = −2
x1 + x2 − 2x3 = 0

2.
−2x1 + x2 − x3 + 2x4 = 1
6x1 − 3x2 + 4x4 = 0
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Exercise 2.3.2. For each matrix A, write a homogeneous system of equations
having A as its coefficient matrix.

1. A =

 1 0 −1 2
2 −3 2 −1
0 2 4 2



2. A =

 1 3 5
7 9 1
2 4 6


Exercise 2.3.3. For each augmented matrix A, write the corresponding sys-
tem of equations.

1. A =

 1 0 −1 2
2 −3 2 −1
0 2 4 2



2. A =

 1 3 5
7 9 1
2 4 6


2.3.2 Elementary Row Operations

We can implement the Gaussian elimination procedure on a linear system
by performing appropriate operations on the rows of its augmented matrix.
There are three such operations that we call elementary row operations.
The elementary row operations, which can be applied to any matrix, are

1. multiply all entries in a row by any nonzero constant,

2. interchange the position of any two rows, and

3. replace a row with the sum of its entries and a multiple of the corre-
sponding entries in any other row.

We will call these operations scaling, swapping, and replacing, respectively.
When we perform one of these operations on a matrix, we say that the
resulting matrix is row equivalent to the initial matrix. In fact, we will
define two matrices as being row equivalent if one can be obtained from the
other by performing some sequence of elementary row operations. You may
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recall that the term “equivalent” was used to describe two systems of linear
equations having the same solution set. The following theorem tells us that
these two concepts, row equivalence of matrices and equivalence of systems
of equations, are intimately related.

Theorem 2.3.1. If the augmented matrices of two systems of linear equa-
tions are row equivalent, then the systems are equivalent.

This result is not surprising in light of the obvious connection between the
elementary row operations and the operations used in Gaussian elimination.
But this is a critical result that allows us to use matrices when solving linear
systems. Let’s revisit our work with the system (2.12) and restate the process
in terms of row operations. Going forward, we will use the following popular
notation to indicate row operations—fortunately, this matches the previous
notation simply replacing E (for equation) with R (for row). We will write

• kRi → Ri to indicate scaling the ith row by the constant k,

• Ri ↔ Rj to indicate swapping rows i and j, and

• kRi+Rj → Rj to indicate that row j is replaced with the sum of itself
and k times row i.

We start with system (2.12) and write out its augmented matrix.

2x1 + x2 + x3 = 8
x1 + x2 + x3 = 6
x1 − 2x2 = −4

 2 1 1 8
1 1 1 6
1 −2 0 −4

 . (2.25)

Let’s look at the process we went through before and do a side-by-side
comparison of the operations on the equations and the corresponding ele-
mentary row operations. See equations (2.13)–(2.18) from section 2.2.1.

E1↔E2︷ ︸︸ ︷
x1 + x2 + x3 = 6
2x1 + x2 + x3 = 8
x1 − 2x2 = −4

R1↔R2︷ ︸︸ ︷ 1 1 1 6
2 1 1 8
1 −2 0 −4

 (2.26)

−2E1+E2→E2︷ ︸︸ ︷
x1 + x2 + x3 = 6

− x2 − x3 = −4
x1 − 2x2 = −4

−2R1+R2→R2︷ ︸︸ ︷ 1 1 1 6
0 −1 −1 −4
1 −2 0 −4

 . (2.27)
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−E1+E3→E3︷ ︸︸ ︷
x1 + x2 + x3 = 6

− x2 − x3 = −4
− 3x2 − x3 = −10

−R1+R3→R3︷ ︸︸ ︷ 1 1 1 6
0 −1 −1 −4
0 −3 −1 −10

 . (2.28)

−1E2→E2︷ ︸︸ ︷
x1 + x2 + x3 = 6

x2 + x3 = 4
− 3x2 − x3 = −10

−1R2→R2︷ ︸︸ ︷ 1 1 1 6
0 1 1 4
0 −3 −1 −10

 . (2.29)

3E2+E3→E3︷ ︸︸ ︷
x1 + x2 + x3 = 6

x2 + x3 = 4
2x3 = 2

3R2+R3→R3︷ ︸︸ ︷ 1 1 1 6
0 1 1 4
0 0 2 2

 . (2.30)

1
2
E3→E3︷ ︸︸ ︷

x1 + x2 + x3 = 6
x2 + x3 = 4

x3 = 1

1
2
R3→R3︷ ︸︸ ︷ 1 1 1 6

0 1 1 4
0 0 1 1

 . (2.31)

When we solved this system before, we stopped at this step. Since we can
readily convert between an augmented matrix and a system of equations, we
could take the matrix on the right in (2.31), write the associated system (the
one on the left in (2.31)), and finish up using back substitution. This time,
let’s continue to use row operations to go further.

Notice that the inverted stair-step structure on the system corresponds to
a particular pattern in the augmented matrix. The columns corresponding to
the coefficients (the first three in this example) have a sort of triangle of zeros
in the lower left corner. There’s a special name for this structure, and we’ll
circle back to that shortly. For now, let’s attempt to use our elementary row
operations to induce even more elimination. Since we’ve eliminated x1 and
x2 from the third equation, we can use row replacement to eliminate x3 from
the first two equations—and we can do this without disrupting that triangle
of zeros! Let’s see this in action, and look at the corresponding system at
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each step. We’ll perform −R3 +R2 → R2 followed by −R3 +R1 → R1.

−R3+R2→R2︷ ︸︸ ︷ 1 1 1 6
0 1 0 3
0 0 1 1

 x1 + x2 + x3 = 6
x2 = 3

x3 = 1
. (2.32)

−R3+R1→R1︷ ︸︸ ︷ 1 1 0 5
0 1 0 3
0 0 1 1

 x1 + x2 = 5
x2 = 3

x3 = 1
. (2.33)

Finally, we can eliminate x2 from the first equation using −R2 + R1 → R1

to obtain
−R2+R1→R1︷ ︸︸ ︷ 1 0 0 2
0 1 0 3
0 0 1 1

 x1 = 2
x2 = 3

x3 = 1
. (2.34)

It is now obvious that the system has a solution and we see what that solution
is.

2.3.3 Echelon Forms

If we know what we’re looking for, all of the matrices in (2.31)–(2.34) have
features that can tell us about the underlying system of equations—features
that address those existence and uniqueness questions. A matrix with this
structure is called an echelon form, more precisely, a row echelon form. The
word “echelon” is coming from the French échelon, meaning a step or level,
which in turn stems from the Latin scala, meaning ladder—rather appropri-
ate given our comparison to a set of stairs.

We will call the leftmost nonzero entry in the row of a matrix a leading
entry. With that, we define what it means to say that a matrix is in row
echelon or reduced row echelon form.

Definition 2.3.2. We will say that a matrix is in row echelon form if it
satisfies the properties that

1. any row whose entries are all zeros is below all rows that contain a
leading entry, and
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2. the leading entry in every row is to the right of the leading entries in
every row above it.

We will say that a matrix is in reduced row echelon form if, in addition
to being in row echelon form,

3. the leading entry in each row is a 1 (called a “leading one”), and

4. each leading one is the only nonzero entry in its column.

We’ll often use the shorthand “ref” and “rref,” respectively, to refer to
row echelon and reduced row echelon forms3. At first pass, the properties in
definition 2.3.2 might seem rather unintuitive, but with a little bit of practice,
it’s easy to train one’s eye to recognize echelon forms, and we will use them
extensively. Let’s practice identifying echelon forms.

Example 2.3.2. Let ⋆ represent some nonzero number and □ represent any
number (including zero). List all of the possible 2× 2 echelon forms.

There are four possible 2× 2 echelon forms.[
0 0
0 0

]
,

[
⋆ □
0 0

]
,

[
0 ⋆
0 0

]
or

[
⋆ □
0 ⋆

]
.

Example 2.3.3. Classify each of the following matrices as a row echelon
form (ref), a reduced row echelon form (rref), or not an echelon form.

A =

 2 1 3
0 −1 1
0 0 7

 , B =


1 0 0
0 2 −3
0 1 0
0 0 4

 , C =

 1 1 0
0 0 1
0 0 0

 ,

D =


1 1 0
0 1 0
0 0 1
0 0 0

 , E =


1 2 0 0 3 1
0 0 1 0 −2 0
0 0 0 1 6 −1
0 0 0 0 0 0

 .

A: The matrix A is in row echelon form, but it is not in reduced echelon
form. There are no rows of all zero, so that property is satisfied by
default. The leading entries are 2,−1, and 7, in that order. The leading
entries tend strictly to the right as we go down the rows.

3Many computer algebra systems capable of matrix manipulations use the names ref
and rref for predefined functions that input a matrix and output a row equivalent echelon
form.
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B: Matrix B is not an echelon form. We must be careful here because
at first glance, B has a bit of a stair step structure. But notice that
the leading entry in the third row is not to the right of the leading
entry in the second row. An alternative formulation of property 2. in
definition 2.3.2 is that all the entries below a leading entry must be zero.
Since the leading entry in the second row has a nonzero entry below it,
property 2. is violated.

C: Matrix C is a reduced row echelon form. It is an echelon form (prop-
erties 1. and 2.). Moreover, the leading entries are both 1, and each
leading 1 is the only nonzero entry in its column.

D: Matrix D is a row echelon form, but it is not a reduced row echelon
form. It satisfies properties 1., 2., and 3. But note that the leading one
in the second column is not the only nonzero entry in that column.

E: Matrix E is a reduced row echelon form. This example is a bit less
obvious because it has several nonzero, and non-one, entries. However,
if we look closely, we see that all of the properties of an rref are satisfied.
This matrix has three leading ones columns 1, 3, and 4. Each leading
one is to the right of all leading ones above it, and each leading one is
the only nonzero entry in its column.

Exercise 2.3.4. Classify each matrix as a row echelon form (ref), a reduced
row echelon form (rref), or not an echelon form. Identify which property (or
properties) is not satisfied if a matrix is not an echelon form (or is an ref
but not an rref).

1.

[
1 −1
0 3

]

2.


2 1 1
0 1 4
0 0 0
0 0 0



3.

 1 0 0
1 1 0
1 2 3


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4.

 1 2 0 3 0
0 0 1 2 0
0 0 0 0 1


Exercise 2.3.5. Use the notation from Example 2.3.2 where appropriate.

1. Write out all possible 2× 2 reduced row echelon forms.

2. Write out all of the possible 2× 3 row echelon forms.

3. Write out all of the possible 2× 3 reduced row echelon forms.

4. Write out all possible 3× 3 row echelon forms.

5. Write out all possible 3× 3 reduced row echelon forms.

2.3.4 Row Reduction

Given any matrix that is not an echelon form, we can obtain a row equivalent
echelon form by performing some set of elementary row operations. We’ll call
this process row reduction. With an echelon form as the goal of our row
reduction efforts, we want to choose operations carefully at each step—not
because there is only one correct set of steps, but because we don’t want
to choose an operation that takes us further from our goal. We can follow
some simple guidelines to optimize our row reduction efforts. In particular,
we will work from left to right, top down, to obtain an ref by inducing zeros
below each leading entry. To obtain an rref, we first obtain an ref, and then
continue the process of inducing zeros above each leading entry by working
from right to left, bottom-up, and eventually scaling each leading entry to
be 1. Let’s see the process in action.

We will start with the 4× 5 matrix

A =


3 2 1 6 0
4 2 2 0 −2
1 1 0 3 −2
2 1 1 3 2


and produce an ref. Since the first column is not all zero, the top left corner
will contain a leading entry, and we use this leading entry to obtain all zero
below it. Letting ⋆ denote a nonzero entry, we want the first column to
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become


⋆
0
0
0

. It is desirable (though not necessary) to have a 1 in that top

left corner, so we will swap the first and third row to obtain

R1 ↔ R3


1 1 0 3 −2
4 2 2 0 −2
3 2 1 6 0
2 1 1 3 2

 .

To clear the column, we use replacement operations k1R1+R2 → R2, k2R1+
R3 → R3 and k3R1 + R4 → R4 choosing the scalars ki to that the first
entry in the new row is zero. (Hopefully it’s clear why moving the 1 to the
top row was advantageous.) For this example, we can do three replacement
operations.

−4R1 +R2 → R2


1 1 0 3 −2
0 −2 2 −12 6
3 2 1 6 0
2 1 1 3 2

 ,

−3R1 +R3 → R3


1 1 0 3 −2
0 −2 2 −12 6
0 −1 1 −3 6
2 1 1 3 2

 , and

−2R1 +R4 → R4


1 1 0 3 −2
0 −2 2 −12 6
0 −1 1 −3 6
0 −1 1 −3 6

 .

Now that the first column has the correct format, we essentially ignore the
top row and leftmost column,

1 1 0 3 −1
0 −2 2 −12 6
0 −1 1 −3 6
0 −1 1 −3 6

 ,

and repeat the process on the resulting sub-matrix (the blue entries above).
Leaving the top row fixed, the zeros in the leftmost column guarantee that
we will not undo the progress we’ve made.
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Since the leftmost blue column is not all zero, the top entry will be a lead-
ing entry and we choose operations that result in the leftmost blue column

becoming

 ⋆
0
0

. We can accomplish that via a few steps4

−1

2
R2 → R2


1 1 0 3 −2
0 1 −1 6 −3
0 −1 1 −3 6
0 −1 1 −3 6

 ,

R2 +R3 → R3


1 1 0 3 −2
0 1 −1 6 −3
0 0 0 3 3
0 −1 1 −3 6

 ,

R2 +R4 → R4


1 1 0 3 −2
0 1 −1 6 −3
0 0 0 3 3
0 0 0 3 3

 .

Now we move down and to the right, ignoring the first two rows and columns
1 1 0 3 −1
0 1 −1 6 −3
0 0 0 3 3
0 0 0 3 3

 ,

and work with the new sub-matrix (shown in blue). We will continue this
process until an ref is obtained.

We note that the leftmost column in the new submatrix contains all
zeros. There are no row operations that will result in nonzero numbers in
these positions without losing the progress we made on the first two columns.
This column will not contain a leading entry, so we leave those zeros

4Keep in mind that it’s not the exact operations performed, it’s the result that matters.
You might choose different operations to achieve the same outcome—and that’s perfectly
legit!
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and move to the right. 
1 1 0 3 −1
0 1 −1 6 −3
0 0 0 3 3
0 0 0 3 3


The goal is for that leftmost blue column to have the form

[
⋆
0

]
. We can

accomplish that with one row operation.

−R3 +R4 → R4


1 1 0 3 −2
0 1 −1 6 −3
0 0 0 3 3
0 0 0 0 0

 . (2.35)

Now we have an ref, and we can see that the first, second and fourth columns
in this example contain a leading term. While this ref is not unique (we
could, for example, scale any of the rows and still have an ref), further row
operations will not change the locations of the leading terms.

We can obtain an rref starting from an ref by essentially working back-
wards (right to left, bottom up) to obtain zeros in every entry above each
leading entry. Performing the process from right to left guarantees that once
we get a zero in a desired position, it will remain zero as we proceed.

Continuing with our example, we can obtain zeros above the leading entry
in the fourth column by performing two replacements of the form k1R3+R2 →
R2 and k2R3 +R1 → R1 with strategic choices of k1 and k2.

−2R3 +R2 → R2


1 1 0 3 −2
0 1 −1 0 −9
0 0 0 3 3
0 0 0 0 0

 .

−R3 +R1 → R1


1 1 0 0 −5
0 1 −1 0 −9
0 0 0 3 3
0 0 0 0 0

 .

Now we move left to the next leading entry and use replacements to get all
zero entries above it. In this example, the next leading entry is in the second
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column, and we only need one replacement to eliminate the entry above it.

−R2 +R1 → R1


1 0 1 0 4
0 1 −1 0 −9
0 0 0 3 3
0 0 0 0 0

 .

If necessary, we scale all leading entries to be 1, and the process is complete.

1

3
R3 → R3


1 0 1 0 4
0 1 −1 0 −9
0 0 0 1 1
0 0 0 0 0

 . (2.36)

The matrix above in equation (2.36) is an rref that is row equivalent to the
matrix A that we started with. We might call this “the reduced row echelon
form of A,” but such a statement immediately raises a question:

If, starting from the same matrix A, we select a different set of
row operations to obtain an rref, could we obtain a different rref?

This is an interesting question, especially in light of the observation that
the ref in equation (2.35) is not unique. But, while we can do row operations
to obtain different refs, one key property would remain the same. The po-
sitions of the leading entries would not change. Turns out, no matter what
operations we choose to obtain a reduced row echelon form, we end up with
the same final result. We have the following theorem, stated here without
proof.

Theorem 2.3.2. A matrix A is row equivalent to exactly one reduced row
echelon form.

Since an rref is unique, we can use the notation rref(A) to refer to the
reduced row echelon form of a matrix A.

Exercise 2.3.6. For each matrix A, follow the process outlined in the row
reduction example to find rref(A).

1. A =

[
−1 3 2
2 −2 5

]
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2. A =

[
4 4 0 −2

−1 3 −5 1

]

3. A =

 2 4 6 8
4 6 8 10
6 8 10 4



4. A =

 1 2 3
2 3 4
3 4 5



5. A =


1 0 −3 0 0
1 8 −5 −2 0
1 6 −6 0 −1
3 7 −7 −1 −2


The leading entries are used to eliminate all of the entries in their re-

spective columns during the row reduction process, and the location of the
leading entries is independent of the specific row operations chosen. Given
their role, the leading entries are often called pivots. For a coefficient or an
augmented matrix, we can relate these entries to the variables in the under-
lying system of equations. Since the reduced row echelon form is unique, we
can make the following unambiguous definition.

Definition 2.3.3. A pivot position in a matrix A is the location of a
leading 1 in rref(A). A column that contains a pivot position is called a
pivot column.

Example 2.3.4. Circle the pivot positions and list the pivot columns of the
matrix

A =


3 2 1 6 0
4 2 2 0 −2
1 1 0 3 −2
2 1 1 3 2

 .

We previously found

rref(A) =


1 0 1 0 4
0 1 −1 0 −9
0 0 0 1 1
0 0 0 0 0

 .



74 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

From the locations of the leading ones, we identify the entries in the pivot
positions. Circling them we have

3 2 1 6 0

4 2 2 0 −2

1 1 0 3 −2
2 1 1 3 2

 .

We see that the pivot columns are columns 1, 2, and 4.

Exercise 2.3.7. For each matrix A in exercise 2.3.6, circle the pivot posi-
tions and list the pivot columns.

Exercise 2.3.8. Suppose A is a 5× 7 matrix.

1. If A is the coefficient matrix of a linear system of equations, how many
variables does the system have?

2. If A is the augmented matrix of a linear system of equations, how many
variables does the system have?

3. Could A have 7 pivot columns? (Explain your answer.)

Exercise 2.3.9. If A is an m× n matrix, what is the maximum number of
pivot columns A can have? (Hint: consider the possible cases, m < n and
m ≥ n. Explain your answer.)

2.4 Solutions of Linear Systems

Augmented matrices and row reduction provide a convenient framework for
solving systems of linear equations, and we’ll find that we can use pivot
columns to deduce consistency and express solutions. To illustrate, let’s
consider the system of four equations in five variables

−x1 − 2x2 x4 + 2x5 = −3
x1 + 2x2 + x3 − 3x5 = 4
3x1 + 6x2 + x3 − x4 − 4x5 = 10
2x1 + 4x2 + x3 − x4 − 5x5 = 7

. (2.37)
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The system is formatted nicely, so we can easily write out the augmented
matrix, 

−1 −2 0 1 2 −3
1 2 1 0 −3 4
3 6 1 −1 −4 10
2 4 1 −1 −5 7

 . (2.38)

Now, if we perform the row reduction procedure on this matrix (exercise left
to the reader), we find the rref

1 2 0 0 1 3
0 0 1 0 −4 1
0 0 0 1 3 0
0 0 0 0 0 0

 . (2.39)

We can translate this matrix back into a linear system. Since the fourth row
is all zero, it corresponds to the trivially true equation “0 = 0,” which we
won’t bother to write out. Otherwise, the matrix in (2.39) is the augmented
matrix of the system

x1 + 2x2 + x5 = 3
x3 − 4x5 = 1

x4 + 3x5 = 0
. (2.40)

We might notice something interesting about the variables that correspond
to the pivot columns. In this case, the pivot columns are columns 1, 3, and
4. Since the only nonzero entry in a pivot column is 1, each of the variables
x1, x3 and x4 only appears in one equation, and each has a coefficient of 1.
This provides us with a convenient way to express solutions by simply moving
the remaining variables (the non-pivot column variables) to the right side.
We can write

x1 = 3− 2x2 − x5

x3 = 1 + 4x5

x4 = −3x5

. (2.41)

There are no additional conditions on the variables x2 and x5 which means
that these variables can take on any real value. Then, for any choice of x2

and x5, as long as x1, x3, and x4 satisfy the three equations (2.41), the 5-tuple
(x1, x2, x3, x4, x5) will be in the solution set of the system (2.37). Variables
like x2 and x5 that can take on any value are called free variables. It is
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customary (though not required) to assign parameter names, such as t or
s, to free variables. Whether we relabel the free variables or let them keep
their original names, a proper presentation of the solution set should clearly
identify any free variable(s). A parametric representation of the solution set
of (2.37) could be written as

x1 = 3− 2t− s
x2 = t
x3 = 1 + 4s
x4 = −3s
x5 = s

, s, t ∈ R. (2.42)

This solution expressed in vector parametric form is

x⃗ = ⟨3, 0, 1, 0, 0⟩+ t⟨−2, 1, 0, 0, 0⟩+ s⟨−1, 0, 4,−3, 1⟩. (2.43)

As long as we identify free variables, we can also express the solution set in
the form

x1 = 3− 2x2 − x5

x3 = 1 + 4x5

x4 = −3x5

x2, x5 are free

.

Note that the only real difference between this and (2.41) is that we explicitly
state that the variables x2 and x5 are free. We’ll call the variables that are
not free basic variables. We can formally define the two variable types.

Definition 2.4.1. Let A be an m × n matrix that is the coefficient matrix
for a system of linear equations in the n variables, x1, x2, . . . , xn. For each
i = 1, . . . , n

• if the ith column of A is a pivot column, then xi is a basic variable,
and

• if the ith column of A is not a pivot column, the xi is a free variable.

When expressing the solution of a consistent linear system, we will always
express the basic variables in terms of the free variables (and never the other
way around5).

5It’s not technically wrong to rearrange the third equation in (2.41) to read x5 = − 1
3x4.
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Example 2.4.1. Use an augmented matrix and row reduction to determine
the solution set of the linear system

2x1 + 4x2 + 6x3 = 8
4x1 + 6x2 + 8x3 = 10
6x1 + 8x2 + 10x3 = 4

.

We set up the augmented matrix and row reduce to an rref. 2 4 6 8
4 6 8 10
6 8 10 4

 rref−→

 1 0 −1 0
0 1 2 0
0 0 0 1


The third row of the rref corresponds to the equation

0x1 + 0x2 + 0x3 = 1,

which is false for all possible values of x1, x2, and x3. The conclusion is that
this system is inconsistent. We can say that the solution set is empty.

Example 2.4.2. Use an augmented matrix and row reduction to determine
the solution set of the linear system

−x1 + 2x2 + 4x3 = 3
3x1 + x2 + 2x3 = 4

− 2x2 + 6x3 = 1
.

Again, we set up the augmented matrix and row reduce to an rref. −1 2 4 3
3 1 2 4
0 −2 6 1

 rref−→

 1 0 0 5/7
0 1 0 32/35
0 0 1 33/70


The first three columns are pivot columns, so all three variables are basic
variables. This system has a unique solution that we can state in parametric
form

x1 = 5/7
x2 = 32/35
x3 = 33/70

.

But only one of x4 and x5 can truly be a free parameter. We would have to rearrange the
other two equations in (2.41) to replace each x5 with − 1

3x4. That’s extra work without
good reason for doing it. It would be incorrect to say both x4 = −3x5 and x5 = − 1

3x4

without indicating that one of these is a free variable. If we follow the convention of always
stating basic variables in terms of free variables, and never the other way around, we avoid
errors and unnecessary work.
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Exercise 2.4.1. For each system of equations, use an augmented matrix and
row reduction to either find the solutions set or determine that the system is
inconsistent.

1.
x1 + x3 = 20

x2 − x3 − x4 = 0
x1 + x2 = 80

2.
x1 + 2x2 + 4x3 = 0
2x1 + 3x2 + 5x3 = 0
3x1 + 4x2 + 2x3 = 0

3.
2x1 − 2x2 + x3 = 6
x1 + x2 − x3 = −2

x2 + 3x3 = 5

From the rref of the augmented matrix in Example 2.4.1, we see that the
rightmost column, the augmented column, is a pivot column. This equates
to the false equation “0 = 1,” leading us to the conclusion that the system
is inconsistent. What we see here is not unique to this example and in fact
leads to a general relationship between the consistency of a linear system and
the nature of the pivot columns of its augmented matrix. If the rightmost
column of an augmented matrix is a pivot column, then the rref will include
a row of the form

[0 0 · · · 0 | 1],

implying that the original system is equivalent to a system having the neces-
sarily false equation “0 = 1.” In fact, it is not necessary to obtain a full rref in
order to conclude that a system is inconsistent. If any ref that is row equiv-
alent to an augmented matrix includes a row of the form [0 0 · · · 0 | ⋆], with
⋆ any nonzero number, the underlying system will include a false equation
“0 = something not zero.”

We have seen that the pivot columns of an augmented matrix are re-
lated to the consistency of the underlying system, and they provide a way to
characterize the variables and express solutions. We can state the following
theorem that summarizes the relationship between pivot columns and the
two big questions of existence and uniqueness.

Theorem 2.4.1. Let A and Â be the coefficient matrix and the augmented
matrix of the linear system (2.3), respectively.
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1. If the rightmost column of Â is a pivot column of Â, then the system
is inconsistent.

2. If the rightmost column of Â is not a pivot column of Â, then the system
is consistent.

Moreover, if the system is consistent, then

1. if every column of A is a pivot column of A, then the system has a
unique solution; and

2. if at least one column of A is not a pivot column of A, then the system
has infinitely many solutions.

The first part of Theorem 2.4.1 reiterates our previous observation that
a pivot position in the augmented column corresponds to a necessarily false
equation (“0 = 1”). It also states that this must be the case if the system
is inconsistent—meaning if the rightmost column of an augmented matrix is
not a pivot column, the system must have at least one solution. As for the
second part of Theorem 2.4.1, multiple solutions requires the presence of one
or more free variables, and that requires at least one of the columns of A
to not be a pivot column. Theorem 2.4.1 is summarized by the flow chart
shown in Figure 2.2.

An immediate corollary to Theorem 2.4.1 is the following:

Corollary 2.4.1. If m < n, then any system of m linear equations in n
variables is either inconsistent or has infinitely many solutions.

This says that if there are more variables than there are equations, it is
not possible for the system to have a unique solution. It’s certainly possible
that such a system has no solution, but if it does have a solution, there must
be at least one free variable (see Exercise 2.3.9).

Exercise 2.4.2. For each augmented matrix, determine whether the associ-
ated system is inconsistent, consistent with a unique solution, or consistent
with infinitely many solutions. (If possible, make your determinations with-
out performing additional row operations.)

1.

 1 2 0 1
0 0 1 2
0 0 0 0


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Figure 2.2: Flow Chart Illustrating Theorem 2.4.1

2.

 1 0 −1 0 1
0 1 3 0 2
0 0 0 1 −4



3.


0 1 0 0 1
0 0 2 0 −3
0 0 0 1 0
0 0 0 0 1



4.

 1 2 3 1
0 1 −1 4
0 0 3 −2



5.


1 2 0 0 0 −2 4
0 0 1 0 0 4 2
0 0 0 1 0 −5 −2
0 0 0 0 1 1 0



6.

[
1 2 −2 0 2 2
0 0 0 1 −5 −3

]
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7.

 1 0 −2 0 −4 3 0
0 1 0 0 7 −3 1
0 0 0 0 0 0 4



8.

 1 0 0 −8
0 1 0 5
0 0 0 0


Exercise 2.4.3. For each of the consistent systems in Exercise 2.4.2, write
the solution set in parametric form. Either assign parameters to any free
variables, or be sure to clearly indicate which variables (if any) are free.(Note:
you may need to perform additional row operations.)

2.5 Additional Exercises

(Jump to Solutions)

1. Solve each linear system by using row reduction on the associated aug-
mented matrix.

a.
x1 + 2x2 + x3 = 1
3x1 + 5x2 + 3x3 = 4
2x1 + x2 + x3 = 4

b.
x1 − x3 = 2
2x1 + x2 + 2x3 = −6
3x1 + 2x2 + 2x3 = −5

c.
−2x1 + 2x2 − 3x3 − 2x4 = −8
3x1 − 3x2 + 3x3 + x4 = 10
2x1 − 2x2 + 2x3 = 4

d.
−2x1 − 6x2 + 4x3 − 8x4 + 32x5 = 18
3x1 + 9x2 + x3 − 2x4 − 6x5 = 8

2. Determine all values of b, if any, such that the system of equations
having the given augmented matrix is consistent.

a.

[
2 b 3

−1 3 4

]
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b.

[
4 3 −2
6 1 b

]
c.

[
4 6 b
6 9 12

]
3. For each system of equations, determine all value(s) of b and c, if any,

such that the system of equations has (i) no solution, (ii) a unique
solution, and (iii) infinitely many solutions.

a.
x1 + 3x2 = 2
3x1 + bx2 = c

b.
bx1 − 2x2 = 5
4x1 + 7x2 = c

c.
3x1 + bx2 = 0
cx1 + 4x2 = 0

4. Create your own specific example of

a. a system of linear equations with three equations and two variables
that has a unique solution.

b. a system of linear equations with three equations and two variables
that is inconsistent.

c. a system of linear equations with three equations and two variables
that has infinitely many solutions.

d. a linear equation with one variable that has a unique solution.

e. a linear equation with one variable that is inconsistent.

f. a linear equation with one variable that has infinitely many solu-
tions.

5. Corollary 2.4.1 tells us that a system of linear equations that has more
variables than equations either has no solution or has infinitely many
solutions. (Such a system cannot have a unique solution.) Create your
own specific example of

a. a linear equation with two variables that has no solution.

b. a linear equation with two variables that has infinitely many so-
lutions.
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c. a system of two linear equations with three variables that has no
solution.

d. a system of two linear equations with three variables that has
infinitely many solutions.

6. Find the solution set of the homogeneous system of linear equations
having the given coefficient matrix.

a.

 1 2 3
4 5 6
7 8 9


b.

[
2 −1 7
3 1 3

]

c.

 1 2 1
3 5 3
2 1 1


d.

[
3 9 1 −2
1 3 −2 4

]

e.


1 3 4

−1 −5 −7
2 4 5
3 3 3


7. Find an equation satisfied by g, h, and k such that the given matrix is

the augmented matrix of a consistent linear system 1 −4 7 g
0 3 −5 h

−2 5 −9 k


8. Propane combines with oxygen to form carbon dioxide and water ac-

cording to the chemical equation

x1 C3H8 + x2 O2 −→ x3 CO2 + x4 H2O.

Balancing the number of atoms of carbon (C), hydrogen (H), and oxy-
gen (O) leads to the homogeneous system of equations

3x1 = x3

8x1 = 2x4

2x2 = 2x3 + x4

.
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Show that this system is homogeneous. Find the smallest positive
integers x1, x2, x3, x4 that balance the chemical equation.

9. Boron sulfide and water react to produce boric acid and hydrogen sul-
fide gas according to the chemical equation

x1 B2S3 + x2 H2O −→ x3 H3BO3 + x4 H2S.

Balancing the number of atoms of boron (B), sulfer (S), hydrogen (H)
and oxygen (O) leads to the homogeneous system of equations

2x1 = x3

3x1 = x4

2x2 = 3x3 + 2x4

x2 = 3x3

.

Show that this system is homogeneous. Find the smallest positive
integers x1, x2, x3, x4 that balance the chemical equation.

10. Suppose A is an m × n matrix whose ith column is all zeros. Explain
why the ith column of rref(A) is all zeros.

11. Let

a⃗1 = ⟨1, 0, 1, 0⟩, a⃗2 = ⟨−1, 2, 1, 1⟩, a⃗3 = ⟨0, 0, 2, 2⟩, and a⃗4 = ⟨1, 1, 0,−1⟩.

Show that the vector y⃗ = ⟨2,−1, 3, 3⟩ in R4 is a linear combination
of the vectors a⃗1, a⃗2, a⃗3 and a⃗4, and identify the weights. (Hint: the
equation x1a⃗1 + x2a⃗2 + x3a⃗3 + x4a⃗4 = y⃗ can be translated into a linear
system of equations for the weights x1, . . . , x4.)

12. Determine whether the vector x⃗ = ⟨−1, 3, 1⟩ in R3 is a linear combina-
tion of the vectors u⃗ and v⃗, where

u⃗ = ⟨1, 1,−2⟩, and v⃗ = ⟨3, 2, 2⟩.



Chapter 3

Matrix Algebra

In Chapter 2, we learned that matrices are a useful tool for solving systems
of linear equations. The solution set of any system of linear equations can
be found by performing the row reduction algorithm on its augmented ma-
trix. In the present chapter, we will see that matrices can be treated as
algebraic objects in their own right. When we think of the term “algebra”,
we think of dealing with expressions and equations that probably contain
some “constant” or “given” terms and might also contain some “variable” or
“unknown” terms. We carry out “algebra” on such expressions or equations
by performing a series of manipulations that involve legitimate operations
that have been defined on the set of objects we are considering. The goal is
often to find an unknown (or unknowns) in some problem.

We are already familiar with the operations of addition, subtraction, mul-
tiplication and division that are used in performing algebraic manipulations
in problems involving real numbers. In Chapter 1, we defined operations of
addition, subtraction, and scalar multiplication of vectors in Rn. In order to
include matrices in the mix of objects that we can algebraically manipulate,
we first need to define some operations on matrices. The operations that we
will define for matrices will be

• addition and subtraction of two matrices

• multiplication of a matrix by a scalar

• multiplication of a matrix by a matrix

• transposition of a matrix

85
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• multiplication of a vector by a matrix

• Inversion of a matrix

All of the above operations will be defined in such a way that they mesh
properly with the operations that have already been defined for vectors in
Rn. This will allow us to come up with concise formulations of problems that
involve a combination of matrices, vectors, and scalars, and it will provide
us with the algebraic tools that are needed to study these problems. Indeed,
once we have defined matrix operations, we will see that systems of linear
equations, which were studied in Chapter 2, can be formulated as matrix
equations and analyzed using matrix algebra. But, as we will see as this
linear algebra course unfolds, the usefulness of matrix algebra extends beyond
solving systems of linear equations. In particular, regarding matrices as
algebraic objects will allow us to use matrices to define functions that are
called linear transformations between two Euclidean spaces Rn and Rm. Such
functions are central to the subject of linear algebra.

As a prelude to our study of matrix algebra, we introduce some rele-
vant notation that we will use throughout this chapter and throughout the
remainder of the course.

3.1 Notation: Entries, Row Vectors and Col-

umn Vectors

In Chapter 2, we learned that a generic m × n matrix, A, can be written
using the notation

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , (3.1)

whereby a matrix is named using an upper case letter and the entries of the
matrix are named using the same lower case letter with subscripts. Using
this naming convention, we can use the shorthand notation A = [aij].

We will now introduce an alternative notation for identifying the entries
of a matrix that will facilitate our study of matrix algebra. If A is an m× n
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matrix, then the entry in row i and column j of A will be denoted by A(i,j).
For example, suppose that A is the matrix

A =

 −3 −2 −1 2
−3 −4 5 −3
4 7 3 −5

 .

The entry in row 2 and column 3 of A is 5. We can express this fact either
by writing

a23 = 5 or A(2,3) = 5.

At first, it may seem that the introduction of this new naming convention
is unnecessary. However, the reason that we introduce it is that once we
get down to the work of this chapter we will be wanting to refer to specific
entries, not just of a single matrix, but of algebraic combinations of matrices
such as products of matrices (to be defined in Section 3.3). Our newly intro-
duced convention for identifying matrix entries will be more efficient in some
situations. We will also still continue to use the original naming convention
with lower case letters and subscripts when appropriate.

To carry out our work, we also need to define what is meant by the row
vectors and column vectors of a matrix. For the generic m × n matrix, A,
shown in (3.1), we define the row vectors of A to be the vectors

Row1(A) = ⟨a11, a12, . . . , a1n⟩
Row2(A) = ⟨a21, a22, . . . , a2n⟩

...

Rowm(A) = ⟨am1, am2, . . . , amn⟩

and we define the column vectors of A to be the vectors

Col1(A) = ⟨a11, a21, . . . , am1⟩
Col2(A) = ⟨a12, a22, . . . , am2⟩

...

Coln(A) = ⟨a1n, a2n, . . . , amn⟩ .

Note that row vectors of A are vectors in Rn and the column vectors of A
are vectors in Rm.



88 CHAPTER 3. MATRIX ALGEBRA

As an example, suppose that A is the 3× 4 matrix

A =

 −1 −9 8 4
−5 10 −2 5
7 7 −7 4

 .

The row vectors of A (which are vectors in R4) are

Row1(A) = ⟨−1,−9, 8, 4⟩
Row2(A) = ⟨−5, 10,−2, 5⟩
Row3(A) = ⟨7, 7,−7, 4⟩

and the column vectors of A (which are vectors in R3) are

Col2(A) = ⟨−1,−5, 7⟩
Col2(A) = ⟨−9, 10, 7⟩
Col3(A) = ⟨8,−2,−7⟩
Col4(A) = ⟨4, 5, 4⟩

Exercise 3.1.1. For the 5× 4 matrix

A =


1 −2 −2 1
−6 −5 7 3
−4 −6 6 7
3 −5 −2 −6
−1 0 −5 −5

 ,

express the entry in row 3 and column 3 of A using two different notations (a
notation involving the lower case a and a notation involving the upper case
A). Do the same for the entry in row 2 and column 4 of A.

Exercise 3.1.2. 1. Write down the row vectors and column vectors of the
matrix

A =


8 4
−5 −5
3 −5
8 5

 .

Are the row vectors of A in R4 or in R2? In what vector space do the
column vectors of A live?
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2. Write down the row vectors and column vectors of the matrix

B =

 −5 −2 1
−8 −2 −6
5 5 3

 .

Where do the row vectors of B live? The column vectors?

3.2 Addition, Subtraction, and Scalar Multi-

plication of Matrices

The operations of addition, subtraction, and scalar multiplication of matrices
are defined in a way that is analogous to how these operations were defined
in Chapter 1 for vectors in Rn.

Specifically, if A = [aij] and B = [bij] are matrices of the same size, then
we define A+B to be the matrix

A+B = [aij + bij] .

Likewise, we define

A−B = [aij − bij] .

If A = [aij] is a matrix and c is a scalar, then we define

cA = [caij] .

As examples of how we add and subtract matrices and multiply a matrix
by a scalar, suppose that

A =

 −1 4 −4 1
−3 1 1 −2
0 3 0 −4

 and B =

 2 4 4 −3
−4 2 −4 1
−4 −1 −1 3


and that c = 3. Then

A+B =

 −1 + 2 4 + 4 −4 + 4 1 + (−3)
−3 + (−4) 1 + 2 1 + (−4) −2 + 1
0 + (−4) 3 + (−1) 0 + (−1) −4 + 3

 =

 1 8 0 −2
−7 3 −3 −1
−4 2 −1 −1


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and

A−B =

 −1− 2 4− 4 −4− 4 1− (−3)
−3− (−4) 1− 2 1− (−4) −2− 1
0− (−4) 3− (−1) 0− (−1) −4− 3

 =

 −3 0 −8 4
1 −1 5 −3
4 4 1 −7


and

cA = 3A =

 3 (−1) 3 (4) 3 (−4) 3 (1)
3 (−3) 3 (1) 3 (1) 3 (−2)
3 (0) 3 (3) 3 (0) 3 (−4)

 =

 −3 12 −12 3
−9 3 3 −6
0 9 0 −12

 .

Exercise 3.2.1. Suppose that A and B are the matrices

A =

 −2 3 −3
3 5 3
3 5 −5

 and B =

 2 0 1
1 1 −3
3 −5 5


and suppose that c = −2 and d = 2. Perform the following computations.

1. A+B

2. A−B

3. B − A

4. cA

5. cA+ dB

Exercise 3.2.2. Suppose that A and B are the matrices

A =


0 0 2
3 −4 2
−3 1 1
2 0 0

 and B =

 −4 0 −4 2
−3 1 −4 −4
−1 −4 3 −4


and suppose that c = 3.

If possible, perform the following computations. If the computation you
are being asked to perform is not possible, then explain why it is not possible.

1. A+B

2. A−B

3. cA

4. cB
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3.2.1 Distributive Property

You are probably familiar with the distributive property of multiplication
over addition for real numbers. This is the property that tells us that, when
working with real numbers, multiplication “distributes” over addition. What
this means is that if a, b, and c are any real numbers then c (a+ b) = ca+ cb.
For example 3 (4 + 7) = 3 (11) = 33 and 3 (4) + 3 (7) = 12 + 21 = 33, so
3 (4 + 7) = 3 (4) + 3 (7).

The distributive property also holds for distribution of scalar multiplica-
tion over matrix addition (or subtraction). If A and B are any two matrices
of the same size and c is a scalar, then

c (A+B) = cA+ cB.

The reason that the distributive property holds is that if A = [aij] and
B = [bij], then

c (A+B) = c ([aij] + [bij])

= c [aij + bij]

= [c (aij + bij)]

= [caij + cbij]

= [caij] + [cbij]

= c [aij] + c [bij]

= cA+ cB.

As an illustration of the distributive property, suppose that c = 3 and

A =

[
4 8
−6 1

]
and B =

[
−1 4
1 −3

]
.

Then

c (A+B) = 3

([
4 8
−6 1

]
+

[
−1 4
1 −3

])
= 3

[
3 12
−5 −2

]
=

[
9 36

−15 −6

]
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and

cA+ cB = 3

[
4 8
−6 1

]
+ 3

[
−1 4
1 −3

]
=

[
12 24
−18 3

]
+

[
−3 12
3 −9

]
=

[
9 36

−15 −6

]
,

and we see that c (A+B) = cA+ cB.

Exercise 3.2.3. For the matrices A and B and scalars c given below, verify
by computation that c (A+B) = cA+ cB.

1. c = −5 and

A =

[
1 0
−2 −3

]
and B =

[
1 1
−3 −3

]
2. c = 3 and

A =

[
−2 3 −1
−1 −3 2

]
and B =

[
3 −1 −2
1 −3 2

]
.

3.3 Multiplication of Two Matrices

We are going to define a way to multiply two matrices, A and B, to obtain
another matrix. We will call this the matrix product AB. What might
perhaps be your first guess on how we will make this definition (which would
be the simplest way to make the definition) is to say that we can only form
the product AB when A = [aij] and B = [bij] have the same size and we
simply define AB = [aijbij]. Although this would indeed be simple, it would
not be of any use in developing the subject of linear algebra. Instead, we are
going to define the product AB only when A is an m× p matrix and B is a
p × n matrix, meaning that the number of columns of A is the same as the
number of rows of B. We will define AB in such a way that AB is an m× n
matrix.

For example, if A is a 2× 4 matrix and B is a 3× 2 matrix, then AB will
not be defined because A has 4 columns and B has 3 rows, so the number
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of columns of A does not match the number of rows of B. However BA will
be defined because B has 2 columns and A has 2 rows, so the number of
columns of B does match the number of rows of A. In this case, since B is
a 3× 2 matrix and A is a 2× 4, then BA will be a 3× 4 matrix.

Before defining the matrix product, we need to recall what is meant by
the dot product of two vectors. In Section 1.3, we defined the dot product
of two vectors x⃗ = ⟨x1, x2, . . . , xn⟩ and y⃗ = ⟨y1, y2, . . . , yn⟩ in Rn to be

x⃗ · y⃗ = x1y1 + x2y2 + · · ·+ xnyn.

For example if we have x⃗ = ⟨4, 0, 1⟩ and y⃗ = ⟨−1,−5,−7⟩ (both of which are
vectors in R3), then

x⃗ · y⃗ = (4) (−1) + (0) (−5) + (1) (−7) = −11.

And now for the definition of the matrix product: If A is an m×p matrix
and B is a p× n matrix, then we define the matrix product AB to be the
m× n matrix

AB = [Rowi(A) · Colj(B)] . (3.2)

Thus AB is the m× n matrix whose entry in row i and column j is

(AB)(i,j) = Rowi(A) · Colj(B)

Written more explicitly,

AB =


Row1 (A) · Col1(B) Row1 (A) · Col2(B) · · · Row1 (A) · Coln(B)
Row2 (A) · Col1(B) Row2 (A) · Col2(B) · · · Row2 (A) · Coln(B)

...
...

. . .
...

Rowm (A) · Col1(B) Rowm (A) · Col2(B) · · · Rowm (A) · Coln(B)

 .

For example, suppose that A and B are the matrices

A =


−4 −3 −2
1 −4 −5
4 −4 3
6 2 −6

 and B =

 4 −1
0 5
1 5

 .

Notice that A is a 4×3 matrix and B is a 3×2 matrix. Since the number
of columns of A matches the number of rows of B (3 = 3), then AB is defined
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and it is a 4× 2 matrix. To find the entries of AB, we compute

(AB)(1,1) = Row1(A) · Col1(B) = ⟨−4,−3,−2⟩ · ⟨4, 0, 1⟩ = −18

(AB)(1,2) = Row1(A) · Col2(B) = ⟨−4,−3,−2⟩ · ⟨−1, 5, 5⟩ = −21

(AB)(2,1) = Row2(A) · Col1(B) = ⟨1,−4,−5⟩ · ⟨4, 0, 1⟩ = −1

(AB)(2,2) = Row2(A) · Col2(B) = ⟨1,−4,−5⟩ · ⟨−1, 5, 5⟩ = −46

(AB)(3,1) = Row3(A) · Col1(B) = ⟨4,−4, 3⟩ · ⟨4, 0, 1⟩ = 19

(AB)(3,2) = Row3(A) · Col2(B) = ⟨4,−4, 3⟩ · ⟨−1, 5, 5⟩ = −9

(AB)(4,1) = Row4(A) · Col1(B) = ⟨6, 2,−6⟩ · ⟨4, 0, 1⟩ = 18

(AB)(4,2) = Row4(A) · Col2(B) = ⟨6, 2,−6⟩ · ⟨−1, 5, 5⟩ = −26.

We conclude that

AB =


−18 −21
−1 −46
19 −9
18 −26

 .

Notice that it is not possible to compute the matrix product BA for the
above two matrices. The reason is that B is a 3× 2 matrix and A is a 4× 3
matrix, and thus the number of columns of B (which is 2) does not match
the number of rows of A (which is 4). Thus BA is undefined. This example
alerts us to an important issue regarding matrix multiplication, which is that
matrix multiplication is not commutative. When we multiply two real
numbers, say 2 and 5, the order in which we multiply them does not matter:
(2) (5) = 10 and (5) (2) = 10. We call this the commutative property of
multiplication of real numbers. However, the order in which we multiply
matrices does matter. For the matrices A and B in the above example, we
certainly cannot say that AB = BA because BA is not even defined. In
fact, even if AB and BA are both defined, then it is typically still not true
that AB = BA. It is possible that AB and BA are both defined but are of
different sizes. For example, if A has size 3 × 4 and B has size 4 × 3, then
AB and BA are both defined, but AB has size 3× 3 and BA has size 4× 4,
so obviously AB ̸= BA. In order for AB and BA to both be defined and
have the same size, A and B must both be square matrices of the same size.
A square matrix is a matrix that has the same number of rows as columns.
So for example, if A has size 3 × 3 and B has size 3 × 3, then A and B are
both square matrices and they have the same size. AB and BA are both
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defined and each of them has size 3× 3. However, even in this case, it is still
usually not true that AB = BA. For example, for the pair of 2× 2 matrices

A =

[
−4 1
−4 −1

]
and B =

[
−1 3
2 0

]
we have

AB =

[
6 −12
2 −12

]
and BA =

[
−8 −4
−8 2

]
and thus AB ̸= BA.

Although it is usually not true that AB = BA, we should point out that
it is true for some matrices A and B. For example, the matrices

A =

[
3 0
1 3

]
and B =

[
5 0
−2 5

]
,

satisfy AB = BA (as the reader should verify).

Exercise 3.3.1. For each of the following pairs of matrices, A and B, com-
pute both AB and BA (assuming they are defined). Then state whether
AB = BA or AB ̸= BA.

1.

A =

[
−1 −2
0 1

]
and B =

[
−1 1
−2 1

]
.

2.

A =

 −1 2 −2
1 0 −2
2 −2 −1

 and B =

 −1 0 2
−1 1 −1
2 1 −1

 .

3.

A =

[
2 5
0 7

]
and B =

[
2 −4 −7
−7 0 −1

]
4.

A =

[
2 −1 1
0 −1 1

]
and B =

 0 0
0 −3
−1 2


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5.

A =

 1
0
1

 and B =
[
−2 3 −1

]
6.

A =

[
2 3
−4 2

]
and B =

[
0 3
−4 0

]
7.

A =

[
1 3
5 −4

]
and B =

[
1 0
0 1

]
8.

A =

[
1 2
4 1

]
and B =

[
−1 2
4 −1

]
9.

A =

 1 0 0
0 −12 0
0 0 4

 and B =

 5 0 0
0 6 0
0 0 2


10.

A =

[
1 1
2 2

]
and B =

[
2 5
−2 −5

]
.

Although matrix multiplication is not commutative, there is a frequently
used property of matrix multiplication that tells us that a scalar that ap-
pears in a product involving two matrices and that scalar can “commute”.
Specifically, if A and B are two matrices such that the matrix product AB is
defined (i.e., the number of columns of A is the same as the number of rows
of B) and c is a scalar, then

c (AB) = (cA)B = A (cB) . (3.3)

Example 3.3.1. We will illustrate the property (3.3) for the scalar c = 3
and the matrices

A =

[
−1 2
0 1

]
and B =

[
−1 1
4 1

]
.
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First we compute

3 (AB) = 3

([
−1 2
0 1

] [
−1 1
4 1

])
= 3

[
9 1
4 1

]
=

[
27 3
12 3

]
.

Next we compute

(3A)B =

(
3

[
−1 2
0 1

])[
−1 1
4 1

]
=

[
−3 6
0 3

] [
−1 1
4 1

]
=

[
27 3
12 3

]
.

Finally we compute

A (3B) =

[
−1 2
0 1

](
3

[
−1 1
4 1

])
=

[
−1 2
0 1

] [
−3 3
12 3

]
=

[
27 3
12 3

]
.

As can be seen,

3 (AB) = (3A)B = A (3B) =

[
27 3
12 3

]
.

Exercise 3.3.2. Verify, by computation, that property (3.3) holds for the
following scalars and pairs of matrices.

1. c = 4 and

A =

[
−1 1
0 −2

]
and B =

[
−3 1
1 −3

]
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2. c = −2 and

A =

[
−3 −2
3 −1

]
and B =

[
−1 −3 2
3 −1 −2

]
3. c = 2 and

A =

 2 −2 3
4 −1 −1
1 1 1

 and B =

 −2
0
3


As a word of caution, remember that matrix multiplication is not commu-

tative! This means that, in applying the property (3.3), we may not switch
the order of the matrices A and B. For example, it is usually not true that
(cA)B = (cB)A.

3.3.1 Distributive Property

Just as there is a distributive property of scalar multiplication over matrix
addition, there is also a distributive property of matrix multiplication over
matrix addition. If B and C are two matrices of the same size, and A is a
matrix such that the number of columns of A is the same as the number of
rows of B (and hence the same as the number of rows of C), then

A (B + C) = AB + AC. (3.4)

To see why this distributive property holds, we need to use our definition
of matrix multiplication (3.2) along with the fact that the dot product is dis-
tributive over vector addition. The distributive property of the dot product
over vector addition says that if x⃗, y⃗, and z⃗ are any three vectors in Rn, then

x⃗ · (y⃗ + z⃗) = x⃗ · y⃗ + x⃗ · z⃗.

You were asked to verify this distributive property in Exercise 1.1.17
Now, to verify the distributive property of matrix multiplication over

matrix addition, suppose that B and C are two matrices of the same size,
and that A is a matrix such that the number of columns of A is the same
as the number of rows of B (and hence the same as the number of rows of
C). This implies that A (B + C) and AB + AC are both defined and both
have the same size. To see why they are actually the same matrix, let us
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pick a specific (but arbitrary) row and column of A (B + C) and show that
the corresponding entry of AB+AC is the same. By the definition of matrix
multiplication (3.2), the entry in row i and column j of A (B + C) is

Rowi (A) · Colj (B + C) = Rowi (A) · (Colj (B) + Colj (C)) .

Using the distributive property of the dot product, we see that

Rowi (A) · (Colj (B) + Colj (C)) = Rowi (A) ·Colj (B) +Rowi (A) ·Colj (C) .

However Rowi (A) · Colj (B) is the entry in row i and column j of AB and
Rowi (A) · Colj (C) is the entry in row i and column j of AC. This implies
that Rowi (A) ·Colj (B)+Rowi (A) ·Colj (C) is the entry in row i and column
j of AB + AC.

Exercise 3.3.3. For the matrices A, B and C given below, verify by com-
putation that A (B + C) = AB + AC.

1.

A =

[
3 0
1 3

]
, B =

[
1 5
2 0

]
, C =

[
−1 1
0 −2

]
.

2.

A =

[
−3 1
3 −3

]
, B =

[
−3 −2 3
−1 −1 −3

]
, C =

[
0 3 −1
−2 1 −3

]

Exercise 3.3.4. Suppose A and B are m×p matrices and C is a p×n matrix.
Use the definition of matrix multiplication along with the distributive property
(x⃗+ y⃗) · z⃗ = x⃗ · z⃗ + y⃗ · z⃗ to verify that

(A+B)C = AC +BC.

Exercise 3.3.5. For the matrices A, B and C given below, verify by com-
putation that (A+B)C = AC +BC.

A =

[
3 0
1 3

]
, B =

[
1 5
2 0

]
, C =

[
−1 1
0 −2

]
.
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3.4 The Transpose of a Matrix

A matrix that is closely related to any given m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


is the transpose of A, which is the matrix

AT =


a11 a21

... am1

a12 a22
... am2

· · · · · · . . . · · ·
a1n a2n

... amn

 .

Thus AT (which is pronounced as “A transpose”) is the matrix such that
Coli

(
AT
)
= Rowi (A) for all i = 1, 2, . . . ,m. Another way to look at it is

that Rowi

(
AT
)
= Coli (A) for all i = 1, 2, . . . , n. Yet another way to look at

it as that
[
AT
]
(i,j)

= [A](j,i).

As an example, suppose that A is the matrix

A =

[
−1 −1 0
2 −1 1

]
.

Then

AT =

 −1 2
−1 −1
0 1

 .

Notice that, in the above example, we have

(
AT
)T

=

[
−1 −1 0
2 −1 1

]
= A.

This is a general property of transposes. If A is any matrix, then(
AT
)T

= A.
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It is also true (and not difficult to prove) that if A is any matrix and c is
any scalar, then

(cA)T = c
(
AT
)
.

Another useful property of transposes is that if A and B are matrices of
appropriate sizes such that the matrix product AB is defined, then

(AB)T = BTAT . (3.5)

In words, (3.5) says that the transpose of the product of two matrices is
equal to the product of the transposes in the reverse order. It is important
that we pay attention to the in the reverse order part of this statement
because matrix multiplication is not commutative. It is not generally true
that (AB)T = ATBT .

To see why property (3.5) holds, first note that if A is an m × p matrix
and B is a p × n matrix, then AB is an m × n matrix, which means that
(AB)T is an n×m matrix. Also, BT is an n× p matrix and AT is a p×m
matrix, which means that BTAT is an n×m matrix. Therefore (AB)T and
BTAT have the same size. To see why these two matrices are equal to each
other, note that the entry in row i and column j of (AB)T is[

(AB)T
]
(i,j)

= [AB](j,i) = Rowj (A) · Coli (B)

and that the entry in row i and column j of BTAT is[
BTAT

]
(i,j)

= Rowi

(
BT
)
· Colj

(
AT
)
= Coli (B) · Rowj (A)

and these are the same (because the dot product is commutative).
Let us use the matrices

A =

[
−1 −1
2 −1

]
and B =

[
2 −1 0
1 0 1

]
to illustrate property (3.5). We see that

AB =

[
−1 −1
2 −1

] [
2 −1 0
1 0 1

]
=

[
−3 1 −1
3 −2 −1

]
and thus

(AB)T =

 −3 3
1 −2
−1 −1

 .
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Now observe that

BT =

 2 1
−1 0
0 1

 and AT =

[
−1 2
−1 −1

]
and thus

BTAT =

 2 1
−1 0
0 1

[ −1 2
−1 −1

]
=

 −3 3
1 −2
−1 −1

 .

We see that (AB)T = BTAT .

Exercise 3.4.1. Suppose that matrix A has size 5×7 and that matrix B has
size 7× 3.

1. What is the size of AT?

2. What is the size of BT?

3. What is the size of (AB)T?

Exercise 3.4.2. For each of the matrices, A, given below, find AT . Then

find
(
AT
)T

and observe that it is equal to A.

1.

A =


−2 −2 0 0
0 −3 −1 2
1 0 1 −2
3 −1 −1 −1


2.

A =

[
0 −1 6 1
−3 1 0 2

]
Exercise 3.4.3. For each of the matrices, A, and scalars, c, given below,
verify that (cA)T = c

(
AT
)
.

1.

A =

 −4 0
1 2
−3 1

 and c = 3
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2.

A =

[
4 2
−1 0

]
and c = −5

Exercise 3.4.4. For each pair of matrices, A and B, given below, verify that
(AB)T = BTAT .

1.

A =

[
2 0
2 1

]
and B =

[
1 −3
4 1

]
2.

A =

 0 1 2
−2 0 0
2 0 2

 and B =

 5 −2
1 1
−1 0

 .

Exercise 3.4.5. Only the first row of the matrix

A =

 1 2 −6
 ,

is given. Is it possible to fill in the remaining two rows of A in such a way
that the statement AT = A is true? If so, then do it. If not, then explain
why not.

Only three entries of the matrix

A =

 1 2
−4


are given. Is it possible to fill in the remaining entries of A in such a way
that the statement AT = A is true? If so, then do it. If not, then explain
why not.

3.5 Multiplication of a Vector by a Matrix

Next on our agenda is to define multiplication of a vector x⃗ by a matrix A.
This matrix–vector product will be denoted by Ax⃗ and will be a vector. The
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definition will be made so as to be compatible with our definition of matrix
multiplication (3.2).

Suppose that A is a matrix of of size m× n and that x⃗ = ⟨x1, x2, . . . , xn⟩
is a vector in Rn. We define the matrix–vector product Ax⃗ to be the
vector

Ax⃗ = ⟨Row1 (A) · x⃗,Row2 (A) · x⃗, . . . ,Rowm (A) · x⃗⟩ . (3.6)

The reason that this definition is compatible with the definition of matrix
multiplication (3.2) is that if we form the matrix

X =


x1

x2
...
xn


that consists of a single column whose entries are the entries of x⃗, then by
definition (3.2) we obtain

AX =


Row1 (A) · Col1 (X)
Row2 (A) · Col1 (X)

...
Rowm (A) · Col1 (X)

 ,

but since Col1 (X) = x⃗, then we have

AX =


Row1 (A) · x⃗
Row2 (A) · x⃗

...
Rowm (A) · x⃗

 .

Notice that if A is an m × n matrix and x⃗ is a vector in Rn, then Ax⃗ is a
vector in Rm.

Example 3.5.1. Let us compute Ax⃗ for the 3× 4 matrix

A =

 3 0 1 3
1 −1 2 0
0 2 0 −1


and x⃗ = ⟨1,−3, 0, 2⟩ in R4.
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Using the definition (3.6), we obtain

Row1 (A) · x⃗ = ⟨3, 0, 1, 3⟩ · ⟨1,−3, 0, 2⟩ = 9

Row2 (A) · x⃗ = ⟨1,−1, 2, 0⟩ · ⟨1,−3, 0, 2⟩ = 4

Row3 (A) · x⃗ = ⟨0, 2, 0,−1⟩ · ⟨1,−3, 0, 2⟩ = −8

and thus Ax⃗ = ⟨9, 4,−8⟩
There is an alternative way to view the matrix product Ax⃗ for a given

m × n matrix A = [aij] and a given vector x⃗ = ⟨x1, x2, . . . , xn⟩ in Rn. This
alternative view is that

Ax⃗ = x1Col1 (A) + x2Col2 (A) + · · ·+ xnColn (A) . (3.7)

To see why (3.6) and (3.7) are equivalent, note that the ith component of
the vector x1Col1 (A) is x1ai1, the ith component of the vector x2Col2 (A)
is x2ai2, etc. Thus the ith component of the vector Ax⃗ as defined by (3.7) is

x1ai1 + x2ai2 + · · ·+ xnain.

On the other hand, if we use (3.6) to compute Ax⃗, then the ith component
of Ax⃗ is

Rowi (A) · x⃗ = ai1x1 + ai2x2 + · · ·+ ainxn

which is the same thing we get when we use (3.7) to compute Ax⃗.
In writing Ax⃗ in the form (3.7), we are expressing Ax⃗ as a linear com-

bination of the column vectors of A using the entries of x⃗ as weights. (The
reader may want to refer back to Definition 1.3.1 to review the concept of
linear combinations of vectors).

Example 3.5.2. In Example 3.5.1, we computed Ax⃗ for the matrix

A =

 3 0 1 3
1 −1 2 0
0 2 0 −1


and the vector x⃗ = ⟨1,−3, 0, 2⟩. We did that computation using (3.6), which
involves computing dot products of each of the row vectors of A with x⃗. Let
us now see how the computation works if we instead use (3.7). We have

Ax⃗ = x1Col1 (A) + x2Col2 (A) + x3Col3 (A) + x4Col4 (A)

= (1) ⟨3, 1, 0⟩+ (−3) ⟨0,−1, 2⟩+ (0) ⟨1, 2, 0⟩+ (2) ⟨3, 0,−1⟩
= ⟨3, 1, 0⟩+ ⟨0, 3,−6⟩+ ⟨0, 0, 0⟩+ ⟨6, 0,−2⟩
= ⟨9, 4,−8⟩ .
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It is interesting to observe that one of the two ways to compute Ax⃗
involves the row vectors of A and the other way to compute Ax⃗ involves the
column vectors of A. It is worthwhile to understand both approaches, so we
now provide some exercises that will give you practice.

Exercise 3.5.1. For each of the matrices, A, and vectors, x⃗, given in 1–6
below, compute Ax⃗ in two different ways: a) by using (3.6) and b) by using
(3.7).

1.

A =

[
−1 −2
0 1

]
, x⃗ = ⟨3, 5⟩

2.

A =

 0 1 1
1 0 0
0 −1 −1

 , x⃗ = ⟨5,−1, 0⟩

3.

A =

 −2 2 5 −1
4 0 2 −1
1 −1 2 1

 , x⃗ = ⟨2,−3,−3, 5⟩

4.

A =


−2 1
−3 2
3 −2
−2 0

 , x⃗ = ⟨−4,−2⟩

5.

A =

 3 0 1
3 1 −1
2 0 −1

 , x⃗ = ⟨x1, x2.x3⟩

6.

A =

[
a11 a12 a13 a14
a21 a22 a23 a24

]
, x⃗ = ⟨x1, x2, x3, x4⟩

7. Write down the matrix A and the vector x⃗ such that Ax⃗ =

⟨⟨6,−3,−2⟩ · ⟨1,−3, 1⟩ , ⟨5,−2, 2⟩ · ⟨1,−3, 1⟩ , ⟨−3,−3,−1⟩ · ⟨1,−3, 1⟩⟩ .
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8. Write down the matrix A and the vector x⃗ such that

Ax⃗ = (7) ⟨0,−1,−6⟩+ (−7) ⟨−4,−5,−1⟩+ (4) ⟨3,−7, 4⟩ .

9. For the matrix A and the vector x⃗ that you found in problem 7, write
Ax⃗ as a linear combination of the column vectors of A.

10. For the matrix A and the vector x⃗ that you found in problem 8, write
Ax⃗ using dot products of the row vectors of A with x⃗.

Let us now look at how multiplication of a vector by a matrix is related to
the multiplication of two matrices. Recall that we have defined the product
(3.2) of the m× p matrix A and the p× n matrix B to be the m× n matrix

AB =


Row1 (A) · Col1 (B) Row1 (A) · Col2 (B) · · · Row1 (A) · Coln (B)
Row2 (A) · Col1 (B) Row2 (A) · Col2 (B) · · · Row2 (A) · Coln (B)

...
...

. . .
...

Rowm (A) · Col1 (B) Rowm (A) · Col2 (B) · · · Rowm (A) · Coln (B)

 .

The observation that we wish to make is that for any given column of
AB (say the ith column) we have

Coli (AB) = AColi (B) . (3.8)

Thus the ith column vector of the matrix AB is the same as the matrix A
multiplied by the vector Coli (B).

Example 3.5.3. We will illustrate the property (3.8) for the matrices

A =

[
1 −4
1 4

]
and B =

[
−4 2
−2 −4

]
.

First we compute

Row1 (A) · Col1 (B) = ⟨1,−4⟩ · ⟨−4,−2⟩ = 4

Row2 (A) · Col1 (B) = ⟨1, 4⟩ · ⟨−4,−2⟩ = −12

Row1 (A) · Col2 (B) = ⟨1,−4⟩ · ⟨2,−4⟩ = 18

Row2 (A) · Col2 (B) = ⟨1, 4⟩ · ⟨2,−4⟩ = −14
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and then observe that

ACol1 (B) = ⟨Row1 (A) · Col1 (B) ,Row2 (A) · Col1 (B)⟩ = ⟨4,−12⟩

and

ACol2 (B) = ⟨Row1 (A) · Col2 (B) ,Row2 (A) · Col2 (B)⟩ = ⟨18,−14⟩ .

Also, by direct computation

AB =

[
4 18

−12 −14

]
.

We observe that

Col1 (AB) = ACol1 (B) = ⟨4,−12⟩

and
Col2 (AB) = ACol2 (B) = ⟨18,−14⟩ .

Exercise 3.5.2. Let

A =


−2 3 −1 −1
0 −1 −3 1
1 −3 2 3
3 3 1 3


and

B =


−2 1 2 0 1 −3
0 1 1 0 3 3
3 2 3 −2 0 0
−1 −1 2 −2 2 −1

 .

Suppose that we are only interested in computing Col2 (AB). Since A and
B are rather large matrices, it would be a lot of work to compute Col2 (AB)
by actually first computing AB itself and then looking to see what the second
column of AB is. However, it is not as much work if we use the fact (3.8).
Use this fact to compute Col2 (AB).

Exercise 3.5.3. Suppose that A is a 4 × 5 matrix and that B is a 5 × 3
matrix and that the second column of B consists entirely of entries of 0.
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1. What size is the matrix AB?

2. What can you say about the second column of AB?

We will conclude this section by looking at how multiplication of a vector
by a matrix is related to multiplication of a vector by the transpose of that
matrix. Suppose that A is an m× n matrix and recall from Section 3.4 that
AT is the n×m matrix for which

Rowi

(
AT
)
= Coli (A)

Coli
(
AT
)
= Rowi (A)(

AT
)
(i,j)

= A(j,i)

for all relevant indices i and j.
By definition (3.6), we see that if x⃗ is a vector in Rm, then

AT x⃗ =
〈
Row1

(
AT
)
· x⃗,Row2

(
AT
)
· x⃗, . . . ,Rown (A) · x⃗

〉
.

Since Rowi

(
AT
)
= Coli (A) for all i = 1, 2, . . . , n, then

AT x⃗ = ⟨Col1 (A) · x⃗,Col2 (A) · x⃗, . . . ,Coln (A) · x⃗⟩ (3.9)

Likewise, by (3.7), we have

AT x⃗ = x1Col1
(
AT
)
+ x2Col2

(
AT
)
+ · · ·+ xm Colm

(
AT
)
.

Since Coli
(
AT
)
= Rowi (A) for all i = 1, 2, . . . ,m then

AT x⃗ = x1Row1 (A) + x2Row2 (A) + · · ·+ xm Rowm (A) (3.10)

Observe that (3.10) expresses AT x⃗ as a linear combination of the row
vectors of A using the entries of x⃗ as weights.

Example 3.5.4. Suppose that A is the matrix

A =

 −1 −2
0 1
−1 1


and that x⃗ = ⟨3, 2, 3⟩. Let us use (3.9) to compute AT x⃗.

We have

Col1 (A) · x⃗ = ⟨−1, 0,−1⟩ · ⟨3, 2, 3⟩ = −6

Col2 (A) · x⃗ = ⟨−2, 1, 1⟩ · ⟨3, 2, 3⟩ = −1

and thus AT x⃗ = ⟨−6,−1⟩.
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Exercise 3.5.4. For each of the matrices, A, and vectors, x⃗, given in 1–6
below, compute AT x⃗ in two different ways: a) by using (3.9) and b) by using
(3.10).

1.

A =

[
−1 −2
0 1

]
, x⃗ = ⟨3, 5⟩

2.

A =

 0 1 1
1 0 0
0 −1 −1

 , x⃗ = ⟨5,−1, 0⟩

3.

A =

 −2 2 5 −1
4 0 2 −1
1 −1 2 1

 , x⃗ = ⟨−3, 3,−3⟩

4.

A =


−2 1
−3 2
3 −2
−2 0

 , x⃗ = ⟨3, 3,−2,−3⟩

5.

A =

 3 0 1
3 1 −1
2 0 −1

 , x⃗ = ⟨x1, x2.x3⟩

6.

A =

[
a11 a12 a13 a14
a21 a22 a23 a24

]
, x⃗ = ⟨x1, x2⟩

7. Write down the matrix A and the vector x⃗ such that

AT x⃗ = ⟨⟨−2,−2⟩ · ⟨1,−1⟩ , ⟨1,−2⟩ · ⟨1,−1⟩ , ⟨−1, 3⟩ · ⟨1,−1⟩⟩ .

8. Write down the matrix A and the vector x⃗ such that

AT x⃗ = (−3) ⟨−4,−1⟩+ (−7) ⟨1, 0⟩+ (2) ⟨2,−2⟩ .
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9. For the matrix A and the vector x⃗ that you found in problem 7, write
AT x⃗ as a linear combination of the row vectors of A.

10. For the matrix A and the vector x⃗ that you found in problem 8, write
AT x⃗ using dot products of the column vectors of A with x⃗.

We have seen that if A is an m× p matrix and B is a p× n matrix then

Coli (AB) = AColi (B) .

An analogous fact is that

Rowi (AB) = BT Rowi (A) . (3.11)

To see why (3.11) is true, observe that for any i = 1, 2, . . . ,m, we have

Rowi (AB) = Coli

(
(AB)T

)
= Coli

(
BTAT

)
= BT Coli

(
AT
)

= BT Rowi (A)

Exercise 3.5.5. Illustrate the property (3.11) for the matrices

A =

[
1 −4
1 4

]
and B =

[
−4 2
−2 −4

]
.

In other words, show by computation that

Row1 (AB) = BT Row1 (A)

and
Row2 (AB) = BT Row2 (A) .

Exercise 3.5.6. Suppose that A is a 12× 23 matrix and that B is a 23× 5
matrix. Suppose, furthermore, that the 4th row of A consists entirely of
entries of 1 and suppose that every entry in B is 1.

1. What size is the matrix AB?

2. Write down the 4th row of AB.
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3.6 The Standard Unit Vectors and Identity

Matrices

Recall that a unit vector is a vector whose magnitude is 1. A very useful set
of unit vectors in Rn is the set of standard unit vectors, which are

e⃗1 = ⟨1, 0, . . . , 0⟩
e⃗2 = ⟨0, 1, . . . , 0⟩
...

e⃗n = ⟨0, 0, . . . , 1⟩ .

For each i, the vector e⃗i has an entry of 1 in the ith position and entries of
0 elsewhere. As a specific example, there are three standard unit vectors in
R3. They are

e⃗1 = ⟨1, 0, 0⟩
e⃗2 = ⟨0, 1, 0⟩
e⃗3 = ⟨0, 0, 1⟩ .

It is easy to compute the dot product of any vector x⃗ = ⟨x1, x2, . . . , xn⟩
in Rn with any one of the standard unit vectors in Rn. The computation is

x⃗ · e⃗i = (x1) (0) + (x2) (0) + · · ·+ (xi) (1) + · · ·+ (xn) (0) = xi.

Thus x⃗ · e⃗i is equal to the ith component of x⃗. As a specific example, if we
take the vector x⃗ = ⟨3, 6,−2⟩ in R3, then

x⃗ · e⃗1 = ⟨3, 6,−2⟩ · ⟨1, 0, 0⟩ = 3

x⃗ · e⃗2 = ⟨3, 6,−2⟩ · ⟨0, 1, 0⟩ = 6

x⃗ · e⃗3 = ⟨3, 6,−2⟩ · ⟨0, 0, 1⟩ = −2.

It is also easy, for any given m × n matrix A and any one of the stan-
dard unit vectors e⃗i in Rn, to compute the matrix–vector product Ae⃗i. The
computation of Ae⃗i using (3.7) is

Ae⃗i = (0)Col1 (A)+(0)Col2 (A)+· · ·+(1)Coli (A)+· · ·+(0)Coln (A) = Coli (A) .

Likewise, if e⃗i is a standard unit vector in Rm, then (3.10) gives

AT e⃗i = (0)Row1 (A)+(0)Row2 (A)+· · ·+(1)Rowi (A)+· · ·+(0)Rowm (A) = Rowi (A)
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The facts

x⃗ · e⃗i = xi (3.12)

Ae⃗i = Coli (A) (3.13)

AT e⃗i = Rowi (A) (3.14)

are useful facts to remember.
The n × n identity matrix is the n × n matrix, denoted by In, whose

column vectors are the standard unit vectors of Rn. Thus

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Notice that Coli (In) = e⃗i for all i and also Rowi (In) = e⃗i for all i.
The most important feature of identity matrices, a feature that we will use

repeatedly throughout our study of linear algebra, is that identity matrices
serve asmultiplicative identity elements for matrix multiplication. What
this means is that if A is any m× n matrix, then

AIn = A

and
ImA = A.

Stated in words, multiplying the m×n matrix A on the right by In gives
A and multiplying A on the left by Im gives A.

To see why AIn = A, observe that for any i (1 ≤ i ≤ n) it follows from
(3.8) and (3.13) that

Coli (AIn) = AColi (In) = Ae⃗i = Coli (A)

which shows that every column of AIn is equal to the corresponding column
of A.

To see why ImA = A, observe that for any i (1 ≤ i ≤ m) it follows from
(3.11) and (3.14) that

Rowi (ImA) = AT Rowi (Im) = AT e⃗i = Rowi (A) .

Thus every row of ImA is equal to the corresponding row of A.
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Exercise 3.6.1. 1. Write down the four standard unit vectors in R4.

2. Let {e⃗1, e⃗2, e⃗3, e⃗4} be the set of standard unit vectors in R4. Let x⃗ =
⟨3,−3,−5, 1⟩. Compute x⃗ · e⃗1, x⃗ · e⃗2, x⃗ · e⃗3, and x⃗ · e⃗4. Write out
the computations in detail. You should observe that x⃗ · e⃗i = xi for all
i = 1, 2, 3, 4.

3. Let {e⃗1, e⃗2, e⃗3} be the set of standard unit vectors in R3 and let A be
the matrix

A =


3 0 1
3 1 −1
2 0 −1
1 0 −2

 .

Compute Ae⃗1, Ae⃗2,and Ae⃗3. Write out the computations in detail. You
should observe that Ae⃗i = Coli (A) for all i = 1, 2, 3.

4. Let {e⃗1, e⃗2, e⃗3, e⃗4} be the set of standard unit vectors in R4 and let A
be the matrix given in problem 3. Compute AT e⃗1, AT e⃗2,A

T e⃗3, and
AT e⃗4. Write out the computations in detail. You should observe that
AT e⃗i = Rowi (A) for all i = 1, 2, 3, 4.

5. Let A be the matrix given in problem 3 and let I3 be the 3× 3 identity
matrix and let I4 be the 4 × 4 identity matrix. Verify by computation
that AI3 = A and I4A = A.

6. Let {e⃗1, e⃗2, e⃗3} be the set of standard unit vectors in R3. Then

e⃗1 · e⃗1 =
e⃗1 · e⃗2 =
e⃗1 · e⃗3 =
e⃗2 · e⃗2 =
e⃗2 · e⃗3 =
e⃗3 · e⃗3 = .

7. Let {e⃗1, e⃗2, . . . , e⃗n} be the set of standard unit vectors in Rn. Then

e⃗i · e⃗i = for all i = 1, 2, . . . , n

and
e⃗i · e⃗j = for all i and j with i ̸= j.
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8. Suppose that A is a matrix of size 3 × 3, B is a matrix of size 3 × 3
and that AB = I3. Then

ACol1 (B) =

ACol2 (B) =

ACol3 (B) = .

Likewise,

BT Row1 (A) =

BT Row2 (A) =

BT Row3 (A) = .

9. Suppose that A is a 3× 3 matrix and suppose that B is a 3× 3 matrix
such that

ACol1 (B) = e⃗1

ACol2 (B) = e⃗2

ACol3 (B) = e⃗3

where e⃗1, e⃗2, and e⃗3 are the standard unit vectors in R3.

Then AB = .

Hint: Use (3.8) to compute Col1 (AB), Col2 (AB), and Col3 (AB).

3.7 The Associative Property of Matrix Mul-

tiplication

Although matrix multiplication is not commutative, an important algebraic
property of matrix multiplication that does hold true is the associative
property. You are familiar with the associative property of multiplication
of real numbers. It says that if a, b, and c are any real numbers, then
(ab) c = a (bc). In other words, it does not matter whether we first compute
ab and then multiply the answer by c or whether we compute bc first and
then multiply the answer by a. We get the same answer either way. As an
example,

(3× 6)× 2 = 18× 2 = 36
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and

3× (6× 2) = 3× 12 = 36.

The associative property of matrix multiplication tells us that if A is an
m× p matrix and B is a p× q matrix and C is q × n matrix, then

(AB)C = A (BC) .

Note that since A has size m× p and B has size p× q, then the product AB
is defined and it has size m×q. Since AB has size m×q and C has size q×n,
then (AB)C is also defined and it has size m×n. Also, since B has size p×q
and C has size q×n, then BC is defined and has size p×n. Since A has size
m × p and BC has size p × n, then A (BC) is defined and has size m × n.
This reasoning tells us that (AB)C and A (BC) are both defined and both
have the same size (m × n). Of course, the reasoning does not tell us that
(AB)C = A (BC). Before we look at a proof of the associative property, let
us look at an example that illustrates the property.

Example 3.7.1. Let A, B and C be the matrices

A =

 −1 −2
0 1
−1 1

 , B =

[
−2 1
−1 2

]
, C =

[
−2 1 0 −2
2 −2 −1 −1

]
.

We will verify by computation that (AB)C = A (BC). First we compute

AB =

 −1 −2
0 1
−1 1

[ −2 1
−1 2

]
=

 4 −5
−1 2
1 1


and then compute

(AB)C =

 4 −5
−1 2
1 1

[ −2 1 0 −2
2 −2 −1 −1

]
=

 −18 14 5 −3
6 −5 −2 0
0 −1 −1 −3

 .

Now we compute

BC =

[
−2 1
−1 2

] [
−2 1 0 −2
2 −2 −1 −1

]
=

[
6 −4 −1 3
6 −5 −2 0

]
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and

A (BC) =

 −1 −2
0 1
−1 1

[ 6 −4 −1 3
6 −5 −2 0

]
=

 −18 14 5 −3
6 −5 −2 0
0 −1 −1 −3

 .

We observe that (AB)C = A (BC).

Exercise 3.7.1. For each of the following sets of three matrices, verify by
computation that (AB)C = A (BC).

1.

A =

[
3 −1
−1 −3

]
, B =

[
2 3
−1 −2

]
, C =

[
1 −3
2 3

]

2.

A =

[
−2 −2
0 0

]
, B =

[
0 −3 −1
2 1 0

]
, C =

 1 −2 3
−1 −1 −1
0 −1 −3



Now let us look at a general proof of the associative property of matrix
multiplication:

Suppose that A is a matrix of size m× p, B is a matrix of size p× q, and
C is a matrix of size q×n. We will prove that (AB)C = A (BC) by showing
that the corresponding columns of each of the matrices (AB)C and A (BC)
are equal to each other. Each of these matrices has n columns, so we need
to show that Coli ((AB)C) = Coli (A (BC)) for all i between 1 and n. If we
choose any i between 1 and n, then we know from (3.8) that

Coli ((AB)C) = (AB) Coli (C)

and

Coli (A (BC)) = AColi (BC) .
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We now observe that

Coli ((AB)C) = (AB) Coli (C)

= c1i Col1 (AB) + c2i Col2 (AB) + · · ·+ cqiColq (AB)

= c1i (ACol1 (B)) + c2i (ACol2 (B)) + · · ·+ cqi (AColq (B))

= A (c1i Col1 (B)) + A (c2i Col2 (B)) + · · ·+ A (cqiColq (B))

= A (c1i Col1 (B) + c2i Col2 (B) + · · ·+ cqiColq (B))

= A (B Coli (C))

= AColi (BC)

= Coli (A (BC)) .

Notice that the proof of the associative law given above required us to
use many different things that we have studied so far in this chapter. If you
read the proof carefully, you will see that the proof required us to use all of
the properties (3.8), (3.7), (3.3), and (3.4).

An important observation that we would like to make at this point is
that the associative property also holds when we are dealing with a product
of two matrices and a vector (rather than three matrices). This is because
we have defined multiplication of a vector by a matrix in such a way that it
is compatible with multiplication of two matrices. If A is a matrix of size
m× p, B is a matrix of size p× n and x⃗ is a vector in Rn, then

(AB) x⃗ = A (Bx⃗) .

This version of the associative property will be seen to be useful in our study
of linear transformations in Chapter 5.

3.8 Matrix Equations

Thus far we in this chapter, we have studied the operations of addition and
subtraction of two matrices, multiplication of a matrix by a scalar, multi-
plication of two matrices, transposition of a matrix, and multiplication of a
vector by a matrix. Another important operation that we want to study is the
operation of inversion of a matrix. In order to do this, we first need to study
algebraic equations that involve unknown vectors or unknown matrices.

Specifically, for a given m× n matrix A, we will study the equation

Ax⃗ = y⃗ (3.15)
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where y⃗ is a vector and x⃗ is regarded as the “unknown” vector, and we will
also study the equation

AX = Y (3.16)

where Y is a matrix and X is regarded as the “unknown” matrix.

3.8.1 The Matrix–Vector Equation Ax⃗ = y⃗

Suppose that A = [aij] is a givenm×nmatrix and consider the matrix–vector
equation

Ax⃗ = y⃗

where y⃗ = ⟨y1, y2, . . . , ym⟩ is a vector in Rm. Any vector x⃗ = ⟨x1, x2, . . . , xn⟩
in Rn that satisfies this equation is called a solution of the equation and
the set of all vectors x⃗ in Rn that satisfy the equation is called the solution
set of the equation. A piece of good news is that how to solve the equation
Ax⃗ = y⃗ is actually a problem we have already studied in Chapter 2! To see
why, note that Ax⃗ = y⃗, when written out in detail using (3.6), is

⟨Row1 (A) · x⃗, Row2 (A) · x⃗ . . . ,Rowm (A) · x⃗⟩ = ⟨y1, y2, . . . , ym⟩ .

Thus, in order for x⃗ to be a solution of Ax⃗ = y⃗, we need to have x⃗ satisfy all
of the equations

Row1 (A) · x⃗ = y1

Row2 (A) · x⃗ = y2
...

Rowm (A) · x⃗ = ym

which, when written out in complete detail, means that x⃗ must be solution
of the system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = y1 (3.17)

a21x1 + a22x2 + · · ·+ a2nxn = y2
...

am1x1 + am2x2 + · · ·+ amnxn = ym.

We see that x⃗ = ⟨x1, x2, . . . , xn⟩ is a solution of the matrix–vector equa-
tion Ax⃗ = y⃗ if and only if (x1, x2, . . . , xn) is a solution of the system of
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linear equations (3.17), which has coefficient matrix A = [aij]. We can thus
translate Theorem 2.4.1 into the following equivalent theorem for the matrix–
vector equation.

Theorem 3.8.1. Suppose that A is an m× n matrix and that y⃗ is a vector
in Rm and consider the matrix–vector equation

Ax⃗ = y⃗.

Let Â be the augmented matrix Â =
[
A
∣∣ y⃗

]
.

1. If the rightmost column of Â is a pivot column of Â, then Ax⃗ = y⃗ is
inconsistent.

2. If the rightmost column of Â is not a pivot column of Â, then Ax⃗ = y⃗
is consistent.

Moreover, if Ax⃗ = y⃗ is consistent then

1. If every column of A is a pivot column of A, then Ax⃗ = y⃗ has a unique
solution.

2. If at least one column of A is not a pivot column of A, then Ax⃗ = y⃗
has infinitely many solutions.

Example 3.8.1. Let

A =

[
3 0
−4 2

]
and y⃗ = ⟨6,−10⟩ .

The equation Ax⃗ = y⃗ is equivalent to the system of equations

3x1 + 0x2 = 6 (3.18)

−4x1 + 2x2 = −10.

To solve this system, we form the augmented matrix

Â =
[
A
∣∣ y⃗

]
=

[
3 0
−4 2

∣∣∣∣ 6
−10

]
and perform row reduction to obtain

rref
(
Â
)
=

[
1 0
0 1

∣∣∣∣ 2
−1

]
.

We see that the system of equations (3.18) has the unique solution (x1, x2) =
(2,−1) and thus the equation Ax⃗ = y⃗ has the unique solution x⃗ = ⟨2,−1⟩.
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Example 3.8.2. In this example, we will find the solution set of Ax⃗ = y⃗
where

A =

 −3 −3
−2 3
−1 −1

 and y⃗ = ⟨−3, 2, 3⟩ .

The augmented matrix for this equation is

Â =
[
A
∣∣ y⃗

]
=

 −3 −3
−2 3
−1 −1

∣∣∣∣∣∣
−3
2
3


and

rref
(
Â
)
=

 1 0
0 1
0 0

∣∣∣∣∣∣
0
0
1

 .

By looking at rref
(
Â
)
, we see that the rightmost column of Â is a pivot

column and thus Ax⃗ = y⃗ is inconsistent by Theorem 3.8.1.

Example 3.8.3. Let us solve Ax⃗ = y⃗ where

A =

[
3 0 1
3 1 −1

]
and y⃗ = ⟨5, 7⟩ .

The equation Ax⃗ = y⃗ is equivalent to the system

3x1 + 0x2 + x3 = 5

3x1 + x2 − x3 = 7.

The augmented matrix for this system is

Â =
[
A
∣∣ y⃗

]
=

[
3 0 1
3 1 −1

∣∣∣∣ 5
7

]
and row reduction gives

rref
(
Â
)
=

[
1 0 1

3

0 1 −2

∣∣∣∣ 5
3

2

]
.
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We see that x3 is a free variable and that x1 and x2 are basic variables and
that the solution set of the above system is given by

x1 =
5

3
− 1

3
t

x2 = 2 + 2t

x3 = t

where t can be any real number. This means that any vector of the form

x⃗ =

〈
5

3
− 1

3
t, 2 + 2t, t

〉
is a solution of Ax⃗ = y⃗. We can also write the solution in the form

x⃗ =

〈
5

3
, 2, 0

〉
+ t

〈
−1

3
, 2, 1

〉
. (3.19)

We conclude that the solution set of Ax⃗ = y⃗ consists of all vectors in R3

that have the form (3.19) where t can be any real number. Hence there are
infinitely many solutions of Ax⃗ = y⃗.

Exercise 3.8.1. Find the solution set of Ax⃗ = y⃗ for each of the following A
and y⃗.

1.

A =

[
2 1
−1 −2

]
and y⃗ = ⟨2, 2⟩

2.

A =

 4 1 2
4 2 0
3 1 0

 and y⃗ = ⟨−12,−12,−8⟩

3.

A =


0 2 3
3 −1 2
2 2 3
3 −2 3

 and y⃗ = ⟨−1, 1,−3, 4⟩
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4.

A =


0 2 3
3 −1 2
2 2 3
3 −2 3

 and y⃗ = ⟨1,−1,−3, 4⟩

5.

A =

 −4 2 −2 −4
4 0 0 2
3 −4 2 −3

 and y⃗ = ⟨−6, 4, 3⟩

6.

A =

 −4 −12 −8 −4
4 10 4 2
3 3 −6 −3

 and y⃗ = ⟨−6, 4, 3⟩

7.

A =


2 3
3 3
3 1
3 −1

 and y⃗ = ⟨4, 3,−1,−5⟩

8.
A =

[
−1 1

]
and y⃗ = ⟨4⟩

9.

A =

[
−3
−2

]
and y⃗ = ⟨6, 4⟩

10.

A =

 1 4 0
3 −1 4
1 2 3

 and y⃗ = ⟨0, 0, 0⟩

Theorem 3.8.1 tells us how to get information about the solution set of
the matrix–vector equation Ax⃗ = y⃗ by using the augmented matrix Â =[
A
∣∣ y⃗

]
. In order to use the theorem, we need to be able to first write

down the augmented matrix. The next theorem we will provide tells us what
information can be gained if we only know the coefficient matrix A and are
not given any specific vector y⃗ to serve as the right hand side of Ax⃗ = y⃗. In
this case we cannot write down the augmented matrix, Â, and hence cannot
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find rref
(
Â
)
. However we can still write down A and find rref (A). What

good does that do? Well, if we just write a generic (not specific) vector y⃗ as
the right hand side of Ax⃗ = y⃗, then the augmented matrix is Â =

[
A
∣∣ y⃗

]
and when the row reduction algorithm is applied to Â we get

rref
(
Â
)
= rref

([
A
∣∣ y⃗

])
=
[
rref (A)

∣∣ z⃗
]

(3.20)

where z⃗ is some vector that will depend on what y⃗ is. Nonetheless, since
we know exactly what rref (A) is, then we have complete knowledge of the
pivots of A. There are four things we can conclude from knowledge of the
pivots of A:

1. If every row of A contains a pivot, then it is not possible that the
rightmost column of Â is a pivot column of Â because every row of

rref
(
Â
)

contains a row–leading 1 that occurs before the rightmost

column of rref
(
Â
)
. Since Â does not have a pivot in its rightmost

column, then the equation Ax⃗ = y⃗ is consistent no matter what y⃗ is.

2. If at least one row of A does not contain a pivot, then rref (A) has
one or more rows of zeros at the bottom and it is possible that Â will
contain a pivot in its rightmost column. Whether or not that is the
case depends on what y⃗ is. For some choices of y⃗, the vector z⃗ in (3.20)
will be a pivot column of Â and for other choices of y⃗, the vector z⃗
will not be a pivot column of Â. This means that for some choices of
y⃗, the equation Ax⃗ = y⃗ will be inconsistent, and for other choices of y⃗
the equation Ax⃗ = y⃗ will be consistent. One particular choice of y⃗ for
which consistency is guaranteed is y⃗ = 0⃗m, because A0⃗n = 0⃗m.

3. If every column of A is a pivot column of A and Ax⃗ = y⃗ is consistent,
then it must be the case that Ax⃗ = y⃗ has a unique solution. This is
because if every column of A is a pivot column of A, then there are no
free variables.

4. If at least one column of A is not a pivot column of A and Ax⃗ = y⃗
is consistent, then Ax⃗ = y⃗ has infinitely many solutions, because free
variables are present.

The above observations are summarized in the following theorem.
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Theorem 3.8.2. Suppose that A is an m×n matrix and consider the family
of all matrix–vector equations of the form

Ax⃗ = y⃗.

1. If A has a pivot in every row, then Ax⃗ = y⃗ is consistent for any choice
of the vector y⃗ in Rm.

2. If A does not have a pivot in every row, then there are some vectors y⃗
in Rm for which Ax⃗ = y⃗ is consistent and there are also some vectors
y⃗ in Rm for which Ax⃗ = y⃗ is inconsistent.

Moreover, if y⃗ is a vector such that Ax⃗ = y⃗ is consistent then

1. If every column of A is a pivot column of A, then Ax⃗ = y⃗ has a unique
solution.

2. If at least one column of A is not a pivot column of A, then Ax⃗ = y⃗
has infinitely many solutions.

Example 3.8.4. Let A be the matrix

A =

 3 0 1
3 1 −1
2 0 −1

 .

What information can we gain from A concerning solutions of the family of
equations Ax⃗ = y⃗?

Theorem 3.8.2 tells us how to answer this question. We compute

rref (A) =

 1 0 0
0 1 0
0 0 1

 .

By looking at rref (A), we see that every row of A contains a pivot. Theorem
3.8.2 tells us that the equation Ax⃗ = y⃗ is consistent no matter what we choose
for the right hand side vector y⃗ in R3. Furthermore, since every column of A
contains a pivot, the equation Ax⃗ = y⃗ will have a unique solution (no matter
what we choose as y⃗).
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Example 3.8.5. Let A be the matrix

A =

 −1 −1 1 1
0 0 −1 −2
1 1 3 −2

 .

What information can we gain from A concerning solutions of the family of
equations Ax⃗ = y⃗?

To answer this question, we compute

rref (A) =

 1 1 0 0
0 0 1 0
0 0 0 1

 .

By looking at rref (A), we see that every row of A contains a pivot. Theorem
3.8.2 tells us that the equation Ax⃗ = y⃗ is consistent no matter what we
choose for the right hand side vector y⃗ in R3. However, the fact that not
every column of A contains a pivot (the second column of A does not contain
a pivot), tells us that Ax⃗ = y⃗ will have infinitely many solutions (for any
choice of y⃗ in R3).

Exercise 3.8.2. For each of the following m×n matrices, A, decide whether
a) The equation Ax⃗ = y⃗ is consistent for any choice of y⃗ in Rm or
b) There are some vectors y⃗ in Rm for which Ax⃗ = y⃗ is consistent and

other vectors y⃗ in Rm for which Ax⃗ = y⃗ is inconsistent
Assuming that y⃗ is a vector in Rm such that Ax⃗ = y⃗ is consistent, decide

whether
a) Ax⃗ = y⃗ has a unique solution or
b) Ax⃗ = y⃗ has infinitely many solutions.

1.

A =

[
−2 3
−2 0

]
2.

A =

[
−3 −1
9 3

]
3.

A =

[
0 3 0
−4 2 4

]
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4.

A =

 0 5
1 5
−2 3


5.

A =

 2 4 2
5 −1 −3
0 2 −1


6.

A =
[
4 1 2

]
7.

A =

 1 8 −1
−2 −17 1
2 18 0


If A is a square matrix, then there is a simple criterion that can be applied

in studying the possible solution sets of Ax⃗ = y⃗. Recall that a square matrix
is a matrix that has the same number of rows as it has columns. If A is a
square matrix and A has a pivot in every row, then A also has a pivot in every
column (because A has the same number of rows as columns). Likewise, if A
is a square matrix and at least one row of A does not contain a pivot, then
at least one column of A does not contain a pivot. If A is a square matrix
of size n × n and rref (A) = In (recall that In denotes the n × n identity
matrix which was introduced in Section 3.6), then A has exactly n pivots.
If rref (A) ̸= In, then A has fewer than n pivots. This provides us with
the following corollary to Theorem 3.8.2 which applies to square coefficient
matrices.

Corollary 3.8.1. Suppose that A is an n× n (square) matrix and consider
the family of all matrix–vector equations of the form

Ax⃗ = y⃗.

1. If rref (A) = In, then Ax⃗ = y⃗ has a unique solution for any choice of
the vector y⃗ in Rn.
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2. If rref (A) ̸= In, then there are some vectors y⃗ in Rn for which Ax⃗ = y⃗
is consistent and there are also some vectors y⃗ in Rn for which Ax⃗ = y⃗
is inconsistent. If Ax⃗ = y⃗ is consistent, then it has infinitely many
solutions.

Example 3.8.6. Let A be the matrix

A =

 −1 4 2
1 −3 2
1 −2 0

 .

What does Corollary 3.8.1 tell us about matrix–vector equations, Ax⃗ = y⃗,
that have A as their coefficient matrix?

Since

rref (A) =

 1 0 0
0 1 0
0 0 1

 = I3,

Corollary 3.8.1 tells us that the equation Ax⃗ = y⃗ will always have a unique
solution, no matter what we choose for y⃗ on the right hand side of the equa-
tion.

Example 3.8.7. Let A be the matrix

A =

 1 0 −2
−1 −3 −6
−3 −3 −2

 .

What does Corollary 3.8.1 tell us about matrix–vector equations, Ax⃗ = y⃗,
that have A as their coefficient matrix?

Since

rref (A) =

 1 0 −2
0 1 8

3

0 0 0

 ̸= I3,

Corollary 3.8.1 tells us that there are some vectors y⃗ in R3 for which the
equation Ax⃗ = y⃗ is inconsistent, and there are some vectors y⃗ in R3 for
which the equation Ax⃗ = y⃗ is consistent. For those y⃗ for which Ax⃗ = y⃗ is
consistent, Ax⃗ = y⃗ has infinitely many solutions.

Exercise 3.8.3. For each of the following matrices A, what information can
be gained from Corollary 3.8.1 regarding the family of equations Ax⃗ = y⃗ that
have A as their coefficient matrix?



3.8. MATRIX EQUATIONS 129

1.

A =

[
3 0
1 3

]
2.

A =

[
0 1
1 0

]
3.

A =

 −1 1 −2
1 −1 2
−2 1 0


4.

A =

 −2 2 −2
−1 −1 0
2 −1 1


5.

A =


−1 0 −1 0
−1 1 1 1
1 −1 1 1
−1 1 1 −1

 .

3.8.2 The Matrix Equation AX = Y

We now consider matrix equations of the form AX = Y where A is an m×n
matrix, X is a n×p matrix and Y is an m×p matrix. We regard A and Y as
being the “given” matrices and X as being the “unknown” matrix. What we
learned about matrix–vector equations of the form Ax⃗ = y⃗ in Section 3.8.1
will help us to understand the more general equations of the form AX = Y .
If X is a matrix that is a solution of the equation AX = Y , then for any
column of AX (say the ith column) we have

Coli (AX) = Coli (Y )

and thus by (3.8) we have

AColi (X) = Coli (Y ) . (3.21)
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For each i (1 ≤ i ≤ n), equation (3.21) is a matrix–vector equation with
unknown vector Coli (X). If, for each i, we let Âi denote the augmented
matrix

Âi =
[
A
∣∣ Coli (Y )

]
,

then Theorem 3.8.1 tells us that

1. If the rightmost column of Âi is a pivot column of Âi, then (3.21) is
inconsistent.

2. If the rightmost column of Âi is not a pivot column of Âi, then (3.21)
is consistent.

Moreover, if (3.21) is consistent then

1. If every column of A is a pivot column of A, then (3.21) has a unique
solution.

2. If at least one column of A is not a pivot column of A, then (3.21) has
infinitely many solutions.

In order for the equation AX = Y to be consistent, the equations (3.21)
must be consistent for all i. Likewise, assuming that AX = Y is consistent,
AX = Y has a unique solution if and only if all of the equations (3.21)
have unique solutions. These observations can be used to obtain theorems,
analogous to Theorems 3.8.1 and 3.8.2, that answer the questions of existence
and uniqueness of solutions of AX = Y via study of the multiply–augmented
m× (n+ p) matrix

Â =
[
A
∣∣ Y

]
.

Rather than state the most general results (the analogues of Theorems
3.8.1 and 3.8.2), we will focus on the case that A is a square matrix of size
n × n and the matrix Y is also a square matrix of size n × n. This is the
only case that is of interest to us for the purpose of defining matrix inverses
in the next section. If A and Y are both matrices of size n × n, then the
unknown matrix, X, in the equation AX = Y must also be of size n × n.
The multiply–augmented n× (2n) matrix of the equation AX = Y is

Â =
[
A
∣∣ Y

]
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and row reduction of this matrix gives

rref
(
Â
)
=
[
rref (A)

∣∣ Z
]

(3.22)

where Z is some n × n matrix. Since A is a square matrix, then either
rref (A) = In or rref (A) ̸= In.

If rref (A) = In, then

rref
(
Â
)
=
[
In
∣∣ X

]
where X is the unique solution of the equation AX = Y . If rref (A) ̸= In,
then AX = Y might be inconsistent or it might be consistent – depending
on what the matrix Z in equation (3.22) turns out to be after performing
row reduction on Â. We thus obtain the following theorem.

Theorem 3.8.3. Suppose that A and Y are both n × n (square) matrices
and consider the matrix equation

AX = Y .

Let
Â =

[
A
∣∣ Y

]
be the n × (2n) multiply-augmented matrix that corresponds to this matrix
equation.

1. If rref (A) = In, then AX = Y has a unique solution. Furthermore

rref
(
Â
)
=
[
In
∣∣ X

]
where X is the unique solution of AX = Y .

2. If rref (A) ̸= In, then AX = Y is either inconsistent or has infinitely
many solutions.

Example 3.8.8. Let us solve the equation AX = Y where A and Y are the
2× 2 matrices

A =

[
−1 −2
0 1

]
and Y =

[
−1 1
−2 1

]
.
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To do this, we form the multiply augmented matrix

Â =

[
−1 −2
0 1

∣∣∣∣ −1 1
−2 1

]
and perform row reduction on this matrix to obtain

rref
(
Â
)
=

[
1 0
0 1

∣∣∣∣ 5 −3
−2 1

]
=
[
I2
∣∣ X

]
.

Since rref (A) = I2, then

X =

[
5 −3
−2 1

]
is the unique solution of the equation AX = Y .

We can check that X is a solution:

AX =

[
−1 −2
0 1

] [
5 −3
−2 1

]
=

[
−1 1
−2 1

]
= Y .

Exercise 3.8.4. Solve the equation AX = I2 where

A =

[
−1 −2
0 1

]
.

Exercise 3.8.5. Let A be the matrix

A =

[
1 1
4 4

]
.

Explain why the equation AX = I2 has no solution.

We conclude this section with a corollary that is analogous to Corollary
3.8.1, but which applies to matrix equations.

Corollary 3.8.2. Suppose that A is an n× n (square) matrix and consider
the family of all matrix equations of the form

AX = Y .

1. If rref (A) = In, then AX = Y has a unique solution for any choice of
n× n matrix Y .

2. If rref (A) ̸= In, then there are some n×n matrices Y for which Ax⃗ = y⃗
is consistent and there are also some n×n matrices Y for which AX =
Y is inconsistent. If AX = Y is consistent, then it has infinitely many
solutions.
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3.9 Inversion of Matrices

To motivate our definition and study of the concept of the inverse of a matrix,
we will take a look at the corresponding concept as it applies in the simpler
setting of real numbers. The multiplicative identity element for real
numbers is the number 1. To say that the number 1 is the multiplicative
identity element for the real numbers means that if a is any real number
then

(a) (1) = a.

In words, any real numbered multiplied by 1 gives that same number. Of
course, since the operation of multiplication of real numbers is commutative,
it is also true that if a is any real number then

(1) (a) = a.

If a is a real number, then a real number b is said to be a multiplicative
inverse of a if

ab = 1.

Again, because multiplication of real numbers is commutative, if b is a mul-
tiplicative inverse of a, then it will also be true that

ba = 1.

If a is any real number with a ̸= 0, then a has a unique multiplicative
inverse. For example, the multiplicative inverse of 5 is 1/5 because

5

(
1

5

)
= 1

and b = 1/5 is the only real number that satisfies the equation 5b = 1.
In general, the multiplicative inverse of a real number a ̸= 0 is 1/a, which

we also sometimes write using the notation a−1. So, returning to our example,
we can write the multiplicative inverse of the number 5 as 1/5 or as 5−1.

What if a = 0? In this case, a does not have a multiplicative inverse
because there does not exist any real number b such that (0) b = 1.

We are now going to define what we mean by the multiplicative inverse
(if it exists) of an n×n matrix A. We want our definition of this new concept
to be as similar as possible to the corresponding concept for real numbers (as
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discussed above). To begin, recall from Section 3.6 that the n × n identity
matrix, In, is the multiplicative identity element for the set of all n × n
matrices. This means that if A is any n× n matrix then

AIn = A and InA = A.

Since In is the multiplicative identity element, then we want to define an
inverse of a given n × n matrix A, to be another n × n matrix B such that
AB = In and BA = In are both true.

Definition 3.9.1. Suppose that A is an n × n matrix. We say that A is
invertible if there exists an n×n matrix B such that AB = In and BA = In.

If B is a matrix such that AB = In and BA = In, then we say that B is
an inverse of A.

Example 3.9.1. In this example, we illustrate the definition of the inverse
of a matrix. We do not show how we came up with the matrix inverse, but
you will learn how to do that soon!

Let A be the matrix

A =

[
−1 1
−2 1

]
Let us verify that the matrix

B =

[
1 −1
2 −1

]
is an inverse of A. To do this we need to verify AB = I2 and BA = I2.

By computation, we see that

AB =

[
−1 1
−2 1

] [
1 −1
2 −1

]
[
(−1) (1) + (1) (2) (−1) (−1) + (1) (−1)
(−2) (1) + (1) (2) (−2) (−1) + (1) (−1)

]
=

[
1 0
0 1

]
= I2

and likewise

BA =

[
1 −1
2 −1

] [
−1 1
−2 1

]
=

[
1 0
0 1

]
= I2.

This shows that B is an inverse of A.
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Example 3.9.2. Let us verify that the matrix

A =

[
−1 −2
0 1

]
is an inverse of itself.

By computation, we see that

AA =

[
−1 −2
0 1

] [
−1 −2
0 1

]
=

[
1 0
0 1

]
= I2,

which shows that A is an inverse of itself.

Exercise 3.9.1. 1. Verify that the matrix

B =

[
−1 1
0 −2

]
is an inverse of the matrix

A =

[
−1 −1

2

0 −1
2

]
.

2. Verify that the matrix

B =

 2 4 4
0 −4 2
0 1 0


is an inverse of the matrix

A =

 1
2

−1 −6
0 0 1
0 1

2
2

 .

Exercise 3.9.2. Suppose that A is an invertible n × n matrix and suppose
that B is an inverse of A. Must it also be true that A is an inverse of B?
Explain.

Our first theorem concerning matrix inverses states that an invertible
matrix has exactly one inverse.
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Theorem 3.9.1. If A is an invertible n×n matrix, then the inverse of A is
unique. This means that there do not exist two different n × n matrices, B
and C, that both act as inverses of A.

Proof. Suppose that A is invertible and suppose that the matrices B and C
both act as inverses of A. This means that

AB = In and BA = In

and
AC = In and CA = In.

This implies that

B = BIn = B (AC) = (BA)C = InC = C.

We have shown that if matrices B and C both act as inverses of A, then B
and C must be identical.

Since an invertible matrix, A, has only one inverse, we can give this inverse
a name. The name that we give to it is A−1. This is in keeping with the fact
that we give the name a−1 to the inverse of an invertible real number a. In
addition, we can stop using the word “an” and start using the word “the”
when referring to the inverse of a matrix. In speaking and writing, we use the
indefinite articles “a” and “an” when we are in situations where we think that
there possibly could be more that one of something. For example, perhaps
we are in the midst of some problem where we are discussing solutions of
some equation that has the form f (x) = b and we aren’t sure how many
solutions this equation has. In that case, we might make a statement of the
form “Suppose that x is a solution of the equation f (x) = b.” However,
if we are sure that the equation we are discussing has exactly one solution,
then we use the definite article “the” to refer to this solution. We would say
“Suppose that x is the solution of the equation f (x) = b.” To illustrate the
A−1 notation, we showed in Example 3.9.1 that the inverse of the matrix

A =

[
−1 1
−2 1

]
is the matrix

A−1 =

[
1 −1
2 −1

]
.

The big questions that we now focus on are
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1. Which matrices are invertible?

2. How do we find the inverse of an invertible matrix?

The answers to both questions are given in the Theorem 3.9.3. Before
providing that theorem, we provide a prelimnary theorem that tells us that
it is actually not necessary to check that both AB = In and BA = In in
order to conclude that B = A−1. This is surprising! It is surprising because
we know that matrix multiplication is not commutative, meaning that it is
usually not true that AB = BA even when AB and BA are both defined
and have the same size. What the upcomig theorem tells us, though, is
that if AB = In, then it must also be true that BA = In (and incidentally
AB = BA).

Theorem 3.9.2. Suppose that A and B are both n×n matrices and suppose
that AB = In. Then BA = In.

Proof. Suppose that AB = In.
We know that

InY = Y for all n× n matrices Y

and thus
(AB)Y = Y for all n× n matrices Y .

By the associative property of matrix multiplication, we can write the
above statement as

A (BY ) = Y for all n× n matrices Y .

This shows that the equation AX = Y has a solution for any choice
of n × n matrix Y . (The above equation shows that BY is a solution of
AX = Y .)

Since AX = Y has a solution for any choice of Y , then by Corollary 3.8.2
it must be the case that rref (A) = In and thus it must in fact be true that
AX = Y has a unique solution for any choice of n × n matrix Y . Thus it
must be the case that the equation AX = A has unique solution.

It is easy to see that X = In is a solution of the equation AX = A.
However, note that

A (BA) = (AB)A = InA = A
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which shows that BA is also a solution of AX = A.
We have determined that the equation AX = A has a unique solution,

but we have also determined that X = In and X = BA both satisfy this
equation. Therefore it must be the case that BA = In.

This completes the proof.

We now provide the theorem that answers the questions on which matrices
are invertible and on how to find the inverses of invertible matrices.

Theorem 3.9.3. Suppose that A is an n×n matrix. Then A is invertible if
and only if rref (A) = In.

Furthermore, if rref (A) = In and Â is the multiply–augmented matrix

Â =
[
A
∣∣ In

]
,

then
rref

(
Â
)
=
[
In
∣∣ A−1

]
.

Proof. Suppose that A is an n × n matrix and suppose that rref (A) = In.
Then consider the matrix equation AX = In. The multiply–augmented
matrix for this matrix equation is

Â =
[
A
∣∣ In

]
and since rref (A) = In, then statement 1 of Theorem 3.8.3 tells us that
AX = In has a unique solution and that

rref
(
Â
)
=
[
In
∣∣ X

]
where X is the unique solution of AX = In.

We have shown that there is a unique matrix X, such that AX = In. By
Theorem 3.9.2, it must also be true that XA = In. Thus A is invertible and
X = A−1. Furthermore, we see that

rref
(
Â
)
=
[
In
∣∣ A−1

]
.

We have proved that if rref (A) = In, then A is invertible. We still need
to prove that if rref (A) ̸= In, then A is not invertible. We will do this
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by proving the (equivalent) contrapositive statement: If A is invertible, then
rref (A) = In.

Suppose that A is invertible. Then we know that A−1 exists. Knowing
that A−1 exists allows us to easily solve the matrix equation AX = In. If
AX = In, then

A−1 (AX) = A−1In

which implies that (
A−1A

)
X = A−1

which implies that

InX = A−1

which implies that

X = A−1.

The fact that the matrix equation AX = In has a unique solution (which
is X = A−1) tells us, by Theorem 3.8.3, that rref (A) = In. (If it were the
case that rref (A) ̸= In, then it would have to be the case that the matrix
equation AX = In either has no solution or infinitely many solutions.)

The fact that if A is invertible, then

rref
(
Â
)
=
[
In
∣∣ A−1

]
,

provides us with a procedure for calculating A−1 for any square matrix A.
The procedure is to form the multiply–augmented matrix Â and then perform

the row reduction algortihm on it. The left half of rref
(
Â
)
always turns out

to be In and the right half of rref
(
Â
)

always turns out to be A−1. This

is illustrated in the following example, followed by some exercises that are
provided for practice.

Example 3.9.3. In Example 3.9.1, we showed that the inverse of the matrix

A =

[
−1 1
−2 1

]
is the matrix

A−1 =

[
1 −1
2 −1

]
,
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but we did not show how to find A−1 from A. Here is how. We form the
multiply–augmented matrix

Â =
[
A
∣∣ I2

]
=

[
−1 1
−2 1

∣∣∣∣ 1 0
0 1

]
and then perform the row reduction algortihm on Â to obtain

rref
(
Â
)
=

[
1 0
0 1

∣∣∣∣ 1 −1
2 −1

]
=
[
I2
∣∣ A−1

]
.

Thus we have computed

A−1 =

[
1 −1
2 −1

]
.

Exercise 3.9.3. In Example 3.9.2, we showed that the inverse of the matrix

A =

[
−1 −2
0 1

]
,

is A. Verify that

rref
([

A
∣∣ I2

])
=
[
I2
∣∣ A

]
.

Exercise 3.9.4. Use row reduction to find the inverses of the following ma-
trices. Once you have done this, check by computation to make sure that you
have gotten the right answer by computing AA−1 (using the A−1 you have
found).

1.

A =

[
−1 −1

2

0 −1
2

]
2.

A =

[
3 0
1 3

]
3.

A =

 1
2

−1 −6
0 0 1
0 1

2
2


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4.

A =

 2 0 3
1 0 2
1 −1 −2

 .

5.

A =


1 1 0 −1
−1 −1 1 −1
−1 0 0 −1
0 −1 1 1

 .

The following corollary follows from Theorem 3.9.3 and the proof of the
corollary is contained within the proof of the theorem.

Corollary 3.9.1. Suppose that A is an invertible n× n matrix.

Then, for any vector y⃗ in Rn, the matrix–vector equation Ax⃗ = y⃗ has the
unique solution

x⃗ = A−1y⃗

and, for any n × p matrix Y , the matrix equation AX = Y has the unique
solution

X = A−1Y .

Solving equations of the form Ax⃗ = y⃗ and AX = Y by first computing
A−1 and then applying Corollary 3.9.1 is not the most efficient way to solve
these equations. The most efficient way is to use augmented matrices and row
reduction directly on the equations. Nonetheless, the corollary is valuable as
a theoretical tool that will be used in future parts of this course. Here is an
example that illustrates the corollary.

Example 3.9.4. Let us use matrix inversion to solve the equation Ax⃗ = y⃗
where

A =

[
−1 1
−2 1

]
and y⃗ = ⟨4, 3⟩ .

We have already seen (in Example 3.9.1) that

A−1 =

[
1 −1
2 −1

]
.
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By Corollary 3.9.1, the unique solution of Ax⃗ = y⃗ is x⃗ = A−1y⃗. Since

Row1

(
A−1

)
· y⃗ = ⟨1,−1⟩ · ⟨4, 3⟩ = 1

Row2

(
A−1

)
· y⃗ = ⟨2,−1⟩ · ⟨4, 3⟩ = 5,

then the unique solution of Ax⃗ = y⃗ is x⃗ = ⟨1, 5⟩.

Exercise 3.9.5. For the matrices A and vectors y⃗ given below. Solve the
equation Ax⃗ = y⃗ in two different ways:

a) by performing row reduction on the augmented matrix Â =
[
A
∣∣ y⃗

]
b) by first computing A−1 (using the algorithm for computing A−1) and

then using Corollary 3.9.1.

1.

A =

[
0 1
1 1

]
and y⃗ = ⟨−1,−3⟩

2.

A =

[
−1 2
−2 1

]
and y⃗ = ⟨5, 1⟩

3.

A =

 −2 −2 0
0 0 −3
−1 2 1

 and y⃗ = ⟨4, 3,−8⟩

4.

A =


3 1 0 −1
2 −2 2 1
1 −1 3 3
−2 −1 −1 1

 and y⃗ = ⟨−5, 3, 5, 7⟩ .

We conclude this section with two useful theorems – one stating that the
product of two invertible matrices is invertible and the other stating that the
transpose of an invertible matrix is invertible.

Theorem 3.9.4. Suppose that A and B are n× n matrices and that A and
B are both invertible. Then the product AB is invertible and

(AB)−1 = B−1A−1.
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Proof. Suppose that A and B are n×n matrices and that A and B are both
invertible. This means that A−1 and B−1 both exist. Now notice (by using
the associative property of matrix multiplication) that

(AB)
(
B−1A−1

)
= A

(
B
(
B−1A−1

))
= A

((
BB−1

)
A−1

)
= A

(
InA

−1
)

= AA−1

= In.

We have shown that (AB) (B−1A−1) = In and we thus conclude that (AB)−1 =
B−1A−1.

Theorem 3.9.4 tells us that the inverse of a product of matrices is the
product of the inverses in the reverse order. Remember that matrix multi-
plication is not commutative, so keeping the order as stated in the theorem
is essential. It is not generally true that (AB)−1 = A−1B−1.

Theorem 3.9.5. Suppose that A is an invertible n× n matrix. Then AT is

also invertible and
(
AT
)−1

= (A−1)
T
.

Proof. Since A is invertible, then A−1 exists and A−1A = In. Taking the
transpose of both sides of this equation gives (A−1A)

T
= ITn . However,

ITn = In, and by property (3.5), we have (A−1A)
T
= AT (A−1)

T
. Thus

AT
(
A−1

)T
= In

and we conclude from this that AT is invertible and that
(
AT
)−1

= (A−1)
T
.

Example 3.9.5. Let us illustrate Theorem 3.9.4 using the matrices

A =

[
3 0
1 3

]
and B =

[
1 −1
2 0

]
.

The inverses of these matrices are

A−1 =

[
1
3

0
−1

9
1
3

]
and B−1 =

[
0 1

2

−1 1
2

]
.
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The product AB is

AB =

[
3 0
1 3

] [
1 −1
2 0

]
=

[
3 −3
7 −1

]
and the inverse of the product is

(AB)−1 =

[
− 1

18
1
6

− 7
18

1
6

]
.

We also observe that

B−1A−1 =

[
0 1

2

−1 1
2

] [
1
3

0
−1

9
1
3

]
=

[
− 1

18
1
6

− 7
18

1
6

]
,

illustrating that (AB)−1 = B−1A−1.

Exercise 3.9.6. For the matrices

A =

[
2 4
4 −3

]
and B =

[
−4 2
−4 1

]
,

verify by computation that (AB)−1 = B−1A−1.

Exercise 3.9.7. Suppose that A and B, are n×n matrices and suppose that
A is invertible and B is not invertible. Explain why AB cannot be invertible.

Exercise 3.9.8. Theorem 3.9.4 tells us that if A is invertible and B is in-
vertible, then AB is invertible. Exercise 3.9.7 tells us that if A is invertible
and B is not invertible, then AB is not invertible. We can ask whether there
is any relationship between the invertibility of a pair of matrices A and B and
their sum A + B. Generally speaking, there is no clear relationship. Create
an example of a pair of 2× 2 matrices A and B such that

1. A and B are invertible, and A+B is invertible,

2. A and B are invertible, but A+B is not invertible,

3. A and B are not invertible, but A+B is invertible,

4. A and B are not invertible, and A+B is also not invertible,
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Exercise 3.9.9. For the square matrices, A, given below, find A−1 and

(A−1)
T
. Then verify that

(
AT
)−1

= (A−1)
T
by computing AT (A−1)

T
.

1.

A =

[
−1 −2
5 1

]
2.

A =

 0 0 1
1 0 0
0 1 0


3.10 Additional Exercises

(Jump to Solutions)

1. Complete the following sentences by filling in one of the words “scalar”,
“vector”, or “matrix”.

(a) The sum of two vectors is a .

(b) The sum of two matrices is a .

(c) A scalar multiple of a vector is a .

(d) A scalar multiple of a matrix is a .

(e) The product of two matrices is a .

(f) The dot product of two vectors is a .

(g) A linear combination of vectors is a .

(h) The product of a matrix and a vector is a .

(i) The transpose of a matrix is a .

(j) The inverse of a matrix is .

2. Suppose that the matrix A has column vectors

Col1 (A) = ⟨1,−2, 7,−4⟩
Col2 (A) = ⟨−1, 7, 3,−1⟩
Col3 (A) = ⟨−6, 8, 6, 0⟩ .

Write down A and write down the row vectors of A.
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3. Suppose that the matrix B has row vectors

Row1 (B) = ⟨−6, 4, 4,−2⟩
Row2 (B) = ⟨5,−2, 5, 5⟩
Row3 (B) = ⟨3, 6, 2,−5⟩ .

Write down B and write down the column vectors of B.

4. For the matrices A and B that you wrote down in questions 1 and 2
above, is it possible to compute A + B? If so, then compute it. If
not, then explain why not? Is it possible to compute AB? If so, then
compute it. If not, then explain why not.

5. The m × n zero matrix is the m × n matrix that has all entries of 0.
This matrix is denoted by Om×n. Thus, for example,

O3×4 =

 0 0 0 0
0 0 0 0
0 0 0 0

 .

Explain why it makes sense to refer to Om×n as the additive identity
element for the set of all m× n matrices.

6. For the matrices

A =

[
4 −1
−4 −1

]
and B =

[
−1 −4
−2 3

]
,

compute 2 (A+B) and 2A+ 2B and observe that they are the same.

7. For the matrices

A =

[
−2 −2 4 0
−2 −3 −1 2

]
and B =


1 2
0 2
3 3
−1 2

 ,

compute AB and BA.

8. We know that it is not generally true that AB = BA, even when A
and B are square matrices of the same size. Let A be the 2× 2 matrix

A =

[
−1 −2
1 −3

]
Find all matrices X such that AX = XA is true.
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9. Suppose that A is an n × n matrix and let On×n be the n × n zero
matrix. (Refer to problem 5 above.) Explain why AOn×n = On×n.

10. A property of real numbers that you are probably familiar with is that
if a and b are real numbers and ab = 0, then it must be true that either
a = 0 or b = 0. A similar property does not hold for matrices. Come
up with an example of a 2×2 matrix A and a 2×2 matrix B such that
AB is equal to the 2× 2 zero matrix (that is AB = O2×2) but neither
A nor B is equal to O2×2.

11. Another property of real numbers that you are probably familiar with
is the “cancellation law” which says that if a, b, and c are real numbers
with a ̸= 0 and ab = ac, then b = c. A similar property does not, in
general, hold for matrices. Come up with an example of 2× 2 matrices
A, B, and C such that A ̸= O2×2 and AB = AC but B ̸= C.

Hint: If you successfully did problem 10, then you should be able to
use what you got there to help with this problem.

12. Referring back to the previous problem, there is a cancellation law that
holds when the matrix A is invertible. Specifically, if A is an invertible
n × n matrix and B and C are matrices of size n × p and AB = AC,
then B = C. Prove this cancellation law.

Hint: Multiply both sides of AB = AC on the left by A−1 and use the
associative property of matrix multiplication and the fact that In is a
multiplicative identity element for matrix multiplication.

13. Suppose that A is an m× n matrix. Explain why the matrix product
AAT is defined (is possible to carry out). What size is AAT ?

14. For the matrix

A =

[
3 0 5
3 1 0

]
,

compute AAT and
(
AAT

)T
.

What do you observe? It is not a coincidence.

Use property (3.5) to prove that if A is any matrix, then
(
AAT

)T
=

AAT .
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15. For the matrix and vector

A =

 −2 −1 1 1
−2 2 −2 −1
−2 2 2 −2

 and x⃗ = ⟨x1, x2, x3, x4⟩ ,

Compute Ax⃗ in two different ways: a) by using (3.6) and b) by using
(3.7).

16. For the matrix and vector

A =

 1 −1 0
0 0 2
0 −1 2

 and x⃗ = ⟨x1, x2, x3⟩ ,

Compute AT x⃗ in four different ways: a) by first computing AT and
then using (3.6), b) by first computing AT and then using (3.7), c) by
using (3.9), and d) by using (3.10).

17. Suppose that A is an n × n matrix and suppose that the vector x⃗ in
Rn is a solution of the homogeneous equation Ax⃗ = 0⃗n. Explain why
all of the row vectors of A are orthogonal to x⃗.

18. Suppose that A is a 3× 3 matrix and that

rref

 A

∣∣∣∣∣∣
2
−1
−2

 =

 I3

∣∣∣∣∣∣
−1
−3
2

 .

What is the solution of the matrix–vector equation

Ax⃗ = ⟨2,−1,−2⟩ ?

19. For the following matrices A and vectors y⃗, find the solution set of
the equation Ax⃗ = y⃗. Indicate whether the equation is inconsistent,
consistent with a unique solution, or consistent with infinitely many
solutions.

(a)

A =

 0 −1 0
−1 −1 0
1 −1 −1

 and y⃗ = ⟨1,−3, 2⟩
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(b)

A =

 0 −1 0
0 −1 0
1 −1 −1

 and y⃗ = ⟨−2,−2,−2⟩

(c)

A =

 0 −1 0
0 −1 0
1 −1 −1

 and y⃗ = ⟨0, 1,−2⟩

20. Write down the multiply–augmented matrix for the matrix equation
AX = Y where A and Y are the matrices

A =

[
−3 −3
−3 −2

]
and Y =

[
0 3
−1 2

]
and then perform row reduction on this multiply–augmented matrix
to find the solution of the equation AX = Y . Does AX = Y have a
unique solution?

21. Write down the multiply–augmented matrix for the matrix equation
AX = I2 where A is the matrix

A =

[
1 4
3 0

]
and then perform row reduction on this multiply–augmented matrix to
find the solution of the equation AX = I2. (What you are doing here
is finding A−1.)

22. Let A be the 3× 3 matrix

A =

 1 −4 2
0 1 4
0 0 1

 .

Find A−1 by solving AX = I3.

23. Show that the matrix

A =

 1 2 3
4 5 6
7 8 9


is not invertible by studying the equation AX = I3.
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24. Let {e⃗1, e⃗2, e⃗3} be the set of standard unit vectors in R3 and let x⃗ =
⟨x1, x2, x3⟩ be a vector in R3. Show that

x⃗ = x1e⃗1 + x2e⃗2 + x3e⃗3.

This shows that any vector in R3 is a linear combination of the standard
unit vectors of R3.

25. Suppose that A is an n× n matrix. It is obvious that A0⃗3 = 0⃗3.

Suppose that there exists some vector x⃗ in R3 with x⃗ ̸= 0⃗3 such that
Ax⃗ = 0⃗3. Explain why it must be the case that rref (A) ̸= I3 (and
hence that A is not invertible).

26. (a) Explain why an n × n matrix, A, that contains a row consisting
entirely of entries of 0 is not invertible.

Hint: Think about solving AX = In. What can you say about
rref (A)?

(b) Explain why an n × n matrix, A, that has two identical rows is
not invertible.



Chapter 4

Vector Spaces and Subspaces

In this chapter, we will investigate vector spaces from the perspective of an
algebraic setting. We will primarily focus on the vector spaces Rn, but we
will see that we can generalize the idea of “vector” and arrive at a framework
that extends to other sets of objects that we can manipulate with specific
operations. We’ve already seen these ideas extended to matrices in Chapter 3.

We used the phrase vector space extensively in Chapter 1 in reference to
Rn, and it is tempting to attach a physical connotation, especially to the
word space. But when mathematicians use the phrase vector space, it refers
to an algebraic structure—select objects, operations on those objects, and
properties that are either assumed (i.e., axioms) or can be deduced from the
assumptions (e.g., theorems).

4.1 Linear Independence

In Chapter 2, we studied systems of linear equations where we found that
there are three possible solution scenarios: no solution, a unique solution,
infinitely many solutions. Later in Chapter 3, we found that a system of
linear equations can be formulated as a matrix–vector equation Ax⃗ = y⃗.
And in section 3.5, we learned that the matrix-vector product Ax⃗ can be
interpreted as a linear combination of the columns of A with the entries of x⃗
as the weights, i.e.,

Ax⃗ = x1Col1(A) + x2Col2(A) + · · ·+ xnColn(A). (4.1)

Hence, for a given vector y⃗, the question

151
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“Does Ax⃗ = y⃗ have a solution?”

can be rephrased as the question

“Is y⃗ in the subset of Rm spanned by the column vectors of the
matrix A—i.e., is y⃗ ∈ Span{Col1(A),Col2(A), · · · ,Coln(A)}?”

Recalling that the homogeneous system Ax⃗ = 0⃗m is always consistent (since
it necessarily permits the trivial solution x⃗ = 0⃗n), the critical question for
a homogeneous system is whether it has nontrivial solutions. In light of
equation (4.1), we can consider the existence (or not) of nontrivial solutions
to be some property of the set of column vectors of A.

Of course, given any set of vectors, say {v⃗1, v⃗2, . . . , v⃗n} in Rm, we can
always create a matrix A by setting, Coli(A) = v⃗i. So we don’t have to think
of this property in terms of matrices, but rather as a possible relationship
among a set of vectors. This property is called linear independence.

Definition 4.1.1. The collection of vectors v⃗1, v⃗2, . . . , v⃗n in Rm is said to be
linearly independent if the homogeneous equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗m (4.2)

has only the trivial solution, x1 = x2 = · · · = xn = 0.

If the collection of vectors is not linearly independent, then we say that
it is linearly dependent. For a linearly dependent set of vectors, an equa-
tion of the form (4.2) having at least one nonzero weight is called a linear
dependence relation.

Remark 4.1.1. Note that no matter what the vectors are, the equation (4.2)
can always be made true by simply taking all of the coefficients to be zero. The
question is whether it’s possible to make that equation true without insisting
that all coefficients are zero. This definition can be restated to focus on linear
dependence. In this case, we’ll say

The collection of vectors is linearly dependent if there exists a
set of weights, x1, . . . , xn, not all zero such that equation (4.2)
holds.

We can easily characterize the linear dependence or independence of a
set consisting of one or two vectors. In particular, a set containing a single
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vector v⃗ in Rm is linearly dependent if and only if v⃗ = 0⃗m. This is readily
confirmed by considering the equation

cv⃗ = 0⃗m. (4.3)

If v⃗ ̸= 0⃗m, then (4.3) requires the coefficient c = 0, whereas if v⃗ = 0⃗m, we can
take c = 1 (or any other nonzero number) to produce a linear dependence
relation.

For a set consisting of two vectors, v⃗1 and v⃗2 in Rm, the set is linearly
dependent if and only if one of these is a scalar multiple of the other. To
establish this, suppose v⃗1 = cv⃗2 where c is any scalar (possibly even zero).
We can rearrange this to obtain the linear dependence relation

1v⃗1 − cv⃗2 = 0⃗m.

Note that at least one of these coefficients (the 1 scaling v⃗1) is nonzero—
making this a valid linear dependence relation and showing that the vectors
are linearly dependent. Alternatively, if the pair is linearly dependent, then
there exists scalars c1 and c2, not both zero such that

c1v⃗1 + c2v⃗2 = 0⃗m.

We can assume without loss of generality1 that c1 ̸= 0 and rearrange the
equation to find that v⃗1 is a scalar multiple of v⃗2, i.e.,

v⃗1 = −c2
c1
v⃗2.

Exercise 4.1.1. For each set of one or two vectors, determine whether the
set is linearly dependent or linearly independent.

1. v⃗ = ⟨1, 0, 1, 2⟩

2. v⃗1 = ⟨1,−1⟩, v⃗2 = ⟨−4, 4⟩

3. v⃗1 = ⟨0, 0, 0, 0, 0⟩, v⃗2 = ⟨1, 2, 3, 4, 5⟩
1To say that we can assume something without loss of generality means that we can

make this assumption (e.g., c1 ̸= 0) without damaging the integrity of our argument. You
might wonder, what if c1 = 0? Since we are assuming that at least one of these numbers
is nonzero, we could just swap their labels (c1 ↔ c2 and v⃗1 ↔ v⃗2) because their labels are
completely arbitrary.



154 CHAPTER 4. VECTOR SPACES AND SUBSPACES

4. v⃗1 = ⟨3, 6, 18⟩, v⃗2 =
〈
1
3
, 2
3
, 2
〉

5. v⃗1 = ⟨2, 1, 0⟩, v⃗2 = ⟨−1, 2, 0⟩

For a collection of three or more vectors, determining linear dependence
will be slightly more complicated. However, equation (4.2) gives rise to a
homogeneous system of linear equations, and we can use familiar techniques
to investigate the existence of nontrivial solutions.

Example 4.1.1. Determine whether the vectors v⃗1 = ⟨1, 1,−1⟩, v⃗2 = ⟨2, 0,−3⟩,
and v⃗3 = ⟨0, 2, 1⟩ are linearly independent or linearly dependent. If they are
linearly dependent, construct a linear dependence relation.

We can consider the equation x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗3,

x1⟨1, 1,−1⟩+ x2⟨2, 0,−3⟩+ x3⟨0, 2, 1⟩ = ⟨0, 0, 0⟩.

Using the results of Chapter 3, we can restate the equation in the form of a
homogeneous matrix-vector equation Ax⃗ = 0⃗3 where Coli(A) = v⃗i, i = 1, 2, 3.
We can reduce the augmented matrix, [A | 0⃗3] to an rref. 1 2 0 0

1 0 2 0
−1 −3 1 0

 rref−→

 1 0 2 0
0 1 −1 0
0 0 0 0

 .

From the rref, we see that there are two basic variables, x1 and x2, and one
free variable, x3. Because there is a free variable, the homogeneous system
Ax⃗ = 0⃗3 has nontrivial solutions. Hence, we conclude that the vectors are
linearly dependent.

We can actually glean more information from the rref. In particular, the
values that appear in the non-pivot column can be used to construct a linear
dependence relation. From the rref, we see that x1 = −2x3, x2 = x3, and x3

is a free variable. The solution is given in parametric form as

x1 = −2t,
x2 = t,
x3 = t

t ∈ R.

To construct a linear dependence relation, we can choose any nonzero value2

2Different values of t will give different linear dependence relations that are equally
valid. Perhaps it would be desirable to select t = −1 instead to avoid the leading minus
sign, 2v⃗1 − v⃗2 − v⃗3 = 0⃗3.



4.1. LINEAR INDEPENDENCE 155

for the parameter t. For example, if we set t = 1, we obtain a linear depen-
dence relation

−2v⃗1 + v⃗2 + v⃗3 = 0⃗3.

Example 4.1.1 illustrates a general result that follows directly from the
definition of linear independence.

Theorem 4.1.1. Let A be an m × n matrix. The column vectors of A are
linearly independent in Rm if and only if the homogeneous equation Ax⃗ = 0⃗m
has only the trivial solution.

In the case of square matrices, Theorem 4.1.1 connects the linear inde-
pendence of the columns to the property of invertibility.

Corollary 4.1.1. If A is an n×n matrix, then A is invertible if and only if
the columns of A are linearly independent.

Recall Theorem 3.9.3, that invertibility is equivalent to being row equiv-
alent to In which is in turn equivalent to Ax⃗ = 0⃗n having only the trivial
solution. Now, we can say that invertibility is equivalent to having linearly
independent columns. Since the invertibility of A implies the invertibility of
AT (Theorem 3.9.5), we can see that if A is an invertible square matrix, then
its rows are also linearly independent.

Example 4.1.2. Determine whether the columns of A =

 1 3 −1
0 4 2
5 2 3

 are

linearly dependent or linearly independent. If dependent, write a linear de-
pendence relation.

We can consider the homogeneous equation Ax⃗ = 0⃗3. Using the auge-
mented matrix [A | 0⃗3] with row reduction, we find 1 3 −1 0

0 4 2 0
5 2 3 0

 rref−→

 1 0 0 0
0 1 0 0
0 0 1 0

 .

We see that all of the columns of A are pivot columns, i.e., there are no free
variables and hence no nontrivial solutions. We conclude that the columns
of A are linearly independent.
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Exercise 4.1.2. For each matrix A, determine if the columns are linearly
dependent or linearly independent. If dependent, find a linear dependence
relation.

1. A =

 1 2 3
4 5 6
7 8 9



2. A =

 1 3 2
2 5 1
1 3 1


Theorem 4.1.1 provides us with a standard approach to determining

whether a given set of vectors is linearly independent or dependent. We can
always create a matrix whose columns are the vectors in our set. We should
be warned, however, that when determining linear dependence/independence
of a collection of three or more vectors, it is generally not sufficient to con-
sider smaller subsets of the vectors. For example, the reader should verify
that each of the subsets of vectors

{v⃗1, v⃗2}, {v⃗1, v⃗3} and {v⃗2, v⃗3}

from Example 4.1.1 are linearly independent despite the fact that the set
of all three, {v⃗1, v⃗2, v⃗3}, is linearly dependent.

While we cannot simply consider subsets of a collection of vectors when
investigating their linear dependence/independence, we can say that a set of
two or more vectors is linearly dependent if and only if at least one vector in
the set can be written as a linear combination of the other vectors. Hence, if
we can immediately recognize one of the vectors as a linear combination of
one or more of the others, we can conclude that the set is linearly dependent
without further investigation.

Example 4.1.3. Determine whether the collection of vectors v⃗1 = ⟨1,−1, 1,−1⟩,
v⃗2 = ⟨2, 0, 3, 0⟩, v⃗3 = ⟨−3, 3,−3, 3⟩ is linearly dependent or linearly indepen-
dent. If linearly dependent, give a linear dependence relation.

We can follow the procedure used in Example 4.1.1. However, we might
simply observe that v⃗3 is obtained from v⃗1 by scalar multiplication.

v⃗3 = ⟨−3, 3,−3, 3⟩ = −3⟨1,−1, 1,−1⟩ = −3v⃗1.



4.1. LINEAR INDEPENDENCE 157

Not only does this allow us to conclude that the vectors are linearly dependent,
we can also rearrange this equation to write a linear dependence relation,

3v⃗1 + v⃗3 = 0⃗4.

Note that this is the same as writing

3v⃗1 + 0v⃗2 + v⃗3 = 0⃗4.

To be a valid linear dependence relation, we require at least one of the coef-
ficients to be nonzero. In this case, two of the three coefficients are nonzero.

There are cases for which linear dependence can be determined with very
little effort. In particular, we have the following theorem.

Theorem 4.1.2. Let {v⃗1, v⃗2, . . . , v⃗k} be a collection of k of vectors in Rm. If

a. one of the vectors, say v⃗i = 0⃗m, or if

b. k > m,

then the collection is linearly dependent.

The statement a. says that any set of vectors that includes the zero vector
is necessarily linearly dependent. The proof of a. is left as an exercise (see
Exercise 1). As for part b., note that this result says that if the number of
vectors in our set is larger than the number of entries in each vector, the set
is automatically linearly dependent. We can argue this using Corollary 2.4.1
to Theorem 2.4.1 from Chapter 2.

Proof. (of Theorem 4.1.2 part b.) Suppose that we have a set of k vectors
{v⃗1, v⃗2, . . . , v⃗k}, each of which is in Rm, with k > m. Defining the matrix A
such that Coli(A) = v⃗i,

m




v11 v21 · · · vk1
v12 v22 · · · vk2
...

...
. . .

...
v1m v2m · · · vkm


︸ ︷︷ ︸

k>m

,

the homogeneous system Ax⃗ = 0⃗m will have more variables than equations—
A has more columns than rows. Given that the system is homogeneous, it is
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necessarily consistent, and by Corollary 2.4.1, it must have infinitely many
solutions. That is, there exists a nontrivial solution to Ax⃗ = 0⃗m, making the
set of vectors linearly dependent.

Exercise 4.1.3. Without performing any computations explain why each of
the following sets of vectors is linearly dependent.

1. {⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 0⟩}

2. {⟨1, 2⟩, ⟨2, 1⟩, ⟨3, 0⟩}

3. {⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 1⟩, ⟨1,−1, 1⟩}

4. {⟨1, 2, 1⟩, ⟨−1,−2,−1⟩, ⟨1, 0, 0⟩}

Exercise 4.1.4. For each set of vectors, determine if the set is linearly depen-
dent or linearly independent. If dependent, find a linear dependence relation.

1. {⟨1, 1, 2⟩, ⟨2,−1, 0⟩, ⟨1,−3, 1⟩}

2. {⟨1, 2, 0,−3⟩, ⟨−2,−4, 0, 6⟩, ⟨0, 2, 3, 1⟩, ⟨1, 6, 6,−1⟩}

3. {⟨0, 4,−2, 5⟩, ⟨3, 7,−5,−4⟩, ⟨1, 5,−3, 2⟩}

4. {⟨3, 1, 0,−1⟩, ⟨2, 0,−2, 8⟩, ⟨3, 1, 5, 4⟩}

4.2 Subspaces of Rn

Since Rn is a set of objects (vectors), we can think of endless examples of
subsets of Rn. For example,

• {⟨1, 2⟩, ⟨3,−4⟩, ⟨4, π⟩},

• {⟨1, 0⟩, ⟨0, 0⟩},

• {⟨k, k⟩ | k = 1, 2, . . .}, and

• Span{⟨1, 0⟩}
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are all subsets of R2. There is something fundamentally different about
the last example, Span{⟨1, 0⟩}, and not just because it includes infinitely
many elements (the third example also includes an infinitude of elements).
What makes Span{⟨1, 0⟩} distinct from these other subsets is that it has a
similar structure to R1, while being a subset3 of R2. Most notably, when
we take any elements of the set Span{⟨1, 0⟩} and perform the operations
of vector addition or scalar multiplication, the resulting vector is also an
element of Span{⟨1, 0⟩}. This is one of the key properties of algebra that
mathematicians associate with the word space. The subset Span{⟨1, 0⟩} is
an example of a subspace of R2.

Definition 4.2.1. A subset, S, of Rn is a subspace of Rn provided

i. S is nonempty,

ii. for any pair of vectors u⃗ and v⃗ in S, u⃗+ v⃗ is in S, and

iii. for any vector u⃗ in S and scalar c in R, cu⃗ is in S.

The properties ii. and iii. are referred to as being “closed with respect to”
(or “closed under”) the indicated operation. That is, we can state property
ii. by saying:

“A subspace of Rn is closed with respect to vector addition.”

We can similarly state property iii. by saying that a subspace of Rn is closed
under scalar multiplication.

Example 4.2.1. Let K = {⟨a, 0, b⟩ ∈ R3 | − ∞ < a, b < ∞}. Show that K
is a subspace of R3.

Note that we can characterize K as the subset of R3 of vectors having
second entry zero. We will show that K satisfies all the properties of Defi-
nition 4.2.1. First, we see that K is not empty—for example, ⟨0, 0, 0⟩ is in
K. To show that property ii. holds, let’s consider any two vectors u⃗ and v⃗ in
K, say u⃗ = ⟨a1, 0, b1⟩ and v⃗ = ⟨a2, 0, b2⟩ where a1, b1, a2, and b2 are any real
numbers. Note that

u⃗+ v⃗ = ⟨a1, 0, b1⟩+ ⟨a2, 0, b2⟩ = ⟨a1 + a2, 0+ 0, b1 + b2⟩ = ⟨a1 + a2, 0, b1 + b2⟩.
3To be clear, we are not equating Span{⟨1, 0⟩} with R1. We are just noting that it has

a similar structure in that it contains all the vectors obtained by doing arithmetic on its
elements.
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We see that u⃗ + v⃗ has the required property to be an element of K—i.e., its
second entry is zero. To show that property iii. holds, we let c be any scalar,
and note that

cu⃗ = c⟨a1, 0, b1⟩ = ⟨ca1, c(0), cb1⟩ = ⟨ca1, 0, cb1⟩.

Here too, we see that cu⃗ has the property necessary to be an element of K.
Since K is a nonempty subset of R3 that is closed under vector addition and
scalar multiplication, we can conclude that K is a subspace of R3. We might
recognize K = Span{e⃗1, e⃗3} from Example 1.3.4.

Example 4.2.2. Consider the subset F of R2 given by

F =
{
⟨a, b⟩ ∈ R2 | a, b ∈ R, a ≥ 0

}
.

Determine whether F is a subspace of R2.

We can characterize F as the subset of vectors in R2 having nonnegative
first entry. We can think of F geometrically as the collection of all vectors
whose standard representation has terminal point on or to the right of the
y-axis—this is sometimes called the right half plane. The subset F is clearly
nonempty—for example the vector ⟨0, 0⟩ is in F . Moreover, F is closed under
vector addition. Suppose u⃗ = ⟨a1, b1⟩ and v⃗ = ⟨a2, b2⟩ are in F . This requires
a1 ≥ 0 and a2 ≥ 0 with b1 and b2 any real numbers. Note that

u⃗+ v⃗ = ⟨a1, b1⟩+ ⟨a2, b2⟩ = ⟨a1 + a2, b1 + b2⟩.

Since a1 + a2 ≥ 0 + 0 = 0, we see that u⃗ + v⃗ is in F . However, we can-
not conclude that F is a subspace. In fact, F is not closed under scalar
multiplication. For example, the vector ⟨1, 0⟩ is in F , but the vector

−1⟨1, 0⟩ = ⟨−1, 0⟩

is not in F , since its first entry is not nonnegative. We conclude that F is
not a subspace of R2.

In the definition of subspace, some authors replace the condition that S
is nonempty with the condition that S must contain the zero vector. We’ll
state this as a theorem here leaving the proof as an exercise (see Exercise 3).

Theorem 4.2.1. If S is a subspace of Rn, then 0⃗n is an element of S.
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This can be used as a quick test to rule out the possibility that a subset is a
subspace—that is, if it doesn’t contain the zero vector it is not a subspace. Be
careful though. As Example 4.2.2 illustrates, the converse of Theorem 4.2.1
is not true. A subset may well contain the zero vector but still fail to be a
subspace.

Exercise 4.2.1. Determine whether each subset is a subspace of Rn for the
indicated value of n.

1. S = {⟨0, a⟩ ∈ R2 | a ∈ R}

2. T = {⟨1, a⟩ ∈ R2 | a ∈ R}

3. Q = {⟨0, 0, 0⟩} in R3

4. P = {⟨k, k⟩ ∈ R2 | k = 1, 2, . . .}

5. L = {⟨k, k⟩ ∈ R2 | k ∈ R}

The following theorem follows directly from the definition of Span (Defi-
nition 1.3.2).

Theorem 4.2.2. If S = {v⃗1, v⃗2, . . . , v⃗k} is any nonempty subset of vectors
in Rn, then the set Span(S) is a subspace of Rn.

We can prove Theorem 4.2.2 by demonstrating that a span necessarily
satisfies the three subspace criteria.

Proof. First, suppose S = {v⃗1, v⃗2, . . . , v⃗k} is nonempty. Then Span(S) will
contain the elements of S making it also nonempty. Next, suppose y⃗ and z⃗ are
any elements of Span(S). Then we can write y⃗ and z⃗ as linear combinations
of elements of S,

y⃗ = a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k

z⃗ = b1v⃗1 + b2v⃗2 + · · ·+ bkv⃗k

for some sets of weights ai, bi, i = 1, . . . , k. Then note that the sum,

y⃗ + z⃗ = (a1 + b1)v⃗1 + (a2 + b2)v⃗2 + · · ·+ (ak + bk)v⃗k,
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is a linear combination of the elements of S. That is, y⃗ + z⃗ is contained in
Span(S), and Span(S) is closed under vector addition. Similarly, if c is any
scalar, then the scalar product

cy⃗ = ca1v⃗1 + ca2v⃗2 + · · ·+ cakv⃗k,

is also a linear combination of the elements of S. Thus Span(S) is also closed
under scalar multiplication. We conclude that Span(S) is a subspace of Rn,
which completes the proof.

This provides us with an alternative approach to investigating whether
a given subset is in fact a subspace. If we can find a spanning set for a
given subset of Rn, Theorem 4.2.2 says we can conclude that our subset is a
subspace.

Example 4.2.3. Show that the set Q = {⟨0, a, b, a+ b⟩ ∈ R4 | a, b ∈ R} is a
subspace of R4.

We can generate a spanning set by starting with a representative element
of the set Q and decomposing it as a linear combination of fixed vectors with
parameter coefficients—by fixed vectors, we mean vectors whose entries are
specific numbers, not variables or parameters. Fortunately, there is a simple,
intuitive approach. We can simply think of factoring a vector according to
the values that can vary, in this example, a and b. Note that for an arbitrary
element of Q,

⟨0, a, b, a+ b⟩ = ⟨0, a, 0, a⟩+ ⟨0, 0, b, b⟩ = a⟨0, 1, 0, 1⟩+ b⟨0, 0, 1, 1⟩.

So the elements of Q are linear combinations of the pair ⟨0, 1, 0, 1⟩ and
⟨0, 0, 1, 1⟩, that is

Q = Span{⟨0, 1, 0, 1⟩, ⟨0, 0, 1, 1⟩}.

By Theorem 4.2.2 we conclude that Q is a subspace of R4.

Exercise 4.2.2. Find a spanning set for each subspace of Rn.

• Q = {⟨0, a⟩ ∈ R2 | a ∈ R}

• P = {⟨a, a, b⟩ ∈ R3 | a, b ∈ R}

• T = {⟨a, b, c, a+ b+ c⟩ ∈ R4 | a, b, c ∈ R}
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4.2.1 The Fundamental Subspaces of a Matrix

In Section 3.3, we associated two sets of vectors with an m × n matrix A.
These were the row vectors {Row1(A), . . . ,Rowm(A)}, which are vectors in
Rn, and the column vectors {Col1(A), . . . ,Coln(A)}, which are vectors in
Rm. This provides us with two subspaces, one of Rn and one of Rm, that we
can associated with a given matrix.

Definition 4.2.2. Let A be an m × n matrix. The subspace of Rn spanned
by the row vectors of A, denoted

RS(A) = Span{Row1(A), . . . ,Rowm(A)},

is called the row space of A.

Definition 4.2.3. Let A be an m× n matrix. The subspace of Rm spanned
by the column vectors of A, denoted

CS(A) = Span{Col1(A), . . . ,Coln(A)},

is called the column space of A.

The connection betweenRS(A) and systems of equations or Rn in general
is not obvious at present. But thinking back to the introduction of this
chapter, we see that the column space of a matrix is of immediate interest
when considering systems of linear equations. Now we can say that a product
Ax⃗ for x⃗ in Rn is an element of CS(A). So CS(A) is the set of all y⃗ in Rn

such that the system Ax⃗ = y⃗ is consistent.

Example 4.2.4. Let A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2

. Identify a spanning set for

RS(A) and a spanning set for CS(A).

We can simply apply the definitions since the spanning sets can be the
row vector or the column vectors, as appropriate. A spanning set for RS(A)
is

{⟨0, 3, 1⟩, ⟨4, 7, 5⟩, ⟨−2,−5,−3⟩, ⟨5,−4, 2⟩}.
A spanning set for CS(A) is

{⟨0, 4,−2, 5⟩, ⟨3, 7,−5,−4⟩, ⟨1, 5,−3, 2⟩}.
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It’s worth noting that the vectors in the spanning set for RS(A) are elements
of R3, whereas the vectors in the spanning set for CS(A) are elements of R4.

Exercise 4.2.3. Consider the set of vectors

T = {⟨1, 0, 1, 1⟩, ⟨−2, 3, 0, 8⟩, ⟨4, 4, 5, 2⟩}.

1. Find a matrix A having row space RS(A) = Span(T ).

2. Find a matrix A having columns space CS(A) = Span(T ).

The row space and column spaces are two of four subspaces associated
with a matrix. Taken together these are usually referred to as fundamental
subspaces of the matrix. A third can be defined by consideration of the
homogeneous system Ax⃗ = 0⃗m. We will call the set of all solutions of this
homogeneous equation the null space of the matrix A.

Definition 4.2.4. Let A be an m×n matrix. The null space of A, denoted
N (A), is the set of all solutions of the homogeneous equation Ax⃗ = 0⃗m. That
is,

N (A) = {x⃗ ∈ Rn |Ax⃗ = 0⃗m}.

Unlike the row and column spaces, the null space is not defined in terms
of a spanning set. Nevertheless, the null space of a matrix is a subspace of
Rn.

Theorem 4.2.3. If A is an m× n matrix, then N (A) is a subspace of Rn.

Proof. That N (A) is a subset of Rn follows from the definition of the product
Ax⃗. We can prove Theorem 4.2.3 by demonstrating that N (A) satisfies
the properties of a subspace. First, the equation always permits the trivial
solution, hence 0⃗n ∈ N (A) so that N (A) is nonempty. Next, suppose u⃗ and
v⃗ are any elements of N (A)—meaning Au⃗ = 0⃗m and Av⃗ = 0⃗m, and let c be
any scalar. Using the distributive property of the matrix-vector product

A(u⃗+ v⃗) = Au⃗+ Av⃗ = 0⃗m + 0⃗m = 0⃗m, i.e., u⃗+ v⃗ ∈ N (A),

and using the fact that we can factor scalars

A(cu⃗) = cAu⃗ = c⃗0m = 0⃗m, i.e., cu⃗ ∈ N (A).

Thus N (A) is closed under vector addition and scalar multiplication. This
establishes that N (A) is a subspace of Rn completing the proof of Theo-
rem 4.2.3.
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Example 4.2.5. Let A =

 3 3 3
−1 −2 1
−5 −6 −3

. Find a spanning set for N (A).

We need to find a representation for solutions to the homogeneous equa-
tion Ax⃗ = 0⃗3. We can use row reduction on

[
A | 0⃗3

]
. 3 3 3 0

−1 −2 1 0
−5 −6 −3 0

 rref−→

 1 0 3 0
0 1 −2 0
0 0 0 0

 .

From the rref, we see that a solution x⃗ = ⟨x1, x2, x3⟩ will have

x1 = −3x3, x2 = 2x3, and x3 is free.

This means that any solution can be written as x⃗ = ⟨−3x3, 2x3, x3⟩ for some
real number x3. To find a spanning set, we can decompose such a vector
(using the same process we used in Example 4.2.3 and Exercise 4.2.2) to
write it as a linear combination

x⃗ = ⟨−3x3, 2x3, x3⟩ = x3⟨−3, 2, 1⟩.

So a spanning set for N (A) is the single element set {⟨−3, 2, 1⟩}.

Exercise 4.2.4. Find a spanning set for the null space N (A) where

A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2

 .

Note that RS(A) and N (A) are both subspaces of Rn whereas CS(A) is
a subspace of Rm. An interesting interpretation of RS(A) stems from the
observation that if u⃗ is any vector in RS(A) and x⃗ is any vector in N (A),
then it is necessarily the case that

u⃗ · x⃗ = 0.

To see that this is true, we recall from Section 3.5 that one of the interpre-
tations of the product Ax⃗ is as the vector of dot products of the rows of A
with x⃗,

Ax⃗ = ⟨Row1(A) · x⃗,Row2(A) · x⃗, . . . ,Rowm(A) · x⃗⟩ .
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Hence, if x⃗ is in N (A), each entry in Ax⃗ must be zero—meaning each
Rowi(A) · x⃗ = 0. If we take any element of RS(A), say u⃗, then we can
write this vector as a linear combination of the rows of A,

u⃗ = c1Row1(A) + c2Row2(A) + · · ·+ cm Rowm(A),

for some set of weights, c1, . . . , cm. Let x⃗ be any element of N (A). We can
form the dot product x⃗ · u⃗, and using the algebraic properties of the dot
product, we get

x⃗ · u⃗ = x⃗ ·
(
c1Row1(A) + c2Row2(A) + · · ·+ cm Rowm(A)

)
= c1x⃗ · Row1(A) + c2x⃗ · Row2(A) + · · ·+ cmx⃗ · Rowm(A)

= c1(0) + c2(0) + · · ·+ cm(0)

= 0.

We conclude that every vector in RS(A) is orthogonal to every vector in
N (A). Due to this property, that every vector in one set is orthogonal to
every vector in the other set, we refer to these as orthogonal complements.
That is, for any matrix A, RS(A) is the orthogonal complement of N (A)—
and vice versa. In fact, the fourth fundamental subspace associated with a
matrix A is the orthogonal complement of the column space.

Recall that in Section 3.4, we defined the transpose of an m × n matrix
A to be the n×m matrix AT such that

Rowi(A
T ) = Coli(A), for i = 1, . . . , n.

Similarly,

Coli(A
T ) = Rowi(A), for i = 1, . . . ,m.

Since the rows and columns of A and AT are swapped, we can immediately
see that

RS(AT ) = CS(A), and CS(AT ) = RS(A).

The fourth fundamental subspace associated with a matrix A, the orthogonal
complement of its column space, is the null space of AT , N (AT ). We can
think of N (AT ) as being defined by

N (AT ) = {x⃗ ∈ Rm | x⃗ · y⃗ = 0, for every y⃗ ∈ CS(A)} . (4.4)
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This definition highlights its property of being the orthogonal complement
of CS(A). Or, we can define N (AT ) by

N (AT ) =
{
x⃗ ∈ Rm |AT x⃗ = 0⃗n

}
, (4.5)

highlighting its relationship to a specific homogeneous equation. Of course,
the sets defined in equations (4.4) and (4.5) are the same set, and like CS(A),
N (AT ) is a subspace of Rm.

Example 4.2.6. Let A =

 3 3 3
−1 −2 1
−5 −6 −3

. Find a spanning set for the

orthogonal complement of CS(A).

We know that the orthogonal complement of CS(A) is the null space of
AT , i.e. N (AT ). So we can restate the problem as finding a spanning set for
N (AT ), which in turn means we need to find a representation for solutions of
the homogeneous equation AT x⃗ = 0⃗3. Using row reduction on the augmented
matrix

[
AT | 0⃗3

]
. 3 −1 −5 0
3 −2 −6 0
3 1 −3 0

 rref−→

 1 0 −4/3 0
0 1 1 0
0 0 0 0

 .

We see that a solution x⃗ = ⟨x1, x2, x3⟩ of AT x⃗ = 0⃗3 will have entries

x1 =
4

3
x3, x2 = −x3, with x3 free.

Decomposing such a vector,

x⃗ =

〈
4

3
x3,−x3, x3

〉
= x3

〈
4

3
,−1, 1

〉
.

A spanning set for the orthogonal complement of CS(A) (a.k.a. N (AT )) is{〈
4

3
,−1, 1

〉}
.
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Example 4.2.7. Find a spanning set for each of the four fundamental sub-
spaces of the matrix

A =

[
1 −2 5 4
2 −4 1 −1

]
.

For the row and columns spaces, we can simply use the row and column
vectors, respectively. That is,

RS(A) = Span{⟨1,−2, 5, 4⟩, ⟨2,−4, 1,−1⟩}, and

CS(A) = Span{⟨1, 2⟩, ⟨−2,−4⟩, ⟨5, 1⟩, ⟨4,−1⟩}.
For the two null spaces, we will have to consider homogeneous equations and
do row reduction. To characterize N (A), we row reduce

[
A | 0⃗2

]
.[

1 −2 5 4 0
2 −4 1 −1 0

]
rref−→

[
1 −2 0 −1 0
0 0 1 1 0

]
.

A solution x⃗ to Ax⃗ = 0⃗ will have entries

x1 = 2x2 + x4, x3 = −x4, with x2, x4 free.

Hence

x⃗ = ⟨2x2 + x4, x2,−x4, x4⟩ = x2⟨2, 1, 0, 0⟩+ x4⟨1, 0,−1, 1⟩.

A spanning set for N (A) is

N (A) = Span {⟨2, 1, 0, 0⟩, ⟨1, 0,−1, 1⟩} .

Playing a similar game to find a spanning set for N (AT ), we set up and
reduce

[
AT | 0⃗4

]


1 2 0
−2 −4 0
5 1 0
4 −1 0

 rref−→


1 0 0
0 1 0
0 0 0
0 0 0

 .

We see that if x⃗ = ⟨x1, x2⟩ is in N (AT ), then x1 = x2 = 0. That is,

N (AT ) = {⟨0, 0⟩} .

We can write N (AT ) = Span{⟨0, 0⟩}.
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Exercise 4.2.5. For each matrix A, find a spanning set for each of the four
fundamental subspaces of A.

1. A =


1 2 0 2
2 1 3 0
3 −1 7 3
2 0 4 0



2. A =

 1 3 1 0 11
−1 1 4 1 0
−2 0 3 −1 −3



3. A =

 4 8 −3 1
−2 −4 5 −11
3 6 1 −9


4.3 Bases

We can think of a spanning set as a set of building blocks that, when com-
bined with the operations of vector addition and scalar multiplication, can
be used to generate an entire subspace. But not all spanning sets are created
equally. Consider the vector space R2. In Example 1.3.3, we saw that the set
{⟨1, 0⟩, ⟨0, 1⟩} is a spanning set for R2. In some sense, it seems like an obvious
choice of a spanning set, but it’s certainly not the only one. For example, we
also saw that R2 = Span{⟨1, 1⟩, ⟨1,−1⟩} and R2 = Span{⟨2, 1⟩, ⟨1, 2⟩} (see
Exercise 8 at the end of Chapter 1). Similarly,

⟨x1, x2⟩ = (x1 − x2 + 1)⟨1, 0⟩+ (x2 − 1)⟨1, 1⟩+ ⟨0, 1⟩,

so we also have R2 = Span{⟨1, 0⟩, ⟨1, 1⟩, ⟨0, 1⟩}. At the same time, the set
{⟨1, 0⟩} does not span R2 since every linear combination of ⟨1, 0⟩ will nec-
essarily have second component zero. While it’s not possible to talk about
the (i.e., a unique) spanning set for a given subspace of Rn, we can ask
whether there is a minimum amount of information (number of vectors)
necessary to construct all of the vectors in a subspace. We can also ask
whether a given spanning set includes superfluous information—such as the
set {⟨1, 0⟩, ⟨1, 1⟩, ⟨0, 1⟩} whose proper subset {⟨1, 0⟩, ⟨0, 1⟩} spans R2.
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Example 4.3.1. Suppose u⃗1, u⃗2 and u⃗3 are vectors in Rn with

u⃗3 = u⃗1 + 3u⃗2.

Show that Span{u⃗1, u⃗2, u⃗3} = Span{u⃗1, u⃗2}.

First, we will note that if x⃗ is any vector in Span{u⃗1, u⃗2}, then there are
scalars c1 and c2 such that

x⃗ = c1u⃗1 + c2u⃗2.

This is equivalent to
x⃗ = c1u⃗1 + c2u⃗2 + 0u⃗3,

so x⃗ is necessarily in Span{u⃗1, u⃗2, u⃗3}. We need to show that every vec-
tor in Span{u⃗1, u⃗2, u⃗3} is in Span{u⃗1, u⃗2}. To that end, suppose x⃗ is in
Span{u⃗1, u⃗2, u⃗3}, so that

x⃗ = c1u⃗1 + c2u⃗2 + c3u⃗3,

for some scalars c1, c2 and c3. Since u⃗3 = u⃗1+3u⃗2, we an rearrange the above
to get

x⃗ = c1u⃗1 + c2u⃗2 + c3(u⃗1 + 3u⃗2) = (c1 + c3)u⃗1 + (c2 + 3c3)u⃗2.

That is, x⃗ is a linear combination of the pair u⃗1 and u⃗2, and we can conclude
that Span{u⃗1, u⃗2, u⃗3} = Span{u⃗1, u⃗2}.

Example 4.3.1 illustrates that if a spanning set is linearly dependent
(which is the case since u⃗3 is a linear combination of u⃗1 and u⃗2), we may
be able to discard one or more elements without losing part of the subspace
generated by the set. To generate a given subspace, we require the vectors
in a set to span the subspace. Linear independence is the key property that
is needed to ensure that a spanning set does not include superfluous infor-
mation. A minimal spanning set is called a basis. We have the following
definition.

Definition 4.3.1. Let S be a subspace of Rn, and let B = {⃗b1, . . . , b⃗k} be a
subset of vectors in S. B is a basis of S provided

• B spans S, and
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• B is linearly independent.

So a basis is a linearly independent spanning set. A basis B contains
all of the information needed to construct every vector in a subspace, and a
basis is minimal in the sense that the subspace is not spanned by any proper
subset of B.

Example 4.3.2. The column vectors of the n×n identity matrix form a basis
for Rn. Recall that we used the notation e⃗i to denote such a vector having 1
in the ith position and zero everywhere else. The set E = {e⃗1, e⃗2, . . . , e⃗n} of
standard unit vectors in Rn is called the standard basis or the elementary
basis of Rn. Note that any vector x⃗ = ⟨x1, x2, . . . , xn⟩ can be expressed as a
linear combination in the rather obvious way,

x⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n,

so E spans Rn. Moreover, as the columns of the n×n identity matrix (which
is its own inverse), we know that the set E is linearly independent.

Example 4.3.3. Show that the set B = {⟨2, 1⟩, ⟨1, 2⟩} is a basis of R2.

First, we note that in Exercise 8 at the end of Chapter 1, we showed that
this set spans4 R2. So to conclude that B is a basis, we have to show that the
set {⟨2, 1⟩, ⟨1, 2⟩} is linearly independent. There are various approaches we
can use. Let’s define a matrix B having the vectors as columns and consider
the homogeneous equation Bx⃗ = 0⃗2. Using row reduction, note that[

2 1 0
1 2 0

]
rref−→

[
1 0 0
0 1 0

]
.

We see that B has two pivot columns so that there are no nontrivial solutions
to Bx⃗ = 0⃗2. Applying Theorem 4.1.1, it follows that the set B is linearly
independent. Hence B is a basis for R2.

4To refresh our memories,

⟨x1, x2⟩ =
(
2x2 − x1

3

)
⟨1, 2⟩+

(
2x1 − x2

3

)
⟨2, 1⟩.



172 CHAPTER 4. VECTOR SPACES AND SUBSPACES

Example 4.3.4. Determine whether the set

S = {⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 2⟩, ⟨1, 1, 1⟩}

is a basis for R3.

We can easily write any vector ⟨x1, x2, x3⟩ as a linear combination of the
vectors S. Note for example that

⟨x1, x2, x3⟩ = x1⟨1, 0, 0⟩+ x2⟨0, 1, 0⟩+
x3

2
⟨0, 0, 2⟩.

So S certainly spans R3. However, the set S contains four elements, each
with three entries. By Theorem 4.1.2, S is linearly dependent. Hence, it is
not a basis for R3.

Exercise 4.3.1. Suppose S is a subspace of Rn for some n ≥ 2, and let
B = {⃗b1, . . . , b⃗k} be a basis for S. Explain why the number of vectors, k, in
the basis B must be less than or equal to n.

Example 4.3.5. Find a basis for the subspace Q = {⟨0, a, b, a+b⟩ ∈ R4 | a, b ∈
R} of R4.

In Example 4.2.3, we decomposed an arbitrary element of Q to find a
spanning set. The process that we used there has the added benefit of pro-
ducing a spanning set that is actually a basis. We wrote an element of Q
as

⟨0, a, b, a+ b⟩ = ⟨0, a, 0, a⟩+ ⟨0, 0, b, b⟩ = a⟨0, 1, 0, 1⟩+ b⟨0, 0, 1, 1⟩,

giving us the spanning set {⟨0, 1, 0, 1⟩, ⟨0, 0, 1, 1⟩}. Each of these vectors has
some entry in which one vector has a 1 where the other has a zero. The
second entry of ⟨0, 1, 0, 1⟩ is 1 and the third is 0, where as the second entry of
⟨0, 0, 1, 1⟩ is 0 and the third entry is 1. This guarantees linear independence.
Note that

c1⟨0, 1, 0, 1⟩+ c2⟨0, 0, 1, 1⟩ = ⟨0, 0, 0, 0⟩ =⇒ ⟨0, c1, c2, c1 + c2⟩ = ⟨0, 0, 0, 0⟩.

In particular, the second and third entries give

c1 = 0
c2 = 0

.

This shows that the set {⟨0, 1, 0, 1⟩, ⟨0, 0, 1, 1⟩} is linearly independent, and
hence is a basis for Q.
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Exercise 4.3.2. Find a basis for each subspace of Rn. You may wish to start
with the spanning sets you found for these same subspaces in Exercise 4.2.2,
but you should demonstrate that the set you claim is a basis is both a spanning
set and is linearly independent.

• Q = {⟨0, a⟩ ∈ R2 | a ∈ R}

• P = {⟨a, a, b⟩ ∈ R3 | a, b ∈ R}

• T = {⟨a, b, c, a+ b+ c⟩ ∈ R4 | a, b, c ∈ R}

Example 4.3.6. Find a basis for the null space, N (A), of the matrix

A =

 1 3 −1 5
−1 1 −3 3
2 −2 6 −6

 .

We recall that N (A) is set of all solutions of the homogeneous equation
Ax⃗ = 0⃗3. Since A has size 3×4, N (A) will be a subspace of R4. Fortunately,
the process we’ve used to find a spanning set for N (A) will automatically
generate a basis. To see this, let’s first solve the homogeneous equation by
using row reduction on

[
A | 0⃗3

]
. We have 1 3 −1 5 0

−1 1 −3 3 0
2 −2 6 −6 0

 rref−→

 1 0 2 −1 0
0 1 −1 2 0
0 0 0 0 0

 .

Now, we can see that a solution x⃗ = ⟨x1, x2, x3, x4⟩ will have two basic vari-
ables, x1 and x2, and two free variables, x3 and x4. We can write the solution

x1 = −2s+ t
x2 = s− 2t
x3 = s
x4 = t

,

where −∞ < s, t < ∞. So a representative solution will be a vector of the
form

x⃗ = ⟨−2s+ t, s− 2t, s, t⟩.
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As we’ve done before, we can decompose this vector as a linear combination
by factoring out the parameters s and t.

x⃗ = ⟨−2s+ t, s− 2t, s, t⟩
= ⟨−2s, s, s, 0⟩+ ⟨t,−2t, 0, t⟩
= s⟨−2, 1, 1, 0⟩+ t⟨1,−2, 0, 1⟩

So an element x⃗ of N (A) will be a linear combination of the vectors ⟨−2, 1, 1, 0⟩
and ⟨1,−2, 0, 1⟩. If we focus on the third and fourth entries—because the free
variables were x3 and x4, we’ll see that the pair of vectors {⟨−2, 1, 1, 0⟩, ⟨1,−2, 0, 1⟩}
is necessarily linearly independent! If we set up the linear combination

c1⟨−2, 1, 1, 0⟩+ c2⟨1,−2, 0, 1⟩ = ⟨0, 0, 0, 0⟩,

the third entry gives c1 = 0 and the fourth entry gives c2 = 0, confirming
the linear independence. If we obtain a spanning set for a null space by
decomposing solutions in this fashion (separating out the free variables), we’re
guaranteed to produce a basis! Our solution, a basis for N (A), is the set

{⟨−2, 1, 1, 0⟩, ⟨1,−2, 0, 1⟩}.

Exercise 4.3.3. Find a basis for N (A) and for N (AT ) for each matrix A.

1. A =

 1 3 0 1
2 6 0 2
3 9 1 2



2. A =

 2 3 1
−3 5 8
4 2 −2


4.3.1 Coordinate Vectors

A defining characteristic of a basis, as opposed to a spanning set, is that
if B is a basis for a subspace S of Rn, and x⃗ is any element of S, then
there is exactly one representation of x⃗ (i.e., exactly one set of coefficients)
as a linear combination of the basis elements. To demonstrate this, suppose
B = {⃗b1, . . . , b⃗k} is an ordered5 basis for some subspace S and suppose an

5By ordered, we simply mean that we have assigned an order to the vectors in the set
and have numbered the vectors accordingly.
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element x⃗ of S can be written in two, potentially different, ways:

x⃗ = a1⃗b1 + a2⃗b2 + · · ·+ akb⃗k (4.6)

x⃗ = c1⃗b1 + c2⃗b2 + · · ·+ ckb⃗k (4.7)

If we subtract line (4.7) from (4.6), on the left side, we’ll get x⃗ − x⃗ = 0⃗n.
Combining like terms on the right, we get

0⃗n = (a1 − c1)⃗b1 + (a2 − c2)⃗b2 + · · ·+ (ak − ck )⃗bk.

But B is a basis, so it is linearly independent, meaning that the only solution
of this homogeneous equation is the trivial solution,

a1 − c1 = 0
a2 − c2 = 0

...
...

...
ak − ck = 0

.

That is, the coefficients are actually the same, ai = ci for each i = 1, . . . , k.
So, once an ordered basis is specified for some subspace of Rn (including
Rn itself), any element of the subspace can be uniquely identified with the
coefficients for its representation as a linear combination of the basis elements.

Remark 4.3.1. In Example 1.1.1, we saw that Span{e⃗1}, where e⃗1 = ⟨1, 0⟩
in R2, could be equated with the horizontal axis. It is easy to show that B =
{e⃗1} is a basis for this subspace of R2. Early in Section 4.2, we mentioned
that this subset (which is a subspace) somehow has a similar structure to R1.
Note that given any vector in Span{e⃗1}, we can associate it in a unique way
with its coefficient. For example, we can equate the real number 2 with the
vector ⟨2, 0⟩, the real number π with the vector ⟨π, 0⟩, or more generally, the
real number c with the vector ⟨c, 0⟩. This is the sense in which B = {e⃗1}
has the same structure as R1. As long as we know that our context is the
basis B = {e⃗1}, we can represent each element in the subspace with a single
element of R1.

Since the coefficients are uniquely determined once we’ve specified a basis
for a subspace of Rn, we can work with the set of coefficients. In fact, these
coefficients can be used to create a new set of k-tuples that define the elements
of our subspace. We call these coordinate vectors.
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Definition 4.3.2. Let S be a subspace of Rn and B = {⃗b1, . . . , b⃗k} be an
ordered basis of S. For each element x⃗ in S, the coordinate vector for x⃗
relative to the basis B is denoted [x⃗]B and is defined to be

[x⃗]B = ⟨c1, c2, . . . , ck⟩,

where the entries are the coefficients of the representation of x⃗ as a linear
combination of the basis elements. That is, the c’s are the coefficients in the
equation

x⃗ = c1⃗b1 + c2⃗b2 + · · ·+ ckb⃗k.

Example 4.3.7. For the subspace X = Span{e⃗1} of R2 with basis B = {e⃗1},
the coordinate vectors are real numbers. For example,

[⟨2, 0⟩]B = 2, [⟨π, 0⟩]B = π, and [⟨c, 0⟩]B = c.

We can write elements of R1 using brackets, i.e., ⟨c⟩, though it is not cus-
tomary to do so.

Example 4.3.8. Consider the basis B = {⟨2, 1⟩, ⟨1, 2⟩}F of R2 (we showed
in Exercise 4.3.3 that this is a basis).

1. Find [x⃗]B if x⃗ = ⟨2, 1⟩

2. Find [x⃗]B if x⃗ = ⟨1, 2⟩

3. Find [x⃗]B if x⃗ = ⟨0, 0⟩

4. Find [x⃗]B if x⃗ = ⟨1, 0⟩

5. Find x⃗ if [x⃗]B = ⟨3, 1⟩

To find each coordinate vector, we can translate the problem into an equa-
tion which we can solve. Some of these can be done with little effort. For 1.,
note that we seek

[⟨2, 1⟩]B = ⟨c1, c2⟩
where

⟨2, 1⟩ = c1⟨2, 1⟩+ c2⟨1, 2⟩.
By observation, we have c1 = 1 and c2 = 0. So

[⟨2, 1⟩]B = ⟨1, 0⟩.
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A similar argument can be applied to 2. to arrive at

[⟨1, 2⟩]B = ⟨0, 1⟩.

For 3., we can consider the equation

⟨0, 0⟩ = c1⟨2, 1⟩+ c2⟨1, 2⟩.

Since the basis elements are linearly independent, we must have

[⟨0, 0⟩]B = ⟨0, 0⟩.

Exercise 4. will require a bit more effort, but we can start with the equation

⟨1, 0⟩ = c1⟨2, 1⟩+ c2⟨1, 2⟩.

We can rephrase the problem in terms of a matrix-vector equation Bc⃗ = x⃗,
and our coordinate vector [x⃗]B will be the solution c⃗. The matrix B will have
columns ⟨2, 1⟩ and ⟨1, 2⟩ (in this order). Setting up an augmented matrix
and using row reduction,

[B | x⃗] =
[
2 1 1
1 2 0

]
rref−→

[
1 0 2/3
0 1 −1/3

]
.

It follows that

[⟨1, 0⟩]B =

〈
2

3
,−1

3

〉
.

We can readily verify that this is correct,

2

3
⟨2, 1⟩ − 1

3
⟨1, 2⟩ =

〈
4

3
− 1

3
,
2

3
− 2

3

〉
= ⟨1, 0⟩.

Exercise 5. is a bit different. Here, we are given the coefficients, c1 = 3 and
c2 = 1, we simply need to find the linear combination of our basis vectors.

x⃗ = 3⟨2, 1⟩+ 1⟨1, 2⟩ = ⟨3(2) + 1, 3(1) + 2⟩ = ⟨7, 5⟩.

Exercise 5. in Example 4.3.8 above illustrates that a vector x⃗ in some
subspace S of Rn can be realized as a matrix-vector product, where the vector
is the coordinate vector, and the matrix has the basis elements for columns.
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That is, if we form a matrix B whose columns are the basis elements (in the
order given), then

x⃗ = B[x⃗]B.

The basis in Example 4.3.8 would give us the matrix

B =

[
2 1
1 2

]
.

So we could determine the vector x⃗ in part 5 of Example 4.3.8 by evaluating
the matrix-vector product

x⃗ = B[x⃗]B =

[
2 1
1 2

]
⟨3, 1⟩ = ⟨7, 5⟩.

If B is a square matrix, we can also find coordinate vectors using the rela-
tionship

[x⃗]B = B−1x⃗.

(Can you explain how we would know that such a square matrix B would be
invertible?) In general, however, the matrix formed from the basis elements

need not be square. If S is a subspace of Rn with basis B = {⃗b1, . . . , b⃗k},
then the matrix B defined by

Coli(B) = b⃗i

will have size n× k.

Exercise 4.3.4. Consider the basis B = {⟨1, 1⟩, ⟨1,−1⟩} of R2.

1. Find [x⃗]B if x⃗ = ⟨1, 1⟩

2. Find [x⃗]B if x⃗ = ⟨1,−1⟩

3. Find [x⃗]B if x⃗ = ⟨0, 0⟩

4. Find [x⃗]B if x⃗ = ⟨2, 3⟩

5. Find x⃗ if [x⃗]B = ⟨−1, 4⟩
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Example 4.3.9. Consider the vectors e⃗1 = ⟨1, 0, 0, 0⟩ and e⃗3 = ⟨0, 0, 1, 0⟩
in R4. Let B = {e⃗1, e⃗3} be an ordered basis for the subspace P = Span{B}.
Describe the coordinate vectors for elements of P .

If x⃗ is in P , then x⃗ = ⟨x1, 0, x3, 0⟩ for some real numbers x1 and x3. The
coordinate vector for x⃗ relative to B will be

[x⃗]B = ⟨x1, x3⟩.

We note that the coordinate vectors will be vectors in R2. In fact, given any
vector, say y⃗ = ⟨y1, y2⟩ in R2, the vector x⃗ = ⟨y1, 0, y2, 0⟩ will be an element
of P (since it can be written as y1e⃗1+y2e⃗3 in R4). So the set of all coordinate
vectors of P relative to the basis B is actually all of R2.

Exercise 4.3.5. For the subspace P in Example 4.3.9, construct the matrix
B whose columns are the basis elements in the order given. For each coor-
dinate vector [x⃗]B in R2, find the element x⃗ in P by using the matrix-vector
product x⃗ = B[x⃗]B.

1. [x⃗]B = ⟨1, 1⟩

2. [x⃗]B = ⟨−3, 5⟩

3. [x⃗]B = ⟨x1, x2⟩

Remark 4.3.2. The observation in Example 4.3.9, that the collection of
coordinate vectors for the subspace P of R4 is the space R2, has a name. We
say that P is isomorphic to R2. Similarly, from Example 4.3.7, we can say
that X is isomorphic to R1.

Exercise 4.3.6. Consider the vectors b⃗1, b⃗2, and b⃗3 in R5 given by

b⃗1 = ⟨1, 0, 0, 0, 0⟩, b⃗2 = ⟨1, 1, 0, 0, 0⟩, and b⃗3 = ⟨1, 1, 1, 0, 0⟩.

Let B =
{⃗
b1, b⃗2, b⃗3

}
be the ordered basis for the subspace S = Span(B) of

R5. Verify that the coordinate vectors, [⃗bi]B, of the basis elements are the
standard unit vectors in R3. That is, show that

[⃗b1]B = ⟨1, 0, 0⟩, [⃗b2]B = ⟨0, 1, 0⟩, and [⃗b3]B = ⟨0, 0, 1⟩.
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Exercise 4.3.7. Suppose n ≥ 2 and 1 ≤ k ≤ n. Let B = {⃗b1, . . . , b⃗k} be an

ordered basis of the subspace S = Span(B) of Rn. Explain why [⃗bi]B = e⃗i for
each i = 1, . . . , k. That is, explain why the coordinate vectors for the basis
elements are the standard unit vectors in Rk.

Hint: don’t worry about a bunch of computations, just consider the equa-
tion

b⃗i = c1⃗b1 + · · ·+ ci⃗bi + · · ·+ ckb⃗k.

4.3.2 Dimension

We are ready to define the dimension of Rn or more generally the dimension
of a subspace of Rn. Fortunately, the definition of dimension in this context
will align with our intuition—i.e., that R2 should be two dimensional, R3

should be three dimensional, and so forth. But we need a rigorous and
unambiguous criterion upon which to base the definition of dimension. This
will come from bases.

Theorem 4.3.1. Let n ≥ 2 and 1 ≤ k ≤ n. Suppose S is a subspace of Rn

and B = {⃗b1, . . . , b⃗k} is a basis of S. Then every basis of S consists of exactly
k vectors.

To prove Theorem 4.3.1, we first establish the following lemma.

Lemma 4.3.1. Suppose S is a subspace of Rn and B = {⃗b1, . . . , b⃗k} is an
ordered basis of S. If T = {v⃗1, v⃗2, . . . , v⃗m} is any set of m vectors in S where
m > k, then T is linearly dependent.

Proof. We will use coordinate vectors to prove Lemma 4.3.1. First, note
that since B consists of k vectors, coordinate vectors with respect to B will
be vectors in Rk. Let A be the k×mmatrix whose columns are the coordinate
vectors of the elements of T with respect to the basis B,

Coli(A) = [v⃗i]B, i = 1, . . . ,m.

Now, A has m columns, each of which is a vector in Rk, and m > k. By
Theorem 4.1.2, the columns of A are linearly dependent. So applying The-
orem 4.1.1, the homogeneous equation Ax⃗ = 0⃗k has a nontrivial solution,
x⃗ = ⟨x1, x2, . . . , xm⟩. Hence we have a linear dependence relation,

x1[v⃗1]B + x2[v⃗2]B + · · ·+ xm[v⃗m]B = 0⃗k (4.8)
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with at least one xi ̸= 0, for the coordinate vectors in Rk. We can use
equation (4.8) to obtain a linear dependence relation on the vectors in T . To
this end, we create the n×k matrix B whose columns are the basis elements
in B,

Coli(B) = b⃗i, i = 1, . . . , k.

By the definition of coordinate vectors,

v⃗i = B[v⃗i]B for each v⃗i ∈ T.

We multiply both sides of equation (4.8) by the matrix B and make use of
the distributive property to obtain

B
(
x1[v⃗1]B + x2[v⃗2]B + · · · + xm[v⃗m]B

)
= B0⃗k

x1B[v⃗1]B + x2B[v⃗2]B + · · · + xmB[v⃗m]B = 0⃗n
x1v⃗1 + x2v⃗2 + · · · + xmv⃗m = 0⃗n

. (4.9)

Equation (4.9) is a linear dependence relation, and we conclude that T is
linearly dependent.

We can now prove prove Theorem 4.3.1.

Proof. (of Theorem 4.3.1) Suppose a subspace S of Rn has two bases B =

{⃗b1, . . . , b⃗k} and C = {c⃗1, . . . , c⃗ℓ} consisting of k and ℓ vectors, respectively.
By Lemma 4.3.1, as C must be linearly independent, we have ℓ ≤ k. Similarly,
the linear independence of B requires k ≤ ℓ. Hence it must be that k = ℓ,
and we conclude that every basis of a subspace S of Rn must contain the
same number of elements.

We are ready to define dimension.

Definition 4.3.3. Let S be a subspace of Rn. If S = {⃗0n}, then the di-
mension of S, written dim(S) is equal to zero. If S contains more than the
zero vector, then the dimension of S, dim(S) = k, where k is the number of
elements in any basis of S.

The subset of Rn containing only the zero vector is a subspace of Rn (see
Exercise 2). This subspace does not have a basis, so we assign its dimension
to be zero. Otherwise, we have established that every basis for a given
subspace must contain the same number of basis vectors. So the dimension
is well defined. As we expected, the dimension of Rn is n.
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Example 4.3.10. Show that for any n ≥ 2, dim(Rn) = n.

For any n ≥ 2 we can take the standard basis for Rn consisting of the n
vectors e⃗i, having a 1 in the ith entry and zero in all other entries. Since this
set consists of n vectors, dim(Rn) = n.

Example 4.3.11. Find the dimension of the null space of the matrix

A =

 1 3 −1 5
−1 1 −3 3
2 −2 6 −6


from Example 4.3.6.

In Example 4.3.6, we found the basis {⟨−2, 1, 1, 0⟩, ⟨1,−2, 0, 1⟩} for N (A).
Since this basis contains two vectors, we conclude that

dim(N (A)) = 2.

Exercise 4.3.8. Find the dimension of the null space of the matrix

A =


1 2 5 3 3

−1 0 3 −1 −3
1 1 1 0 −1
1 1 1 4 7

 .

Exercise 4.3.9. Find the dimension of the null space of the matrix

B =


1 −1 1 1
2 0 1 1
5 3 1 1
3 −1 0 4
3 −3 −1 7

 .

4.3.3 Basis as a Subset of a Spanning Set

We are trying to make our way to a profound result in linear algebra called
the Fundamental Theorem of Linear Algebra. (If they call it “fundamental,”
it must be important, right?) This theorem is actually a collection of related
results that in part connects the dimensions of the fundamental subspaces of
a matrix. Right now, we have a reliable process for characterizing the null
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space of a given matrix, either as the space {⃗0n} or having some basis that
we can find. However, we don’t yet have a method to find a basis for the
row or column spaces of a matrix. For example, given an m× n matrix, A,
we can take the set of row vectors as a spanning set for RS(A) (similarly
the column vectors are a spanning set for CS(A)). But such a set is not
necessarily a basis, since the row vectors need not be linearly independent.
We can ask, if we’re given a spanning set that is not linearly independent, is
there a reliable way to cull the set so that we (1) span the same subspace,
and (2) obtain a linearly independent spanning set? We begin by proving
the following result that says that we can cull a linearly dependent set (in
specific ways) without changing the subspace it spans.

Lemma 4.3.2. Let T = {u⃗1, . . . , u⃗k} be a set of k vectors in Rn, with k ≥ 2,
and let S = Span(T ). If one of the vectors, say u⃗i in T , is a linear combina-
tion of the other vectors in T , then the set obtained from T by removing u⃗i

spans S.

We might recognize the general idea stated in this Lemma from Exam-
ple 4.3.1. In that example, we showed that the span remained the same
when we removed a vector from a linearly dependent set. Here, we prove
Lemma 4.3.2.

Proof. Suppose one of the vectors in T is a linear combination of the other
vectors in T ,

u⃗i = c1u⃗1 + · · ·+ ci−1u⃗i−1 + ci+1u⃗i+1 + · · ·+ cku⃗k, (4.10)

and let T̂ be the subset of T obtained by removing u⃗i. Since T̂ ⊂ T , any
vector x⃗ in Span(T̂ ) will be a linear combination of vectors in T . Hence
Span(T̂ ) ⊂ Span(T ). So suppose x⃗ is in Span(T ). Then we can write x⃗ as a
linear combination of the vectors in T ,

x⃗ = a1u⃗1 + · · ·+ ai−1u⃗i−1 + aiu⃗i + ai+1u⃗i+1 + · · ·+ aku⃗k. (4.11)

Now, we can replace u⃗i in equation (4.11) with the right hand side of equa-
tion (4.10) and collect terms to obtain

x⃗ = (a1 + aic1)u⃗1 + · · ·+ (ai−1 + aici−1)u⃗i−1 +

+ (ai+1 + aici+1)u⃗i+1 + · · ·+ (ak + aick)u⃗k. (4.12)

Hence x⃗ is a linear combination of the vectors in T̂ so that Span(T ) ⊂
Span(T̂ ). It follows that Span(T̂ ) = Span(T ), and the proof is complete.
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Now, we show that a basis can be obtained from a spanning set.

Lemma 4.3.3. Let T = {u⃗1, . . . , u⃗k} be a set of vectors in Rn and S =
Span(T ). If T contains at least one nonzero vector, then there exists a subset
of T that is a basis for S.

Proof. If T contains at least one nonzero vector, then S contains nonzero
vectors and hence has a basis. If T is linearly independent, then T is a
basis, and we are done. Otherwise, we can apply Lemma 4.3.2, repeating as
necessary, to remove vectors until we are left with a linearly independent set.
This will be a basis for S.

The Lemmas 4.3.2 and 4.3.3 tell us that we can obtain a basis from a
spanning set that is not linearly independent. In particular, they say that
we can remove vectors that are known to be linear combinations of the other
vectors. If our goal is to find a basis, say for the column and row spaces of
a matrix, this is encouraging because we have spanning sets. Unfortunately,
these Lemmas don’t give us any practical advice on how to do this. With two
or three vectors, we might be able to find linear dependence relationships by
just looking closely at the entries, but what if we’re dealing with a 20 × 30
matrix? It’s too much to ask that we can just see linear dependence relations.
Well, maybe it’s not always too much to ask. If a matrix has a particularly
nice structure, as Example 4.3.12 illustrates, it may be possible to identify
linear dependence relationships by simple observation.

Example 4.3.12. For the rref matrix A in equation (4.13), find a basis for
CS(A).

A =


1 −1 0 0 2 0 0
0 0 1 0 −3 0 1
0 0 0 1 5 0 −4
0 0 0 0 0 1 7
0 0 0 0 0 0 0

 . (4.13)

The matrix A has four pivot columns, the first, third, fourth and sixth.
The set of pivot columns, {Col1(A),Col3(A),Col4(A),Col6(A)} is obviously
linearly independent—since each has a 1 in a position where all the others
have zero. Since these pivot columns are standard unit vectors, we can im-
mediately see how the non-pivot columns depend on the pivot columns. By
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observation, we see that

Col2(A) = −Col1(A), (4.14)

Col5(A) = 2Col1(A)− 3Col3(A) + 5Col4(A), and (4.15)

Col7(A) = Col3(A)− 4Col4(A) + 7Col6(A). (4.16)

Note that the coefficients of the pivot columns in equations (4.14)–(4.16) are
simply the entries in the corresponding non-pivot columns—e.g., the coeffi-
cients in equation (4.15) are the numbers 2, −3 and 5 from that 5th column.
We start with a spanning set that contains all of the columns,

CS(A) = Span{Col1(A),Col2(A),Col3(A),Col4(A),Col5(A),Col6(A),Col7(A)},
and noting the linear dependence demonstrated in equations (4.14)–(4.16),
we apply Lemma 4.11 three times to remove Col2(A), Col5(A), and Col7(A).
We are left with a basis

Basis for CS(A) = {Col1(A),Col3(A),Col4(A),Col6(A)}
= {⟨1, 0, 0, 0, 0⟩, ⟨0, 1, 0, 0, 0⟩, ⟨0, 0, 1, 0, 0⟩, ⟨0, 0, 0, 0, 1⟩} .

The critical conclusion in Example 4.3.12 is that the set of pivot columns
constitute a basis for CS(A). Of course, the pivot columns in any rref are
standard unit vectors, so the procedure we used in this example applies to
any rref. We can even make the following generalization:

Remark 4.3.3. If A is a nonzero matrix that is an rref, then the pivot
columns of A form a basis for CS(A).

Remark 4.3.3 smells like a theorem—it could be stated as a theorem—and
it’s easy to argue that it is true. But it is very restrictive. We want to be able
to find a basis for the column space of a matrix without confining ourselves
to rrefs. In fact, given any set of vectors in Rm, we can always use them
to define a matrix (using the vectors as columns). So, if we have a method
for finding the basis of a column space, we will have a method for finding a
basis of any set of vectors. Remarkably (pun intended), the conclusion of
Remark 4.3.3 is true even if we drop the condition that A is an rref. This
will be the main result of the next section.

Exercise 4.3.10. Consider the matrix H.

H =


1 −2 0 0 3
0 0 1 0 −4
0 0 0 1 5
0 0 0 0 0

 .
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1. Classify each column as a pivot column or a non-pivot column.

2. Express each non-pivot column as a linear combination of one or more
pivot columns.

3. Identify a basis for CS(H).

4.4 Bases for the Column and Row Spaces of

a Matrix

4.4.1 Basis for a Column Space

We begin with the main theorem of this section.

Theorem 4.4.1. Let A be an m×n matrix that is not the zero matrix. The
pivot columns of A form a basis for CS(A).

Before we prove Theorem 4.4.1, let’s look back at how we solve matrix-
vector equations—or systems of linear equations—using the rref, and the
relationship between basic and free variables.

Example 4.4.1. Consider the matrix-vector equation Ax⃗ = y⃗ where

A =


1 −2 0 1 8
2 −4 3 0 −6

−1 2 1 2 3
3 −6 4 0 −7

 , and y⃗ = ⟨2,−1, 11,−2⟩.

We set up the augmented matrix
[
A | y⃗

]
and reduced the result to an rref

having the form
[
rref(A) | z⃗

]


1 −2 0 1 8 2
2 −4 3 0 −6 −1

−1 2 1 2 3 11
3 −6 4 0 −7 −2

 rref−→


1 −2 0 0 3 −2
0 0 1 0 −4 1
0 0 0 1 5 4
0 0 0 0 0 0

 .

From the rref, we can identify the basic and free variables, and deduce an
equation of the form

x1Col1(A) + x2Col2(A) + x3Col3(A) + x4Col4(A) + x5Col5(A) = y⃗. (4.17)
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For this particular example, we see that x1, x3 and x4 are basic variables, and
x2 and x5 are free. Specifically, a parametric representation of the solution
is

x1 = −2 + 2s− 3t
x2 = s
x3 = 1 + 4t
x4 = 4− 5t
x5 = t

, −∞ < s, t < ∞.

Substituting these into equation (4.17), we express y⃗ as a linear combination
of the columns of A

(−2 + 2s− 3t) Col1(A) + sCol2(A) + (1 + 4t) Col3(A) + (4− 5t) Col4(A) + tCol5(A) = y⃗.
(4.18)

We note that this equation is true for all choices of the parameters s and t.
In particular, taking s = t = 0, we see that we can write y⃗ as

−2Col1(A) + 1Col3(A) + 4Col4(A) = y⃗. (4.19)

The critical feature of equation (4.19) is that we have expressed the vector
y⃗ as a linear combination of the pivot columns alone. That is, since we can
set all free variables to zero (which is legitimate because they are free), we
can exclude the non-pivot columns and still express our solution.

Let’s recall that for an m×n matrix A, one interpretation of the column
space, CS(A), is the set of all y⃗ in Rm such that Ax⃗ = y⃗ is consistent. What
we see in this example can be generalized to argue Theorem 4.4.1.

Proof. (Of Theorem 4.4.1.) Let A be an m × n matrix that is not the zero
matrix. Then CS(A) contains nonzero vectors and hence has a basis. Let
Bpcol be the set of pivot columns of A. Since A is not the zero matrix, Bpcol

is a non-empty subset of the set of column vectors of A, and because Bpcol

contains only the pivot column vectors of A, Bpcol is linearly independent.
Since Bpcol is a subset of the set of column vectors of A, Span{Bpcol} ⊆ CS(A).
Now, let y⃗ be any element of CS(A). Then the equation Ax⃗ = y⃗ is consistent.
Let x⃗0 be the solution to this equation for which all free variables (if any)
are set to zero. Since free variables are the coefficients of the non-pivot
columns of A, Ax⃗0 is a linear combination of the pivot columns of A. But
Ax⃗0 = y⃗ so that y⃗ ∈ Span{Bpcol}. Hence CS(A) ⊆ Span{Bpcol}. It follows
that CS(A) = Span{Bpcol}, and hence Bpcol is a basis for CS(A).
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Example 4.4.2. Find a basis for CS(A) for the matrix

A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2

 .

Theorem 4.4.1 says that the set of pivot columns of A is a basis for CS(A).
To identify the pivot columns, we perform row reduction.

0 3 1
4 7 5

−2 −5 −3
5 −4 2

 rref−→


1 0 2/3
0 1 1/3
0 0 0
0 0 0

 .

From rref(A), we see that the first two columns of A are pivot columns. So
we can take as a basis the set consisting of the first two column vectors of A.
Calling the basis B, we have

B = {⟨0, 4,−2, 5⟩, ⟨3, 7,−5,−4⟩} .

Remark 4.4.1. To find a basis for CS(A), we use row reduction in order to
identify which columns of A are pivot columns. We need to remember that
the actual vectors that will be our basis elements are column vectors of A,
not rref(A)! For example, in Example 4.4.2, it would be incorrect to take
the first two columns of rref(A) as a basis for CS(A). This is actually quite
obvious in this example. Every linear combination of the first two columns of
rref(A) will necessarily have third and fourth entry zero. Even the columns
of A itself have nonzero third and fourth entries!

Exercise 4.4.1. Find a basis for the column space of each matrix.

1. A =

 3 3 3
−1 −2 1
−5 −6 −3



2. M =

 1 3 1 0 2
2 2 −2 4 0
3 1 −5 8 1


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3. X =


1 2 −1 4
0 0 3 −3
2 4 1 5
1 2 1 2
3 6 2 7


4.4.2 Basis for a Row Space

Given that the columns of AT are the rows of A, one method for obtaining a
basis for RS(A), given any nonzero matrix A, is to find a basis for CS(AT ).
This is a perfectly legitimate approach. The only possible drawback to using
this in practice is that it requires another row reduction procedure. (Of
course, this is not such an imposition when using technology as most matrix
manipulation software will have a transpose command in addition to row
reduction functions.) It is possible to glean a basis for the row space of a
matrix A from rref(A) without performing row reduction on AT . And this
follows from the nature of row operations and their effect on a spanning set.
In particular, elementary row operations preserve the row space.

Theorem 4.4.2. If A and B are row equivalent matrices, then RS(A) =
RS(B).

We’ll recall that two matrices are row equivalent if one can be obtained
from the other by performing some sequence of elementary row operations.
In particular, A and rref(A) are row equivalent. To prove Theorem 4.4.2, we
consider each of the three elementary row operations and their effects on a
span. The first is rather obvious.

Lemma 4.4.1. Let A be an m × n matrix, and let B be the m × n matrix
obtained from A by performing a row swap, Ri ↔ Rj for some i and j in
{1, . . . ,m}. Then RS(A) = RS(B).

Proof. If B is obtained from A by performing a row swap, then the sets of
row vectors,

{Row1(A), . . . ,Rowm(A)} = {Row1(B), . . . ,Rowm(B)} .

While the labels may be different, the sets contain the same vectors. Hence

Span {Row1(A), . . . ,Rowm(A)} = Span {Row1(B), . . . ,Rowm(B)} .
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Lemma 4.4.2. Let A be an m × n matrix, and let B be the m × n ma-
trix obtained from A by performing a row scaling, kRi → Ri for some i in
{1, . . . ,m}. Then RS(A) = RS(B).

Proof. Let A and B be m×n matrices and suppose B is obtained from A by
scaling the ith row by the (necessarily nonzero) number k. Let x⃗ ∈ RS(A),
then x⃗ can be written as a linear combination of the row vectors of A. But
note then that

x⃗ = c1Row1(A) + . . .+ ci Rowi(A) + . . .+ cm Rowm(A)
= c1Row1(A) + . . .+

(
ci
k

)
kRowi(A) + . . .+ cm Rowm(A)

= c1Row1(B) + . . .+
(
ci
k

)
Rowi(B) + . . .+ cm Rowm(B),

(4.20)

showing that x⃗ can be written as a linear combination of the row vectors of
B, i.e., x⃗ ∈ RS(B). Equation (4.20) similarly shows that RS(A) ⊆ RS(B),
and we can conclude that RS(A) = RS(B).

Lemma 4.4.3. Let A be an m × n matrix, and let B be the m × n matrix
obtained from A by performing a row replacement, kRi +Rj → Rj for some
i and j in {1, . . . ,m}. Then RS(A) = RS(B).

Proof. Let A be an m× n matrix, and let B be the m× n matrix obtained
from A by replacing the jth row of A with kRi + Rj for some row Ri and
scalar k. Let x⃗ ∈ RS(A). Then we can write x⃗ as a linear combination of

the rows of A. For ease of notation, let R⃗iA = Rowi(A) and R⃗iB = Rowi(B).
Note that

x⃗ = c1R⃗1A + . . .+ ciR⃗iA + . . .+ cjR⃗jA + cmR⃗mA

= c1R⃗1A + . . .+ ciR⃗iA + . . .+ cjR⃗jA + cmR⃗mA + kcjR⃗iA − kcjR⃗iA

= c1R⃗1A + . . .+ (ci − kcj)R⃗iA + . . .+ cj

(
kR⃗iA + R⃗jA

)
+ cmR⃗mA

= c1R⃗1B + . . .+ (ci − kcj)R⃗iB + . . .+ cjR⃗jB + cmR⃗mB,
(4.21)

showing that x⃗ can be written as a linear combination of the row vectors of
B, i.e., x⃗ ∈ RS(B). Equation (4.21) similarly shows that RS(A) ⊆ RS(B),
and we can conclude that RS(A) = RS(B).

The proof of Theorem 4.4.2 immediately follows.

Proof. (of Theorem 4.4.2) Suppose A and B are m×n matrices that are row
equivalent. Then A can be transformed into B by some finite sequence of
elementary row operations. Apply Lemmas 4.4.1, 4.4.2, and 4.4.3, repeating
as necessary.
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The main reason that Theorem 4.4.2 is useful is that the nonzero rows of
any echelon form are necessarily linearly independent—due to the placement
of ones and zeros. Hence, given a matrix A:

The nonzero rows of rref(A) form a basis for RS(A).

Example 4.4.3. Find a basis for RS(A) for the matrix

A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2

 .

To find a basis for the column space in Example 4.4.2, we found rref(A)

rref(A) =


1 0 2/3
0 1 1/3
0 0 0
0 0 0

 .

By Theorem 4.4.2, we can take the nonzero rows of this echelon form as our
basis vectors. Calling the basis B, a solution is

B = {⟨1, 0, 2/3⟩, ⟨0, 1, 1/3⟩} .

Remark 4.4.2. Note that we can get bases for the row, column, and null
space of a matrix by way of its reduced echelon form. But we use the echelon
form in different ways for each of these tasks.

• To obtain a basis for N (A), we use the entries in rref(A) to deduce the
relationship between basic and free variables. We use these to charac-
terize solutions to Ax⃗ = 0⃗m.

• To obtain a basis for CS(A), we use use rref(A) to identify the pivot
columns, and we take the pivot columns from A to form our basis ele-
ments.

• To obtain a basis for RS(A), we take the nonzero rows of rref(A) as
our basis elements.



192 CHAPTER 4. VECTOR SPACES AND SUBSPACES

Caveat: If the first k rows of rref(A) are nonzero, it is not necessarily true
that the first k rows of A are linearly independent! This makes sense given
that we’re allowed to move the rows around. Hence when obtaining a basis
for RS(A), we take the row vectors from the echelon form, not the original
matrix.

We can summarize the relationships between row operations and the row
and column spaces of a matrix.

• Elementary row operations preserve the row space of a matrix but may
change the linear dependence relations between the rows.

• Elementary row operations preserve the linear dependence relation be-
tween the columns but may change the column space.

The punch line of these observations is that we use columns of the original
matrix for a column space basis and rows of the echelon form for a row space
basis.

Example 4.4.4. Find bases for RS(A), CS(A), and N (A), where

A =


1 −2 0 1 8
2 −4 3 0 −6

−1 2 1 2 3
3 −6 4 0 −7

 .

we can get all three from rref(A). Note that

rref(A) =


1 −2 0 0 3
0 0 1 0 −4
0 0 0 1 5
0 0 0 0 0

 .

From the rref, we see that for the equation Ax⃗ = 0⃗4, the solution x⃗ ∈ R5 will
have three basic and two free variables. The solution to this homogeneous
equation can be expressed in vector parametric form

x⃗ = s⟨2, 1, 0, 0, 0⟩+ t⟨−3, 0, 4,−5, 1⟩.

We also see that the pivot columns are the first, third and fourth, so we can
take these columns of A as the basis elements of the columns space. The basis



4.5. THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA 193

elements for the row space will be the three nonzero rows of rref(A). We have
the following solution where each spanning set shown is a basis:

RS(A) = Span {⟨1,−2, 0, 0, 3⟩, ⟨0, 0, 1, 0,−4⟩, ⟨0, 0, 0, 1, 5⟩} ,
CS(A) = Span {⟨1, 2,−1, 3⟩, ⟨0, 3, 1, 4⟩, ⟨1, 0, 2, 0⟩} ,
N (A) = Span {⟨2, 1, 0, 0, 0⟩, ⟨−3, 0, 4,−5, 1⟩} .

Exercise 4.4.2. Find bases for the row space, column space, and null space
of each matrix.

1. A =

 3 3 3
−1 −2 1
−5 −6 −3



2. M =

 1 3 1 0 2
2 2 −2 4 0
3 1 −5 8 1



3. X =


1 2 −1 4
0 0 3 −3
2 4 1 5
1 2 1 2
3 6 2 7


4.5 The Fundamental Theorem of Linear Al-

gebra

Now that we have a method for finding bases of the fundamental subspaces
of a matrix, we are able to deduce their dimensions. In particular, given a
matrix A we have a connection between the number of its pivot columns and
the dimensions of each of CS(A), RS(A) and N (A). Theorem 4.4.1 tells us
that the pivot columns form a basis for CS(A), hence

dim
(
CS(A)

)
= the number of pivot columns of A. (4.22)

For the null space, if the homogeneous equation Ax⃗ = 0⃗m has only the

trivial solution, then N (A) =
{
0⃗m

}
. In this case, dim(N (A)) = 0 by defini-

tion. If Ax⃗ = 0⃗m permits nontrivial solutions, then our method of decompos-
ing a solution of Ax⃗ = 0⃗m according to the free variables produces a basis for
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N (A). The number of vectors in that basis is the number of free variables.
Recalling that free variable correspond to non-pivot columns, we have

dim
(
N (A)

)
= the number of non-pivot columns of A. (4.23)

The set of nonzero row vectors of rref(A) form a basis for RS(A). Let’s
recall that every pivot position in a matrix A occupies a row and a column.
So the number of rows with a pivot position (i.e., nonzero rows) necessarily
is the same as the number of pivot columns. After all, the leftmost nonzero
entry in each nonzero row of rref(A) is one of the leading ones. It follows
that

dim
(
RS(A)

)
= the number of pivot columns of A. (4.24)

If A is anm×nmatrix, then CS(A) is a subspace of Rm whereasRS(A) is
a subspace of Rn. So, except in the case of a square matrix, these two spaces
contain different sorts of vectors. In Example 4.4.4, for example, the basis
elements we found for CS(A) have four entries each while the basis elements
for RS(A) have five entries each. This makes sense given that A was 4× 5.
But even though the types of vectors are not comparable between these two
spaces, the number of elements in their bases turned out to be the same.
It turns out that this is not a coincidence or novel feature of this example,
but rather is related to a property of matrices in general—for any matrix
A, dim

(
CS(A)

)
= dim

(
RS(A)

)
. This number is given a special name; it’s

called a rank.

Definition 4.5.1. The rank of a matrix A, denoted rank(A), is the dimen-
sion of the column space of A.

We also have a special name for the dimension of the null space of a
matrix. We call this the nullity.

Definition 4.5.2. The nullity of a matrix A, denoted nullity(A), is the
dimension of the null space of A.

We are ready to state the Fundamental Theorem of Linear Algebra, the
proof of which has been argued (in pieces) in sections 4.2.1, 4.4.1, 4.4.2, and
the current section.

Theorem 4.5.1. The Fundamental Theorem of Linear Algebra
Let A be an m× n matrix. Then
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1. rank(A) = dim
(
CS(A)

)
= dim

(
RS(A)

)
.

2. rank(A) + nullity(A) = n.

3. Every vector x⃗ in RS(A) is orthogonal to every vector y⃗ in N (A), and
similarly, every vector u⃗ in CS(A) is orthogonal to every vector v⃗ in
N (AT ).

Part 2. of Theorem 4.5.1 is sometimes referred to as the “rank-nullity
theorem.” It seems rather surprising at first glance—the rank of a matrix
plus the dimension of its null space must equal its number of columns. But
equations (4.22) and (4.23) eliminate any sense of mystery about this result.
If the matrix A has n columns, given that every column is either a pivot
column or a non-pivot column, part 2 can be restated as

the number of pivot columns of A
+ the number of non-pivot columns of A
= the total number of columns of A.

This is rather obvious!

Example 4.5.1. Suppose A is a 6× 14 matrix.

1. If rank(A) = 5, determine dim(RS(A)).

2. If rank(A) = 4, determine nullity(A).

3. What is the maximum possible rank of A?

4. If rank(A) = 3, what is nullity(AT )?

5. If nullity(A) = 12, what is the dimension of the row space of A?

We can answer each question by applying and appropriate part of Theo-
rem 4.5.1. For question 1., the first part of the theorem says that the rank
and dimension of the row space are the same. So

dim(RS(A)) = 5.

For question 2., we can apply the rank-nullity theorem (part 2 of Theo-
rem 4.5.1), rank(A) + nullity(A) = n, so that

4 + nullity(A) = 14 making nullity(A) = 10.
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For question 3., we note that there are six rows so that the maximum number
of pivot positions is six. So the maximum value of the rank is 6. That is,

rank(A) ≤ 6.

For question 3., we note that AT is a 14× 6 matrix. So the new n value for
the rank-nullity theorem would be 6. Since

rank(AT ) = dim(CS(AT )) = dim(RS(A)) = rank(A),

we have

3 + nullity(AT ) = 6 making nullity(AT ) = 3.

Finally, to answer part 5., we can use that dim(RS(A)) = rank(A). Applying
the rank-nullity theorem, we have

dim(RS(A)) + 12 = 14 giving dim(RS(A)) = 2.

Exercise 4.5.1. Suppose A is a 10× 20 matrix.

1. If rank(A) = 7, what is nullity(A)?

2. If rank(A) = 7, what is nullity(AT )?

3. If AT has 8 pivot columns, what is rank(A)?

4. If dim
(
CS(AT )

)
= 9, how many free variables are there in any solution

to Ax⃗ = 0⃗10?

5. What is the maximum possible rank of A?

Exercise 4.5.2. Explain why the maximum rank of an m× n matrix is the
smaller of the two numbers, m and n.

Remark 4.5.1. A matrix that has the maximum rank that it can have for its
size is often called full rank. For example, an m×n matrix A is considered
full rank if rank(A) = min{m,n}.

Exercise 4.5.3. Suppose A is an n × n matrix (so A is square). Explain
why if A is full rank, then nullity(A) = 0.
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As a historical note, the name “Fundamental Theorem of Linear Algebra”
was introduced by Gilbert Strang, a prominent mathematician at M.I.T., in
his 1988 textbook Linear Algebra and Its Applications [1] and in a 1993 arti-
cle in The American Mathematical Monthly [2]. Strang, who devoted much
of his career to studying and teaching linear algebra at M.I.T. viewed the
compilation of facts in Theorem 4.5.1 as being appropriate to be given the
“fundamental theorem” designation for the subject of linear algebra.6 Strang
observed that other major fields of mathematics (such as calculus, number
theory, and abstract algebra) already had theorems that are designated as
being fundamental, and believed that linear algebra should also have such
a theorem. A theorem that is designated as “fundamental” in any mathe-
matical subject should be a theorem that encapsulates and synthesizes some
major (and non-trivial) facts from the subject in a nutshell. The Fundamen-
tal Theorem of Calculus is the perfect example. The main topics of calculus
are limits, derivatives and integrals, and the Fundamental Theorem of Cal-
culus relates and synthesizes these major concepts in the form of a single
theorem. The Fundamental Theorem of Calculus can’t be introduced until
the end of a Calculus I course because there is much preliminary work (the
study of limits, derivatives, and integrals) that needs to take place before
the student can understand the fundamental theorem that relates these con-
cepts. When the theorem is finally introduced, it is seen to be an elegant
synthesis of all that was studied in the Calculus I course. Likewise, there
is much preliminary work that we need to do in a linear algebra course be-
fore Theorem 4.5.1 can be understood. We need to understand the basics
of vectors, the concept of orthogonality, the concept of subspace, and the
concept of dimension before we can understand Theorem 4.5.1. Once we do
understand these concepts, then Theorem 4.5.1 is seen to tie the concepts
together into one cohesive package.

At the present time, the name “Fundamental Theorem of Linear Alge-
bra” is not used in most linear algebra textbooks in reference to the facts
in Theorem 4.5.1, but the name seems to be catching on (as you will see if
you search the internet). We have chosen to use the name in this text, in
agreement with Strang’s thinking that if linear algebra is to have a “funda-
mental theorem” then Theorem 4.5.1 aptly fits that role. It should be noted
that Theorem 4.5.1 is the most basic statement of the fundamental theorem.
There is a more comprehensive version of the theorem that includes informa-

6Gilbert Strang retired from M.I.T in 2023.
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tion how to find the most useful bases for each of the fundamental subspaces.
We will introduce this more complete version of the theorem after we have
introduced the needed relevant concepts in Chapter 7.

4.6 General Vector Spaces

The phrase vector space has been used throughout this text without an at-
tempt to carefully define it. That lack of a formal definition has not interfered
with our ability to explore Rn, to use matrices and vectors in Rn to solve and
express solutions of systems of linear equations, and to perform algebra on
matrices. In this section, we will step back and generalize the sort of structure
that we see with Rn. Let’s recall the basic framework of Rn and consider the
algebraic properties associated with the two key operations, vector addition
and scalar multiplication.

We defined vectors in the vector space Rn as ordered n-tuples of real num-
bers, and together with scalars, we defined the operations of vector addition
and scalar multiplication. These operations performed on vectors in Rn pro-
duce vectors in Rn and satisfy some algebraic properties. In particular, if x⃗,
y⃗, and z⃗ are any vectors in Rn and c and d are any scalars, then

• The vector x⃗+ y⃗ is in Rn,

• the vector cx⃗ is in Rn,

• x⃗+ y⃗ = y⃗ + x⃗,

• (x⃗+ y⃗) + z⃗ = x⃗+ (y⃗ + z⃗),

• there is a vector 0⃗n such that x⃗+ 0⃗n = x⃗,

• there is a vector −x⃗ such that −x⃗+ x⃗ = 0⃗n,

• c(x⃗+ y⃗) = cx⃗+ cy⃗,

• (c+ d)x⃗ = cx⃗+ dx⃗,

• c(dx⃗) = (cd)x⃗ = d(cx⃗), and

• 1x⃗ = x⃗.

Some of these properties were stated explicitly, while others may have
been taken for granted as following from our knowledge of addition and
multiplication of real numbers. A real vector space is an abstraction of
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what we see with Rn. As with Rn, vectors are accompanied by scalars. The
word “real” in the phrase “real vector space” tells us that the set of scalars7

will be the set of real numbers, R. Since we won’t consider other types of
scalars, we will drop the word real following the definition and just use the
phrase vector space.

Definition 4.6.1. A real vector space is a set, V , of objects called vectors
together with two operations called vector addition and scalar multipli-
cation that satisfy the following axioms:

For each vector x⃗, y⃗, and z⃗ in V and for any scalars, c and d

1. the sum x⃗+ y⃗ is in V , and

2. the scalar multiple cx⃗ is in V .

3. x⃗+ y⃗ = y⃗ + x⃗,

4. (x⃗+ y⃗) + z⃗ = x⃗+ (y⃗ + z⃗),

5. There is an additive identity vector in V called the zero vector denoted
0⃗, such that x⃗+ 0⃗ = x⃗ for every x⃗ in V ,

6. For each vector x⃗ in V , there is an additive inverse vector denoted −x⃗
such that −x⃗+ x⃗ = 0⃗.

7. c(x⃗+ y⃗) = cx⃗+ cy⃗,

8. (c+ d)x⃗ = cx⃗+ dx⃗,

9. c(dx⃗) = (cd)x⃗ = d(cx⃗), and

10. 1x⃗ = x⃗.

Remark 4.6.1. Until now, the term vector has exclusively been used to
refer to an element of Rn, an ordered n-tuple characterized by a magnitude
and direction. Now, the term vector can be used to refer to an element of
any vector space.

Remark 4.6.2. An axiom is a statement that is specified as being true. So
an axiom does not require proof. If it has been established that some set is a
vector space, then each of the properties in Definition 4.6.1 are automatically
known to hold. If we have a set of objects with operations that might be
a vector space, then the properties in Definition 4.6.1 can be used to test
whether the set really is a vector space.

7While we won’t use alternatives here, there are sets of scalars other than R.
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We recognize the properties in axioms 1 and 2 from Definition 4.2.1 of
a subspace of Rn. We called this property being closed. So a vector space
is closed with respect to the two operations of vector addition and scalar
multiplication. Axioms 5 and 6 specify that there is an additive identity
vector and each vector has an additive inverse, while axiom 10 specifies that
the scalar 1 is the scalar multiplicative identity. In light of Definition 4.6.1,
Rn is a real vector space. In general, the objects in a vector space could
be anything—provided we can define the operations so that the necessary
properties hold. Note that it is not sufficient to simply specify what the
objects are when defining a vector space. The definition of a specific vector
space must include a description of the two operations.

A very simple example of a vector space is the trivial vector space which
consists of just one vector. It doesn’t matter what we call the vector but it
makes sense to call the vector 0⃗. This is because we know that any vector
space must have a zero vector, and if there is only one vector in the vector

space, then it must be a zero vector. So this vector space is V =
{
0⃗
}

and

we define the operations of vector addition and scalar multiplication in this
vector space by

0⃗ + 0⃗ = 0⃗

and for any scalar c,
c⃗0 = 0⃗.

V =
{
0⃗
}

with operations as defined above satisfies all of the axioms given

in Definition 4.6.1. Thus V is a vector space that consists of only one vector.

Exercise 4.6.1. Verify that V =
{
0⃗
}

with operations as defined above sat-

isfies all of the axioms given in Definition 4.6.1 (and is thus a vector space).

Exercise 4.6.2. Are there any vector spaces that have exactly two elements?
Explain why or why not.

Hint to get started thinking about this problem: Suppose that we have a
vector space V that contains exactly two elements. One of these elements
must be a zero vector and one of them must be something else, since we are
assuming there are two vectors in the vector space. We can call the zero

vector 0⃗ and call the other vector v⃗. So we have a vector space V =
{
0⃗, v⃗
}

where v⃗ ̸= 0⃗. Now see what you can deduce using the axioms of Definition
4.6.1.
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There are some properties of the vector spaces Rn that we have perhaps
taken for granted:

1. There is only one additive identity vector in Rn. (i.e., the zero vector
in Rn is unique.)

2. Every vector in Rn has exactly one additive inverse. (i.e., the additive
inverse of any vector in Rn is unique.)

3. If x⃗ is any vector in Rn, then 0x⃗ = 0⃗n.

4. If c is any scalar, then c⃗0n = 0⃗n.

Although the above four properties seem to be obvious, let us write proofs
of these facts.

Proof of 1: A vector y⃗ is said to be an additive identity for Rn if it
is true that x⃗ + y⃗ = x⃗ for all vectors x⃗ in Rn. We know that the vector
0⃗n = ⟨0, 0, . . . , 0⟩ serves as an additive identity for Rn because it is easy to
see that x⃗ + 0⃗n = x⃗ for all vectors x⃗ in Rn. But might there be some other
vector y⃗ = ⟨y1, y2, . . . , yn⟩ in Rn that serves as an additive identity for Rn? If
so then x⃗+ y⃗ = x⃗ for all vectors x⃗ in Rn and in particular y⃗+ y⃗ = y⃗. Written
out in long form

⟨y1, y2, . . . , yn⟩+ ⟨y1, y2, . . . , yn⟩ = ⟨y1, y2, . . . , yn⟩ ,

and by our definition of vector addition in Rn,

⟨2y1, 2y2, . . . , 2yn⟩ = ⟨y1, y2, . . . , yn⟩ .

By equating the first components on each side of the above equation, we
obtain 2y1 = y1, but this can be true if and only if y1 = 0. By equating the
other components, we see that yi = 0 for all i = 1, 2, . . . , n. Thus it must be
the case that y⃗ = 0⃗n. We have proved that there is only one additive identity
element in Rn. It is the zero vector, 0⃗n = ⟨0, 0, . . . , 0⟩.

Proof of 2: Next we will prove that every vector in Rn has exactly one
additive inverse. An additive inverse of a vector x⃗ in Rn is a vector y⃗ in Rn

such that x⃗ + y⃗ = 0⃗n. Suppose that x⃗ = ⟨x1, x2, . . . , xn⟩ is a given vector
in Rn. We know that the vector −x⃗ = ⟨−x1,−x2, . . . ,−xn⟩ serves as an
additive inverse for x⃗ because x⃗+(−x⃗) = 0⃗n. But might there be some other
vector y⃗ = ⟨y1, y2, . . . , yn⟩ such that x⃗+ y⃗ = 0⃗n? If so, then

⟨x1, x2, . . . , xn⟩+ ⟨y1, y2, . . . , yn⟩ = ⟨0, 0, . . . , 0⟩ .



202 CHAPTER 4. VECTOR SPACES AND SUBSPACES

By using our definition of vector addition in Rn, we obtain

⟨x1 + y1, x2 + y2, . . . , xn + yn⟩ = ⟨0, 0, . . . , 0⟩ .

Equating the first components in the above equation, we obtain x1 + y1 = 0
which implies that y1 = −x1. Equating all of the other components, we
obtain yi = −xi for all i = 1, 2, . . . , n and thus

y⃗ = ⟨y1, y2, . . . , yn⟩ = ⟨−x1,−x2, . . . ,−xn⟩ = −x⃗.

We have proved that each vector x⃗ in Rn has exactly one additive inverse.
It is −x⃗ = ⟨−x1,−x2, . . . ,−xn⟩.

Proof of 3: If x⃗ = ⟨x1, x2, . . . xn⟩ is any vector in Rn, then

0x⃗ = 0 ⟨x1, x2, . . . xn⟩ = ⟨0x1, 0x2, . . . 0xn⟩ = ⟨0, 0, . . . , 0⟩ = 0⃗.

Proof of 4: If c is any scalar, then

c⃗0 = c ⟨0, 0, . . . , 0⟩ = ⟨0, 0, . . . , 0⟩ = 0⃗.

The analogues of all four of the above facts (1, 2, 3, and 4) are true in
any vector space. However, to prove them in an arbitrary vector space, we
need to do it by only using the vector space axioms given in Definition 4.6.1.
When thinking of a general vector space, we are not allowed to assume that
the vectors in the vector space have any specific form. In particular, we can’t
assume that the vectors are ordered n–tuples of real numbers, as they are in
Rn. The theorem below lists the four basic properties of vector spaces that
are the analogues of facts 1, 2, 3, and 4 given above.

Theorem 4.6.1. Suppose that V is a vector space. Then

1. There is only one additive identity vector in V (i.e., the zero vector of
V is unique).

2. Each vector in V has only one additive inverse (i.e., the additive inverse
of any vector in V is unique).

3. If x⃗ is any vector in V , then 0x⃗ = 0⃗.

4. If c is any scalar, then c⃗0 = 0⃗.
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We will prove statements 1 and 3 above and leave the proofs of statements
2 and 4 as exercises. The thing that you should pay attention to when reading
these proofs is that we do not assign any particular form to vectors. In
particular, we do not assume that vectors are ordered n–tuples of numbers.
We only use the vector space axioms that are given in Definition 4.6.1.

Proof. First we will prove statement 1, which says that the zero vector of
V is unique. By vector space axiom 5 of Definition 4.6.1, we know that an
additive identity vector exists in V (by assumption). Suppose that there are
two additive identity vectors in V , which we can call y⃗ and z⃗. Since these
are additive identity vectors, we have

x⃗+ y⃗ = x⃗ and x⃗+ z⃗ = x⃗

for all vectors x⃗ in V . In particular, since y⃗ is an additive identity and z⃗ is
in V ,

z⃗ + y⃗ = z⃗.

On the other hand, since z⃗ is an additive identity and y⃗ is in V ,

y⃗ + z⃗ = y⃗.

Vector space axiom 3 says that addition is commutative, that is z⃗+ y⃗ = y⃗+ z⃗.
So these two equations imply that z⃗ = y⃗. Therefore there is only one additive
identity vector in V , and this completes the proof of statement 1.

In stating vector space axiom 5, we gave the name 0⃗ to this additive
identity vector. Now that we have proved that 0⃗ is unique, we can refer to
it as the additive identity element (or the zero vector) of V , rather than
saying an additive identity element, as we did when stating the axiom.

Now we will prove statment 3. Again, if we knew that we were working
in Rn, then proving statement 3 would be easy, but we are not assuming
that we are working in Rn, so we can only use the vector space axioms in
our proof.

Proof. We want to prove that if x⃗ is any vector in V , then 0x⃗ = 0⃗. To do
this, we begin by letting x⃗ be any vector in V . By vector space axiom 2
(closure under scalar multiplication), we know that 0x⃗ is also in V . Next we
note that 0 + 0 = 0 (a well known fact about scalars), and thus

(0 + 0) x⃗ = 0x⃗.
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By vector space axiom 8, we have

0x⃗+ 0x⃗ = (0 + 0) x⃗,

and thus
0x⃗+ 0x⃗ = 0x⃗.

By vector space axiom 6, we know that the vector 0x⃗ has an additive inverse
in V . We call it − (0x⃗). Adding this additive inverse to both sides of the
above equation gives

(0x⃗+ 0x⃗) + (− (0x⃗)) = 0x⃗+ (− (0x⃗)) .

Using vector space axiom 4 (associativity), we can rewrite the above equation
as

0x⃗+ (0x⃗+ (− (0x⃗))) = 0x⃗+ (− (0x⃗)) .

However, 0x⃗+ (− (0x⃗)) = 0⃗ and thus we have

0x⃗+ 0⃗ = 0⃗.

Finally, note that 0x⃗+ 0⃗ = 0x⃗ by axiom 5, and thus we have

0x⃗ = 0⃗,

which is what we wanted to prove.

Our experience working in R and in Rn may lead us to think of a property
like 0x⃗ = 0⃗ as somehow obvious or self-evident. But without that specific
context, it is very interesting to see how many of the vector space axioms are
needed to prove this seemingly simple property.

Exercise 4.6.3. Prove statements 2 and 4 of Theorem 4.6.1.

Exercise 4.6.4. We know by statement 2 of Theorem 4.6.1 that if V is a
vector space and x⃗ is any vector in V , then the additive inverse of x⃗ is unique.
We give this vector the name −x⃗. Prove that if x⃗ is any vector in V , then
−x⃗ = (−1) x⃗.

Note that this is very easy to prove in Rn because in Rn, if we have
x⃗ = ⟨x1, x2, . . . , xn⟩, then

−x⃗ = ⟨−x1,−x2, . . . ,−xn⟩
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and
(−1) x⃗ = −1 ⟨x1, x2, . . . , xn⟩ = ⟨−x1,−x2, . . . ,−xn⟩ .

However, in doing this exercise you may not assume that x⃗ is in Rn! You
can only use the vector space axioms (and any of the facts from Theorem
4.6.1, now that the theorem has been proven).

Some of the most important ideas we have studied regarding the vector
spaces Rn are the ideas of linear combinations, spans, linear independence,
bases, dimension, and coordinate vectors. Now that we have defined what a
vector space is in a broader sense, we can immediately generalize all of these
ideas in regard to general vector spaces. The definitions given below should
look familiar to you because you have already seen them stated in the setting
of Rn earlier in this chapter. The only difference is that we are stating them
with respect to any vector space (not just Rn).

Definition 4.6.2. Let S = {v⃗1, v⃗2, . . . , v⃗k} be a set of one or more (k ≥ 1)
vectors in a vector space V . A linear combination of these vectors is any
vector of the form

x1v⃗1 + x2v⃗2 + · · ·+ xkv⃗k,

where x1, , x2, . . . , xk are scalars. The coefficients, x1, x2, . . . , xk, are often
called the weights.

Definition 4.6.3. Let S = {v⃗1, v⃗2, . . . , v⃗k} be a set of one or more (k ≥ 1)
vectors in a vector space V . The set of all possible linear combinations of
the vectors in S is called the span of S. It is denoted by Span(S) or by
Span {v⃗1, v⃗2, . . . , v⃗k}.

Definition 4.6.4. Let V be a vector space. The collection of vectors S =
{v⃗1, v⃗2, . . . , v⃗k} in V is said to be linearly independent if the homogeneous
equation

x1v⃗1 + x2v⃗2 + · · ·+ xkv⃗k = 0⃗ (4.25)

has only the trivial solution, x1 = x2 = · · · = xk = 0. A set of vectors that is
not linearly independent is called linearly dependent.

Definition 4.6.5. Let V be a real vector space. A subspace of V is a
nonempty set, S, of vectors in V such that

• for every x⃗ and y⃗ in S, x⃗+ y⃗ is in S, and
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• for each x⃗ in S and scalar c, cx⃗ is in S.

Definition 4.6.6. Let S be a subspace of a vector space V , and let B =
{u⃗1, . . . , u⃗k} be a subset of vectors in S. B is a basis of S provided

• Span(B) = S

• B is linearly independent.

We have learned that if S is any subspace of Rn that has a basis containing
exactly k vectors, then any basis of S must contain exactly k vectors. We
used this fact to define the dimension of S to be dim (S) = k. The analogue of
this fact is true (and its proof is similar) in any vector space V . Specifically,
if S is any subspace of V that has a basis containing exactly k vectors, then
any basis of S must contain exactly k vectors. It thus makes sense to define
dimension of S to be dim (S) = k.

In Rn, the trivial subspace S =
{
0⃗n

}
does not have a basis and we define

its dimension to be 0. If V is any vector space, then V contains the trivial

subspace S =
{
0⃗n

}
, which does not have a basis, and it clearly makes sense

to define the dimension of this subspace to be 0.
Any vector space (or subspace of a vector space) that has a basis con-

taining a finite number of vectors is called a finite dimensional vector space
and its dimension is defined to be the number of vectors in any of its bases.
(A trivial vector space is also said to be finite dimensional and its dimension
is defined to be 0.) All of the vector spaces Rn and all subspaces of Rn are
finite dimensional. A situation that has not arisen in our study of Rn is
the fact that a vector space might not have a basis that consists of a finite
number of vectors. Such vector spaces are said to be infinite dimensional.
These are, in fact, the most interesting vector spaces from the point of view
of mathematical analysis and they are the setting in which the most powerful
applications of linear algebra are seen. We will soon see some examples of
infinite dimensional vector spaces, but an in–depth study of them will not
be undertaken in this course. We will however study some finite dimensional
subspaces of these infinite dimensional vector spaces.

Having discussed these issues regarding dimensions, let us summarize
with the following definition.

Definition 4.6.7. Let S be a subspace of a vector space V . We define the
dimension of S as follows:
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• If S = {⃗0}, then we define dim(S) = 0.

• If S has a basis consisting of k vectors, where k < ∞, then we define
dim(S) = k.

• If S is not spanned by any finite set of vectors, then we say that S is
infinite dimensional.

Before proceeding to look at some examples of vector spaces other than
Rn, let us recall one more important idea concerning Rn – the idea of coordi-
nate vectors. If S is a finite dimensional subspace of Rn and B = {u⃗1, . . . , u⃗k}
is an ordered basis for S, then for any vector x⃗ in S, there is a unique set
of scalars c1, c2, . . . , ck such that x⃗ = c1u⃗1 + c2u⃗2 + · · · + cku⃗k. The vector
[x⃗]B = ⟨c1, c2, . . . , ck⟩, which is a vector in Rk, is called the coordinate vector
x⃗ with respect to the basis B. It is likewise true for any finite dimensional
subspace, S, of any vector space V , that if B = {u⃗1, . . . , u⃗k} is an ordered
basis for S and x⃗ in S, then there is a unique set of scalars c1, c2, . . . , ck such
that x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k. It thus makes sense to make the following
definition.

Definition 4.6.8. Suppose that V is a vector space and suppose that S is
a finite dimensional subspace of V . Suppose that B = {u⃗1, . . . , u⃗k} is an
ordered basis for S. Then the (unique) vector

[x⃗]B = ⟨c1, c2, . . . , ck⟩ ∈ Rk

such that

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k

is called the coordinate vector of x⃗ with respect to the ordered basis B.

In Section 4.8, we provide further discussion on how coordinate vectors
can be employed in working with finite dimensional subspaces of any vector
space.

4.7 Examples of Vector Spaces

We will now look at some examples of vector spaces other than Rn. In look-
ing at these examples, we will highlight the big ideas that have been defined
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above – subspace, span, linear independence, basis, dimension, and coordi-
nate vectors. The objects that make up the vector spaces in the examples
that we will give are not vectors in Rn, but they are objects that we are fa-
miliar with. Our first example (Section 4.7.2) will be of vector spaces whose
vectors are matrices. This example serves as a gentle introduction to general
vector spaces, since operating with matrices is very similar to operating with
vectors in Rn. Our second example (Section 4.7.3) is of the vector space R∞,
which is a natural generalization of Rn, but with the big difference that it
is an infinite dimensional vector space. Its elements are infinite sequences
of real numbers. Our third collection of examples (Section 4.7.4) will be of
vector spaces whose vectors are functions. These vector spaces are often re-
ferred to as function spaces and they provide the setting in which the tools
and theory of linear algebra can be employed in other areas of mathematics,
such as calculus, differential equations, and functional analysis.

4.7.1 A Note on Notation

We have been using the arrow notation (x⃗, y⃗, v⃗, etc.) throughout our discus-
sion of vector spaces, their basic properties, and basic definitions that apply
to their study. This is good practice when we are having general discussions
about vector spaces (with no particular vector space in mind) because it
helps us to keep our thinking straight about whether we are dealing with a
vector or a scalar. When we write x⃗ (with an arrow over it), we know we are
referring to a vector. When we write c (with no arrow over it), we know we
are referring to a scalar. That having been said, when we are in a specific
setting in which the vector space we are studying consists of some objects
that we are familiar to us, and which do not normally have any “arrow” nota-
tion associated with them, we do not use an arrow notation, even though the
objects are the vectors of the vector space under consideration. For example,
we are going to look at examples of vector spaces whose vectors are matrices
(in Section 4.7.2). We are accustomed to denoting a matrix using a capital

letter such as A. We are not accustomed to writing A⃗, and hence we will not
do that, even though we want to consider A to be a vector. Likewise, we will
be considering vector spaces whose vectors are functions (in Section 4.7.4) .
In calculus, it is customary to name functions using lower case letters such
as f and g. We will continue to adopt that convention, rather than writing
f⃗ and g⃗, even though these functions will be the vectors of our vector space.
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4.7.2 Vector Spaces of Matrices

In Chapter 3, we saw that matrices could be thought of as objects that we can
manipulate with algebraic operations. In fact, the first two operations defined
in Section 3.2 were addition and scalar multiplication of matrices. It thus
probably comes as no surprise that there are vector spaces whose vectors are
matrices. Let Mm×n denote the set of all m × n matrices with real entries.
We define vector addition and scalar multiplication as regular addition of
matrices and scalar multiplication of matrices (as defined in Section 3.2).
Mm×n is a real vector space.

Example 4.7.1. What is the zero vector in Mm×n?
As you probably guessed, the zero vector in Mm×n is the m×n zero matrix,

Om×n. This is the m × n matrix all of whose entries are 0. If we take any
m×n matrix, then A+Om×n = A. Also, recall that statement 1 of Theorem
4.6.1 says that the zero vector in any vector space is unique. So there is no
matrix other than Om×n that serves as an additive identity in the vector space
Mm×n.

Exercise 4.7.1. Let

A =

[
a11 a12
a21 a22

]
be any element of M2×2. Show that −1A is the additive inverse of A.

Exercise 4.7.2. Show that the matrix

A =

[
5 −5

−1 4

]
in M2×2 is a linear combination of the matrices in the set of matrices S =
{E11, E12, E21, E22} where

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
.

Exercise 4.7.3. Show that any matrix

A =

[
a11 a12
a21 a22

]
∈ M2×2

is a linear combination of the matrices S = {E11, E12, E21, E22} given in
Exercise 4.7.2.

In other words, show that Span (S) = M2×2.
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Exercise 4.7.4. Show that the set of matrices S = {E11, E12, E21, E22} given
in Exercise 4.7.2 is linearly independent. To do this, you will need to show
that the equation

x11E11 + x12E12 + x21E21 + x22E22 = O2×2

has only the trivial solution (x11 = x12 = x21 = x22 = 0).
Fill in the blank: Since the set S = {E11, E12, E21, E22} is linearly inde-

pendent and Span (S) = M2×2, then S is a for M2×2.
What is the dimension of M2×2?

Exercise 4.7.5. Consider the ordered basis B = {E11, E12, E21, E22} given
in Exercise 4.7.2.

1. If A is any matrix in M2×2, then the coordinate vector [A]B is a vector
in Rk. Determine the value of k.

2. Find the coordinate vectors [A]B and [B]B for the matrices

A =

[
2 −4
3 1

]
, and B =

[
−3 2
0 5

]
.

3. Evaluate A+B and confirm that [A]B + [B]B = [A+B]B

4. Evaluate 5A and confirm that 5[A]B = [5A]B.

5. Find the coordinate vectors for the elements of B. That is, find each of
[E11]B, [E12]B, [E21]B, and [E22]B.

6. Can you make a conjecture about what the coordinate vectors should be
for the basis elements of a basis in general?

Exercise 4.7.6. Find a set of matrices that is a basis for M2×4. What is the
dimension of M2×4? In general, what is the dimension of Mm×n?

Example 4.7.2. Consider the subset T of M2×2 of matrices whose diagonal
elements sum to zero. That is,

T =

{[
a b
c d

] ∣∣∣ a+ d = 0

}
.

Show that T is a subspace of M2×2.
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We need to establish that the set T is nonempty and closed under vector
addition and scalar multiplication. We can immediately see that the zero
matrix,

O2×2 =

[
0 0
0 0

]
,

is an element of T , so T is clearly nonempty. To show that T is closed under
vector addition, we need to show that if we take any two elements of T , say
A and B, then their sum A+B would also satisfy the condition necessary to
belong to T . To this end, suppose

A =

[
a11 a12
a21 a22

]
, and B =

[
b11 b12
b21 b22

]
are in T . This means that

a11 + a22 = 0 and b11 + b22 = 0.

The sum A+B is

A+B =

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
.

When we sum the diagonal entries, we can rearrange the terms in the sum
to find that

(a11 + b11) + (a22 + b22) = (a11 + a22) + (b11 + b22) = 0 + 0 = 0.

So the sum of the diagonal entries of A + B is zero, meaning that A + B is
an element of T . T is therefore closed under vector addition.

Next we show that T is closed under scalar multiplication. Letting c be
any scalar, we have

cA =

[
ca11 ca12
ca21 ca22

]
.

Summing the diagonal entries of cA, we get

ca11 + ca22 = c(a11 + a22) = c(0) = 0.

This shows that T is indeed closed under scalar multiplication. We can con-
clude that T is a subspace of M2×2.
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Remark 4.7.1. There is a special name for the sum of the diagonal entries
of a matrix. It’s called the trace of the matrix, and elements of the set T in
Example 4.7.2 are called trace-free matrices.

Example 4.7.3. The subspace, T , of trace-free matrices in M2×2 described
in Example 4.7.2 can be expressed in terms of a span. An example of a
spanning set is the set

S =

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

If A is a trace free matrix, then it’s diagonal entries must be additive inverses
(the same number with opposite signs). The off diagonal entries can be any
real numbers. We can express any such matrix as a linear combination of
the elements of S.

A =

[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

Exercise 4.7.7. In Example 4.7.3 we showed that the set of matrices

S =

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
spans the subspace of trace–free matrices T . In other words, Span (S) = T .

1. Show that S is linearly independent and is thus a basis for T .

2. What is the dimension of T?

3. What is the coordinate vector of the matrix

A =

[
4 1
12 −4

]
with respect to the basis S? (In other words, what is [A]S?)

Exercise 4.7.8. Let Zs be the subset of M2×2 whose entries sum to zero.
That is,

Zs =

{[
a b
c d

] ∣∣∣ a+ b+ c+ d = 0

}
.
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1. Show that Zs is a subspace of M2×2.

2. Find a basis, B, for Zs.

3. What is the dimension of Zs?

4. What is the coordinate vector of the matrix

A =

[
2 −5

−1 4

]
with respect to the basis B?

Exercise 4.7.9. Let Ns be the subset of M2×2 whose entries sum to one.
That is,

Ns =

{[
a b
c d

] ∣∣∣ a+ b+ c+ d = 1.

}
.

Show that Ns is not a subspace of M2×2.

Exercise 4.7.10. Let D be the subset of M2×2 that consists of all diagonal
matrices. That is

D =

{[
a 0
0 d

] ∣∣∣ a, d ∈ R

}
.

1. Show that D is a subspace of M2×2.

2. Find a basis, B, for D.

3. What is the dimension of D?

4. What is the coordinate vector of the matrix

A =

[
−1 0
0 −3

]
with respect to the basis B?
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4.7.3 The Vector Space R∞

You might guess what the symbol R∞ stands for. When n is a positive
integer, Rn denotes the set of ordered n–tuples of real numbers. Thus R∞

denotes the set of all infinite sequences of real numbers. The elements of R∞

have the form

a⃗ = ⟨a1, a2, a3, . . .⟩ .

Note that we are choosing to retain the arrow notation that we used in Rn.
However, we are choosing to use letters from the beginning of the alphabet,
such as a and b, rather than letters from the end of the alphabet, such
as x and y, to name the vectors in R∞ because these are the letters that
are typically used when working with infinite sequences of real numbers in
calculus courses.

We define vector addition and scalar multiplication in R∞ just as in Rn:
If a⃗ = ⟨a1, a2, a3, . . .⟩ and b⃗ = ⟨b1, b2, b3, . . .⟩ are elements of R∞ and c is a
scalar, then

a⃗+ b⃗ = ⟨a1 + b1, a2 + b2, a3 + b3, . . .⟩

and

c⃗a = ⟨ca1, ca2, ca3, . . .⟩ .

It is straightforward to check that R∞ with the operations defined above
satisfies all of the axioms of Definition 4.6.1 and is thus a real vector space.
The zero vector of R∞ is

0⃗ = ⟨0, 0, 0, . . .⟩

and the additive inverse of a⃗ = ⟨a1, a2, a3, . . .⟩ is

−a⃗ = ⟨−a1,−a2,−a3, . . .⟩ .

R∞ is our first example of a vector space that is infinite dimensional. It
has no basis that consists of a finite number of vectors. To get a feel for why

this is so, let’s just look at the two element set S =
{
a⃗, b⃗
}

where a⃗ is the

infinite sequence with an = n (1 ≤ n < ∞) and b⃗ is the infinite sequence
with bn = (−1)n (1 ≤ n < ∞). Thus

a⃗ = ⟨1, 2, 3, 4, 5, . . .⟩
b⃗ = ⟨−1, 1,−1, 1,−1, . . .⟩ .
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Any linear combination of a⃗ and b⃗ has the form

sa⃗+ t⃗b = ⟨s, 2s, 3s, 4s, 5s, . . .⟩+ ⟨−t, t,−t, t,−t, . . .⟩
= ⟨s− t, 2s+ t, 3s− t, 4s+ t, 5s− t, . . .⟩ .

For example,

2a⃗+ 3⃗b = ⟨2− 3, 2 (2) + 3, 3 (2)− 3, 4 (2) + 3, 5 (2)− 3, . . .⟩
= ⟨−1, 7, 3, 11, 7, . . .⟩ .

We have just constructed an example of a vector that is in Span
{
a⃗, b⃗
}
.

However, it is also easy to construct many examples of vectors that are not

in Span
{
a⃗, b⃗
}
. An example of such a vector is c⃗ = ⟨−1, 0, 0, 0, 0, . . .⟩. (This

vector has −1 as its first component and all other components are 0.) To see

why the vector c⃗ is not in Span
{
a⃗, b⃗
}
, let’s look at the equation sa⃗+ t⃗b = c⃗.

Written out in long form, this equation is

⟨s− t, 2s+ t, 3s− t, 4s+ t, 5s− t, . . .⟩ = ⟨−1, 0, 0, 0, 0, . . .⟩ .

For the vectors in the above equation to be equal, we must have

s− t = −1

2s+ t = 0

3s− t = 0

...

etc.

The first equation above tells us that we must have t = s + 1 and when we
substitute this into the second equation, we obtain

2s+ (s+ 1) = 0

which gives s = −1/3. Substitution back into t = s + 1 gives t = 2/3.
However, when we substitute into the third equation, we obtain

3s− t = 3

(
−1

3

)
− 2

3
= −5

3
̸= 0.
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Thus there are no scalars s and t for which sa⃗ + t⃗b = c⃗ is true. This means

that c⃗ /∈ Span
{
a⃗, b⃗
}
, which means that Span

{
a⃗, b⃗
}
̸= R∞ and thus

{
a⃗, b⃗
}

is not a basis for R∞.
We have shown a specific example of a set of two vectors in R∞ that is not

a basis for R∞. This certainly does not prove that R∞ is infinite dimensional.
It only proves that this particular set of two vectors is not a basis for R∞.
However, it is true that there is no finite set of vectors in R∞ that spans R∞.
With some thought, you can probably come up with a proof of this fact. As
a suggestion of how you might come up with a proof, start by trying to prove
that no set of two vectors can span R∞.

Exercise 4.7.11. Let S =
{
a⃗, b⃗
}

where an = 3 for all n and bn = (−1)n n2

for all n. Thus

a⃗ = ⟨3, 3, 3, 3, 3, . . .⟩
b⃗ = ⟨−1, 4,−9, 16,−25, . . .⟩ .

1. Explain why the vector 0⃗ = ⟨0, 0, 0, 0, 0, . . .⟩ is in Span
{
a⃗, b⃗
}
.

2. Come up an example of a non–zero vector c⃗ that is in Span
{
a⃗, b⃗
}
.

3. Prove that Span
{
a⃗, b⃗
}
̸= R∞.

Exercise 4.7.12. Prove that the set of vectors S =
{
a⃗, b⃗
}
given in Exercise

4.7.11 is linearly independent.

If you have taken two semesters of calculus, you have probably studied
infinite sequences and the concept of convergence of an infinite sequence. An
infinite sequence, a⃗ = ⟨a1, a2, a3, . . .⟩ is said to converge if there is a real
number A such that

limn→∞ an = A.

The number A is called the limit of the sequence a⃗. As an example, if

an =
2n

3n+ 5
,

then

limn→∞ an = limn→∞
2n

3n+ 5
=

2

3
.
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Thus a⃗ converges and has limit A = 2/3. An infinite sequence is said to
diverge if it does not converge.

Two important basic facts (from calculus) about convergent sequences
are that the sum of two convergent sequences is convergent and that any
scalar multiple of a convergent sequence is convergent. In other words, if the
sequences a⃗ and b⃗ both converge, then the sequence a⃗+ b⃗ also converges and
if the sequence a⃗ converges and c is any scalar, then the sequence c⃗a also
converges. To be more specific, if a⃗ has limit A and b⃗ has limit B, then a⃗+ b⃗
has limit A+B and c⃗a has limit cA.

What we have just said in the above paragraph, when stated from the
point of view of linear algebra, is that the set of all convergent sequences,

C = {a⃗ ∈ R∞ | a⃗ converges}

(which is a non–empty subset of R∞) is closed under vector addition and
also closed under scalar multiplication. Thus C is a subspace of R∞! The
subspace C is also infinite dimensional. (We will not prove this but perhaps
you can come up with a proof if you think about it.)

We have now seen our first example of an infinite dimensional vector
space, R∞, and infinite dimensional subspace, C, of R∞. It is important
to point out that any infinite dimensional vector space also has finite di-
mensional subspaces. They are easy to construct. If we take any infinite–
dimensional vector space V and take any non–zero vector a⃗ ∈ V , then
Span {a⃗} is a subspace of dimension 1. As a specific example in R∞, con-
sider Span {a⃗} where a⃗ = ⟨1, 2, 3, 4, 5, . . .⟩. Span {a⃗} is the set of all scalar
multiples of a⃗, and {a⃗} is a basis for Span {a⃗}. Since this basis contains only
one vector, then dim (Span {a⃗}) = 1.

Exercise 4.7.13. 1. Let a⃗ = ⟨1, 2, 3, 4, 5, . . .⟩ and b⃗ = ⟨2, 3, 4, 5, 6, . . .⟩.
What is the dimension of the subspace S = Span

{
a⃗, b⃗
}
? Explain.

2. Let a⃗ = ⟨1, 2, 3, 4, 5, . . .⟩ and b⃗ = ⟨3, 6, 9, 12, 15, . . .⟩. What is the di-

mension of S = Span
{
a⃗, b⃗
}
? Explain.

3. Let e⃗1 = ⟨1, 0, 0, 0, 0, . . .⟩, e⃗2 = ⟨0, 1, 0, 0, 0, . . .⟩ and e⃗3 = ⟨0, 0, 1, 0, 0, . . .⟩.
(Thus e⃗1 has 1 as its first entry and all other entries are 0, etc.) What
is the dimension of Span {e⃗1, e⃗2, e⃗3}? Explain.
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4.7.4 Vector Spaces of Functions

In your study of calculus (and courses prior to calculus), you have become
familiar with the concept of “function”. You are probably familiar with
functions such as f (x) = 4x2 − 3x + 8, which is a polynomial function,
f (x) = 3ex, which is an exponential function, f (x) = 4 cos (x), which is a
trigonometric function, and many others. We are going to consider vector
spaces whose vectors are functions. In order to do that, we first need to recall
some basic ideas about the function concept. We will restrict our attention
to real–valued functions of a real variable. These are functions that have
formulas that look like y = f (x) where both x and y are allowed to be real
numbers. In other words, both the input of the function, x, and the output
of the function, y, are real numbers.

First, let us recall what we mean by the domain of a function, f . The
domain of f is the subset of R from which the allowable inputs of f come.
We need to specify the domain of a function as part of the definition of the
function. Suppose that we specify the domain to be some set D, where D is
a subset of R. Then the notation

f : D → R

is used to say that f is a function whose domain is D and whose outputs are
real numbers. As a specific example, suppose that we say that

f : R → R

is the function defined by the formula

f (x) = 4x2 − 3x+ 8.

In writing f : R → R, we are stating that the domain of the function is R
and that the outputs of the function are also real numbers.

An important issue that we need to keep in mind when we are studying
vector spaces whose vectors are functions is to carefully consider what we
mean when we say that two functions are equal to each other. We way that
two functions, f and g, are equal to each other if f and g both have the same
domain, D, and f (x) = g (x) for all x ∈ D.

For example, consider the functions f : R → R and g : R → R defined
by the formulas

f (x) = sin2 (x) + cos2 (x)

g (x) = 1.
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These functions are equal to each other! Why? Because they both have
the same domain (R) and we know from trigonometry that if x is any real
number, then sin2 (x) + cos2 (x) = 1, and thus f (x) = g (x) for all x in R.
We can write f = g.

As another example, consider the functions f : R → R and g : [−1, 1] →
R defined by the formulas

f (x) = x2

g (x) = x2.

These functions are not equal to each other, because they have different
domains. In this example, it is not correct to write f = g.

As one more example (for those who have taken Calculus II), the function
f : (−1, 1) → R defined by the sum of the power series

f (x) =
∞∑
n=1

xn = 1 + x+ x2 + x3 + · · ·

is equal to the function g : (−1, 1) → R defined by

g (x) =
1

1− x
.

You may recall (from calculus) that the type of infinite series defined by the
formula for f given above is called a geometric series. It converges to the
sum 1/ (1− x) as long as we insist that x is chosen from the open interval
(−1, 1). If x is not in this interval, then the series diverges and the formula
given for f makes no sense. That is why we have designated the domain of
f to be (−1, 1). When we choose x ∈ (−1, 1), it is true that f (x) = g (x).
Since we designated the domain of g to also be (−1, 1), we can write f = g.
Note that the formula that defines g, which is 1/ (1− x), is defined for all
real number values of x except x = 1, but writing f = g only makes sense
if we restrict the domain to be (−1, 1) because the formula for f does not
make sense otherwise.

Exercise 4.7.14. In each part below, a pair of functions, f and g, are given.
Determine whether or not f and g are equal to each other.

1. f : (0,∞) → R and g : (−∞, 0) → R defined by the formulas

f (x) = x2

g (x) = x2.
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2. f : R → R and g : R → R defined by the formulas

f (x) = (x+ 3)2

g (x) = x2 + 6x+ 9.

3. f : R → R and g : R → R defined by the formulas

f (x) = (x+ 1)2

g (x) = x2 + 1.

4. f : R → R and g : R → R defined by the formulas

f (x) = sin (2x)

g (x) = 2 sin (x) cos (x) .

5. f : (0,∞) → R and g : (0,∞) → R defined by the formulas

f (x) =
1

x
− 1

1 + x

g (x) =
1

x2 + x
.

Another thing we need to address before giving examples of vector spaces
whose vectors are functions is how we add two functions together and how
we multiply a function by a scalar. This is necessary because when we de-
fine a vector space, we need to define the addition and scalar multiplication
operations on that vector space.

For two functions f : D → R and g : D → R, we define the sum f + g
to be the function with domain D defined by the formula

(f + g) (x) = f (x) + g (x) . (4.26)

If f : D → R and c is a scalar (a real number), then we define the scalar
multiple cf to be the function with domain D defined by the formula

(cf) (x) = cf (x) . (4.27)

As specific examples, suppose that f : R → R and g : R → R are the
functions defined by

f (x) = 3x2 − 4x+ 4

g (x) = −4x2 + 4x+ 4.
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Then f + g is the function with domain R defined by the formula

(f + g) (x) = f (x) + g (x) =
(
3x2 − 4x+ 4

)
+
(
−4x2 + 4x+ 4

)
= −x2 + 8

and 2f is the function with domain R defined by the formula

(2f) (x) = 2 (f (x)) = 2
(
3x2 − 4x+ 4

)
= 6x2 − 8x+ 8.

Other things that we need to have on hand if we are to define a vector
space whose vectors are real–valued functions are a zero vector and additive
inverses. As you might guess, the zero vector is the function that is identically
equal to 0 for all x in the domain D. Since we are using lower case letters to
denote functions, we will use the letter z to denote the zero function. Thus
z : D → R is the function defined by the formula

z (x) = 0. (4.28)

It is easy to see that this function serves as an additive identity for vector
addition. If f is any function with domain D, then

f + z = f .

For any function f with domain D, the additive inverse of f is the function
(with domain D) denoted by −f and defined by

(−f) (x) = − (f (x)) . (4.29)

Having made this definition, we see that for any function f we have

f + (−f) = z.

As a specific example, the additive inverse of f (x) = 3x2 − 4x+ 4 is

(−f) (x) = −
(
3x2 − 4x+ 4

)
= −3x2 + 4x− 4.

We are now prepared to provide examples of vector spaces whose vectors
are functions. Vector spaces whose vectors are functions are often referred
to as function spaces.
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4.7.4.1 The Function Spaces F (D)

Suppose that D is some domain (meaning that D is some specified non–
empty subset of R). We define the vector space F (D) to be the vector space
whose vectors are the set of all real valued functions with domain D and
whose operations of vector addition and scalar multiplication are as defined
in (4.26) and (4.27). Thus

F (D) = {f | f : D → R} .

The zero vector and additive inverses in F (D) are as defined in (4.28)
and (4.29).

As an example, F (R) is the vector space of all real–valued functions that
have domain R. It contains functions defined by formulas such as f (x) =
x2, f (x) = −3ex + sin (4x) − 12, and f (x) = 47. It is obviously a big
vector space! It is infinite dimensional. Note that F (R) does not contain
the function f (x) = 1/x because this function is not defined at x = 0.
(Thus the domain of this function is not R.) Also, F (R) does not contain
the function f (x) = ln (x). (Can you explain why?) As another specific
example, F ((0,∞)) is the set of all real–valued functions whose domain is
the interval (0,∞). This vector space does contain the functions f (x) = 1/x
and f (x) = ln (x). (Can you explain why?)

Exercise 4.7.15. In each part below, two functions, f and g, in F (R) are
given. Scalars, c and d, are also given. Compute the linear combination
cf + dg. The first one is done as an example.

1. f (x) = −2x2 − 3x+ 1, g (x) = −x2 − 2x− 2, c = 3, d = −2.

Solution: 3f−2g is the function with domain R defined by the formula

(3f − 2g) (x) = (3f) (x)− (2g) (x)

= 3f (x)− 2g (x)

= 3
(
−2x2 − 3x+ 1

)
− 2

(
−x2 − 2x− 2

)
= −4x2 − 5x+ 7.

2. f (x) = x2 + x− 7, g (x) = ex + 2, c = −2, d = 1

3. f (x) = sin2 (x), g (x) = cos2 (x), c = 1, d = 1
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4. f (x) = −x2 + 3x− 2, g (x) = x2 − 3x+ 2, c = 1, d = 1

5. f (x) = −x2 + 3x− 2, g (x) = 0, c = 1, d = 4

6. f (x) = −3x2 − x− 3, g (x) = x2 − 3x+ 2, c = 0, d = 1

Exercise 4.7.16. Which of the following functions are in F (R)? If the
function is not in F (R), explain why not.

1. f (x) = ex

2. f (x) = −12x3 − 7x+ 1

3. f (x) = 1
x2+1

4. f (x) = 1
x2−1

5. f (x) =
√
x

Example 4.7.4. Let S = {f, g} where f and g are the functions in F (R)
defined by

f (x) = sin2 (x)

g (x) = cos2 (x) .

Explain why the function h defined by h (x) = 1 is in Span (S).
Explanation: Because of the trigonometric identity sin2 (x)+cos2 (x) =

1, which holds for all real numbers x, we have f (x) + g (x) = h (x) for all
real numbers x and thus we can write

h = f + g

or
h = (1) f + (1) g

which shows that h is a linear combination of the functions in S and thus
h ∈ Span (S).

Remark 4.7.2. Referring to Example 4.7.4, it is somewhat cumbersome
(as far as having to write so much) when we define a set of functions by
saying S = {f, g} and then giving the formulas such as f (x) = sin2 (x)
and g (x) = cos2 (x) for f and g. It is easier to just start out by saying
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that S =
{
sin2 (x) , cos2 (x)

}
, with the understanding that we are taking a

shortcut in writing to save space. Then to show that the function h (x) = 1
is in Span (S), we can just write

1 = (1) sin2 (x) + (1) cos2 (x) for all x ∈ R.

We will write the next example (and future examples) using this convention,
and you can use it in doing the exercises.

Example 4.7.5. In the vector space F (R), let S = {1, x, x2, x3} and let h
be the function h (x) = 2 + x− x2. Explain why h ∈ Span (S).

Explanation: We see that

h (x) = (2) 1 + (1) x+ (−1)x2 + (0)x3 for all x ∈ R

and thus h is a linear combination of the functions in S. Hence h ∈ Span (S).

4.7.4.2 The Function Spaces Cn (I)

Some vector spaces that appear in applications, especially in the study of
differential equations, are sets of functions with specified continuity or differ-
entiability. For some given interval I, the set C0(I) is the set of all real–valued
functions that are continuous on the domain I. For example, C0(R) is the
set of all functions that are continuous on the whole real line, and C0([0, 1])
is the set of all functions that are continuous on the interval [0, 1]. Vector ad-
dition and scalar multiplication in C0 (I) are as defined in (4.26) and (4.27).
The zero vector and additive inverses in C0 (I) are as defined in (4.28) and
(4.29). Because the sum of continuous functions is continuous and a scalar
multiple of a continuous function is continuous (facts from calculus), the set
C0(I) is closed under both of these operations. Thus C0(I) is a subspace of
F (I).

The set C1(I) is the set of all real valued functions that are at least one
time continuously differentiable on the interval I. (To say that a function
f is continuously differentiable on I means that f is differentiable on I and
that the derivative of f is also a continuous function on I.) You might
remember from calculus that differentiability implies continuity. Hence C1(I)
is a subset of C0(I). Furthermore, the sum of two continuously differentiable
functions is continuously differentiable and a scalar multiple of a continuously
differentiable function is continuously differentiable, and that tells us that
C1 (I) is in fact a subspace of C0 (I).
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Similar notation is used to denote the set of functions having at least a
specific number of continuous derivatives: Elements of C2(I) are functions
that are at least twice continuously differentiable; elements of C3(I) are at
least three times continuously differentiable, and so forth. The elements of
C∞(I) are functions that have continuous derivatives of all orders. Many
of the functions encountered in calculus, such as ex, cos(x), tan−1(x), and
polynomials are in the vector space C∞(R).

Exercise 4.7.17. Let F0 be the subset of C0(R) of functions that take the
value of zero at zero. That is,

F0 =
{
f ∈ C0(R) | f(0) = 0

}
.

Determine whether F0 is a subspace of C0(R). That is, either show that F0

is a subspace of C0(R), or demonstrate that F0 is not closed under vector
addition or scalar multiplication.

4.7.4.3 Function Spaces of Polynomials

If V is any vector space, either finite dimensional or infinite dimensional,
we can always construct a finite dimensional subspace of V by just choosing
some set of vectors out of V and forming the span of this set. If V is a
vector space and S = {v⃗1, v⃗2, . . . , v⃗k} is a finite set of k vectors in V , then
Span (S) is a subspace of V with dim (Span (S)) ≤ k. If the set S is linearly
independent, then dim (Span (S)) = k. Otherwise dim (Span (S)) < k.

The function spaces Pn are the subspaces of F (R) defined by

P0 = Span {1}
P1 = Span {1, x}
P2 = Span

{
1, x, x2

}
P3 = Span

{
1, x, x2, x3

}
etc.

So, for example, P2 consists of all functions that have domain R and are
defined by formulas of the form

p (x) = a0 + a1x+ a2x
2,

where a0, a1, and a2 can be any scalars. This is the set of all polynomial
functions that have degree 2 or less. (We need to say degree 2 or less because
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if a2 = 0 then there is no x2 term in the polynomial and that means that
the degree of the polynomial is less than 2.) Likewise P3 is the space of all
polynomial functions that have degree 3 or less. The functions in P3 have
the form

p (x) = a0 + a1x+ a2x
2 + a3x

3.

Exercise 4.7.18. Explain why P2 is a subspace of P3.

Exercise 4.7.19. Suppose we had decided to define P2 to be the set of all
polynomial functions whose degree is exactly 2. This would mean that we
were defining P2 to be the set of all polynomial functions of the form

p (x) = a0 + a1x+ a2x
2

where a0 and a1 can be any scalars and a2 can be any scalar except 0. Explain
why this choice of definition would result in P2 not being a subspace of F (R).

Exercise 4.7.20. Consider the vector space P4.

1. Determine whether the functions defined by the given formulas are vec-
tors in P4.

(a) p(x) = 2 + 3x− x2 + 2x3 + 4x4

(b) q(x) = 2 + 3x2 − 9x3 + 2x4

(c) f(x) = −12 + x+ 5x2 − 6x3

(d) r(x) = 21x3 − 4x5

2. Let f and g be the functions defined by f(x) = 2x + x3 − 14x4 and
g(x) = −3 + 4x2 − 5x3 + 10x4.

(a) evaluate 2f

(b) evaluate 3g

(c) evaluate f − g

(d) What is the additive inverse of g?

Exercise 4.7.21. Let P2,1 denote the set of all polynomials, p(x) = p0 +
p1x+ p2x

2 of degree at most 2 with real coefficients that satisfy p(1) = 0.
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1. Determine which of the following are elements of P2,1.

(a) g(x) = 2− 3x− x2

(b) f(x) = 2− 3x+ x2

(c) q(x) = 4x2 + 2x− 6

2. Show that P2,1 is closed with respect to vector addition and scalar mul-
tiplication.

3. Verify that every element of P2,1 can be written in the form p(x) =
p1(x − 1) + p2(x

2 − 1). Note that we can say that P2,1 = Span{x −
1, x2 − 1}.

Example 4.7.6. Consider the subset P2,1 of P2 containing polynomials p(x) =
p0 + p1x + p2x

2 with the property that p(1) = 0 from Exercise 4.7.21 above.
This set is nonempty, in particular it contains the zero vector z(x) = 0 +
0x+ 0x2. In Exercise 4.7.21, you established that P2,1 is closed with respect
to vector addition and scalar multiplication. Hence P2,1 is a subspace of P2.

We have defined P2 = Span {1, x, x2}. Thus P2 is the span of a set of
three functions. It is thus natural to ask whether or not the dimension of P2

is 3. Indeed it is true that dim (P2) = 3, but in order to verify this we need
to show that the set of vectors S = {1, x, x2} is linearly independent. We do
this in the following example.

Example 4.7.7. Let S = {p0, p1, p2} be the set of functions defined by
p0(x) = 1, p1(x) = x and p2(x) = x2. Verify that the set S is a basis
for P2.

Solution: We already know that Span (S) = P2, because this is how we
have defined P2. Thus we only need to show that S is linearly independent.
This means we need to show that the equation

c0p0 + c1p1 + c2p2 = z

has only the trivial solution c0 = c1 = c2 = 0. The above equation is equiva-
lent to

c0p0 (x) + c1p1 (x) + c2p2 (x) = z (x) for all x ∈ R.

Thus the equation that we need to study (and show has only the trivial solu-
tion) is

c0 (1) + c1x+ c2x
2 = 0 for all x ∈ R. (4.30)
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If the equation (4.30) is to be true for all x ∈ R, then that means we can
choose any value of x that we like and the equation needs to be true for that
value of x. If we choose x = 0, then we obtain

c0 (1) + c1 (0) + c2 (0)
2 = 0

which tells us that we must have c0 = 0.
Knowing that c0 = 0, we now have reduced the problem to studying the

equation
c1x+ c2x

2 = 0 for all x ∈ R. (4.31)

Since equation (4.31) must be true for all x ∈ R, then it must be true for
x = 1. Plugging x = 1 into the above equation gives

c1 (1) + c2 (1)
2 = 0

and this tells us that we must have c1 + c2 = 0.
Since equation (4.31) must be true for x = −1, we obtain

c1 (−1) + c2 (−1)2 = 0

and this tells us that we must have −c1 + c2 = 0.
We now have a system of two equations to solve:

c1 + c2 = 0

−c1 + c2 = 0

and it is easily seen that the only solution of this system of equations is
c1 = c2 = 0.

We have shown that the equation

c0p0 + c1p1 + c2p2 = z

has only the trivial solution c0 = c1 = c2 = 0, and thus we have shown that
S is linearly independent. Therefore S is a basis for P2. Since S is a basis
for P2 and S contains three vectors, then dim (P2) = 3.

Example 4.7.8. Consider the basis S = {p0, p1, p2} for P2 consisting of the
vectors p0(x) = 1, p1(x) = x and p2(x) = x2, in this order, from Exam-
ple 4.7.7.
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1. Identify the coordinate vector, [p]S, for p(x) = 2− 4x+ 7x2.

2. Identify the coordinate vector, [q]S, for q(x) = −3 + 12x− 5x2.

3. Evaluate the sum p(x) + q(x), and find its coordinate vector , [p+ q]S.

4. Compare the sum of the coordinate vectors from parts 1. and 2. with
the coordinate vector found in part 3.

5. Evaluate 3p(x), and find its coordinate vector, [3p]S. Compare this
result to 3 times the coordinate vector for p that you found in part 1.

Solutions:

1. We can write p(x) = 2− 4x + 7x2 = 2p0(x)− 4p1(x) + 7p2(x). So the
entries of the coordinate vector are these coefficients 2, −4, and 7, in
that order. That is,

[p]S = ⟨2,−4, 7⟩.

2. Following the same process,

[q]S = ⟨−3, 12,−5⟩.

3. If we add the vectors p and q, we get

p(x) + q(x) = (2− 3) + (−4 + 12)x+ (7− 5)x2 = −1 + 8x+ 2x2.

The coordinate vector for the sum is

[p+ q]S = ⟨−1, 8, 2⟩.

4. Now we’re asked to sum the coordinate vectors from R3 that we found
in parts 1. and 2.

[p]S + [q]S = ⟨2,−4, 7⟩+ ⟨−3, 12,−5⟩ = ⟨−1, 8, 2⟩.

When we compare this to the coordinate vector we find in part 3., we
see that they match.
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5. Scaling p by 3 gives 3p(x) = 6− 12x+ 21x2. So

[3p]S = ⟨6,−12, 21⟩.

If we scale the coordinate vector we found in part 1., we get

3[p]S = 3⟨2,−4, 7⟩ = ⟨6,−12, 21⟩.

These also match, [3p]S = 3[p]S.

Exercise 4.7.22. Show that the set of vectors S = {1, x, x2, x3} is a basis
for P3 = Span {1, x, x2, x3} and hence that dim (P3) = 4 (We already know
that S spans P3, by definition).

Hint: Follow the approach used in Example 4.7.7.

In Example 4.7.7 we showed that S = {1, x, x2} is a basis for P2 and
hence dim (P2) = 3. In Exercise 4.7.22 you were asked to show that S =
{1, x, x2, x3} is a basis for P3 and hence dim (P3) = 4. There is clearly a
pattern here. In general, the set S = {1, x, . . . , xn} is a basis for Pn. Since
this basis for Pn contains exactly n+ 1 vectors, then dim (Pn) = n+ 1

Example 4.7.9. Show that the subset S = {p, q, r} of P2 is linearly inde-
pendent, where

p(x) = 1− x+ x2, q(x) = 2− x, and r(x) = 3 + x2.

Solution: We need to show that

c1p+ c2q + c3r = z

has only the trivial solution c1 = c2 = c3 = 0.
This means that we need to show that

c1p (x) + c2q (x) + c3r (x) = z (x) for all x ∈ R

has only the trivial solution, which means that we need to show that

c1
(
1− x+ x2

)
+ c2 (2− x) + c3

(
3 + x2

)
= 0 for all x ∈ R

has only the trivial solution.
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By rearranging the above equation (organizing according to powers of x),
we obtain

(c1 + 2c2 + 3c3) (1) + (−c1 − c2)x+ (c1 + c3)x
2 = 0 for all x ∈ R.

Now recall that we showed in Example 4.7.7 that the set of functions
{1, x, x2} is a basis for P2.

This tells us that the all of the weights corresponding to 1, x, and x2 in
the above equation must be equal to 0. Therefore we must have

c1 + 2c2 + 3c3 = 0
−c1 − c2 = 0
c1 + c3 = 0

.

Setting up the augmented matrix and performing row reduction, 1 2 3 0
−1 −1 0 0
1 0 1 0

 rref−→

 1 0 0 0
0 1 0 0
0 0 1 0

 .

We see that the system has unique solution c1 = c2 = c3 = 0, the trivial
solution. Hence S = {p, q, r} is linearly independent.

Exercise 4.7.23. Determine whether the indicated set is linearly independent
or linearly dependent in the indicated vector space.

1. {1 + x, 1− x} in P1.

2. {1 + x, 1− x, 2− 3x} in P1.

3. {1 + 2x2,−1 + x,−3 + 3x} in P2

4. {−1 + 2x− x2, 2 + x− 2x3, 2 + 2x− 2x3, 1 + x− x2 + 2x3} in P3

5. {7} in P0.

Example 4.7.10. Find the coordinate vector of the function p (x) = −5 +
6x+ 6x2 with respect to the basis S = {1, x, x2}.

Solution: The weights that are used to write p as a linear combination
of the vectors in the ordered basis S are −5, 6, and 6 and thus the coordinate
vector of p with respect to the ordered basis S is

[p]S = ⟨−5, 6, 6⟩ .
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Example 4.7.11. Consider the set of functions T = {1, 1 + x, 1 + x+ x2}
in P2. Show that T is a basis for P2. Then find [p]T where p is the function
p (x) = −5 + 6x+ 6x2.

Solution: To show that T is linearly independent, we must show that
the equation

c0 (1) + c1 (1 + x) + c2
(
1 + x+ x2

)
= 0 for all x ∈ R

has only the trivial solution.
First we gather like terms in the above equation to obtain

(c0 + c1 + c2) (1) + (c1 + c2)x+ c2x
2 = 0.

Since S = {1, x, x2} is a basis for P2, all of the weights in the above equation
must be 0. That is, we must have

c1 + c1 + c2 = 0
c1 + c2 = 0

c2 = 0
.

It is easily seen that the only solution of the above system of equations is
c0 = c1 = c2 = 0, and this proves that the set T is linearly independent.

To show that Span (T ) = P2, we need to show that for any function p (x) =
a0 + a1x+ a2x

2 in P2, there exist weights c0, c1, and c2 such that

c0 (1) + c1 (1 + x) + c2
(
1 + x+ x2

)
= a0 + a1x+ a2x

2 for all x ∈ R.

Once again gathering like terms on the left hand side, we obtain

(c0 + c1 + c2) (1) + (c1 + c2)x+ c2x
2 = a0 + a1x+ a2x

2.

Since S is a basis for P2, then we know that any element of P2 can be written
uniquely as a linear combinations of the functions in S = {1, x, x2}. This
means that the corresponding weights on each side of the above equation must
be equal to each other. That is we must have

c1 + c1 + c2 = a0
c1 + c2 = a1

c2 = a2

.
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The above system of equations is easily solved by back substitution to obtain
the unique solution

c0 = a0 − a1

c1 = a1 − a2

c2 = a2.

We have found that p ∈ Span (T ) for any p in P2. This, along with the fact
that T is linearly independent, tells us that T is a basis for P2. We have also
found that for any p in P2 that the coordinate vector of p with respect to T is

[p]T = ⟨a0 − a1, a1 − a2, a2⟩ .

In particular (to answer the other question that was asked), if p (x) =
−5 + 6x+ 6x2, then

[p]T = ⟨−5− 6, 6− 6, 6⟩ = ⟨−11, 0, 6⟩ .

We can check this answer by noting that

−11 (1) + 0 (1 + x) + 6
(
1 + x+ x2

)
= −5 + 6x+ 6x2 for all x ∈ R

is true.

Exercise 4.7.24. Consider the set of functions S = {3, 1− x+ x2, 3 + 3x− 3x2}
in P2. Show that S is not linearly independent.

4.7.4.4 Function Spaces Defined by Spans

Similar to what we did in defining the subspaces Pn, we can take any finite set
of functions in F (R) and note that their span is a finite dimensional subspace
of F (R). This idea is relevant in the study of Differential Equations and other
areas of Mathematics.

Example 4.7.12. Let S be the set of functions S = {sin (x) , cos (x)}. Then
Span (S) is a subspace of F (R). It is actually a subspace of C∞ (R) because
the sine and cosine functions have continuous derivatives of all orders. Let
us show that the set S is linearly independent.

Solution: We need to show that the equation

c1 sin+c2 cos = z
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has only the trivial solution c1 = c2 = 0.
This means that we need to show that

c1 sin (x) + c2 cos (x) = 0 for all x ∈ R

has only the trivial solution.
Since we require that the above equation holds for all x ∈ R, we can pick

a specific value of x and plug it in. If we plug in x = 0 then we get

c1 sin (0) + c2 cos (0) = 0

which simplifies to
c1 (0) + c2 (1) = 0

and thus we must have c2 = 0. The original equation is now reduced to

c1 sin (x) = 0 for all x ∈ R.

We can plug in x = π/2 to obtain

c1 sin
(π
2

)
= 0,

and recalling that sin (π/2) = 1 we see that we must have c1 = 0. We have
shown that S is linearly independent and is thus a basis for Span (S). We
see that dim (Span (S)) = 2.

Those who have had a course in differential equations may recognize that
Span (S) is the solution set of the linear homogeneous differential equation

y′′ + y = 0.

What this means is that the functions in Span (S), which are all functions of
the form

y (x) = c1 sin (x) + c2 cos (x) ,

are the complete set of functions that satisfy the above differential equation.
In general, any linear homogeneous differential equation has a solution set
that is of the form Span (S) for some set of functions S in C∞ (R).

Exercise 4.7.25. Show that the set of functions S = {ex, e2x} is linearly
independent and thus dim (Span (S)) = 2.

Exercise 4.7.26. Show that the set of functions S = {ex, xex} is linearly
independent and thus dim (Span (S)) = 2.

Exercise 4.7.27. Show that the set of functions S = {1, sin (x) , sin (2x)} is
linearly independent and thus dim (Span (S)) = 3.
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4.7.4.5 The Vector Spaces Rn Viewed as Function Spaces

We have now seen several examples of finite dimensional and infinite di-
mensional subspaces of F (R). We will now come full circle and once again
consider the original vector spaces that we studied – the vector spaces Rn.
The vector spaces Rn can actually be viewed as function spaces. To see why,
suppose we define D2 to be the set D2 = {1, 2}. Then F (D2) is the set of
all real valued functions with domain D2. On the other hand, R2 is the set
of all ordered pairs of the form ⟨x1, x2⟩. We can think of ⟨x1, x2⟩ as being a
function that assigns the subscript 1 to the real number x1 and assigns the
subscript 2 to the number x2. If we call this function f , then f is a function
in F (D2). As a specific example, the vector ⟨5,−3⟩ in R2, corresponds to
the function in F (D2) defined by

f (1) = 5

f (2) = −3.

This function f is the function that assigns the subscript 1 to the number
5 and assigns the subscript 2 to the number −3.

In general, if we define the set Dn to be Dn = {1, 2, . . . , n}, then Rn can
be viewed as F (Dn) with the vector ⟨x1, x2, . . . , xn⟩ in Rn being identified
with the function

f (1) = x1

f (2) = x2

...

f (n) = xn

in F (Dn). Likewise, defining D∞ to be the set of all positive integers, i.e.,
D∞ = {1, 2, 3 . . .}, we can identity R∞ with F (D∞).

Viewing Rn and R∞ as function spaces does not do much to help us
understand Rn and R∞ any better, but we feel that it is worth pointing out
this connection. Understanding this connection may, if anything, be useful
in helping you to understand the overall concept of function space better.

4.8 Working with Coordinate Vectors

In this section, we examine how we can use coordinate vectors as a tool
that can be applied in working with any finite dimensional subspace of any
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vector space. The basic idea is that if we have an ordered basis, B, for some
subspace, S, of some vector space, V , then each vector, x⃗, in S can be written
in a unique way as a linear combination of the vectors in B. The vector of
unique weights used in writing x⃗ as a linear combination of the vectors in
B is the coordinate vector of x⃗ with respect to B, denoted by [x⃗]B. If the
ordered basis, B, contains k vectors, then dim (S) = k and [x⃗]B is a vector
in Rk. If we wish to establish linear independence of a certain set of vectors,
T , in S, then we can actually do this by establishing linear independence of
the set of coordinate vectors of the vectors that make up T . The advantage
of this is that it allows us to work in Rk and hence bring to bear all of the
tools studied in Chapter 2, in particular the tools pertaining to augmented
matrices and row reduction. The main ideas are illustrated in the theorems,
examples and exercises that follow.

Lemma 4.8.1. Suppose that S is a subspace of a vector space V and B =
{u⃗1, . . . , u⃗k} is an ordered basis of S. If x⃗ and y⃗ are any two vectors in S
and c is any scalar then

1. [x⃗+ y⃗]B = [x⃗]B + [y⃗]B and

2. [cx⃗]B = c [x⃗]B.

Proof. We will prove statement 1 and leave the proof of statement 2 as an
exercise. Since B = {u⃗1, . . . , u⃗k} is a basis for S, then every vector in S can
be written in a unique way as a linear combination of the vectors in B. Thus,
there exists a unique set of scalars c1, c2, . . . , ck and a unique set of scalars
d1, d2, . . . , dk such that

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k

and
y⃗ = d1u⃗1 + d2u⃗2 + · · ·+ dku⃗k.

We thus have [x⃗]B = ⟨c1, c2, . . . , ck⟩ and [y⃗]B = ⟨d1, d2, . . . , dk⟩. Next we
observe that

x⃗+ y⃗ = (c1 + d2) u⃗1 + (c2 + d2) u⃗2 + · · ·+ (ck + dk) u⃗k

and thus

[x⃗+ y⃗]B = ⟨c1 + d1, c2 + d2, . . . , ck + dk⟩
= ⟨c1, c2, . . . , ck⟩+ ⟨d1, d2, . . . , dk⟩
= [x⃗]B + [y⃗]B
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Exercise 4.8.1. Prove statement 2 of Lemma 4.8.1.

Lemma 4.8.2. Suppose S is a subspace of a vector space V and B =
{u⃗1, . . . , u⃗k} is an ordered basis of S. Then 0⃗V is the only vector in S that
has coordinate vector 0⃗k. In other words, the following statement holds for
all vectors x⃗ ∈ S:

[x⃗]B = 0⃗k if and only if x⃗ = 0⃗V .

Proof. Suppose that [x⃗]B = 0⃗k. Then

x⃗ = 0u⃗1 + 0u⃗2 + · · ·+ 0u⃗k.

By statement 3 of Theorem 4.6.1, 0u⃗i = 0⃗V for all i = 1, 2, . . . k and thus

x⃗ = 0⃗V + 0⃗V + · · ·+ 0⃗V = 0⃗V .

Now suppose that x⃗ = 0⃗V . Since B is a basis for S, then there exist weights
c1, c2, . . . , ck such that

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k

and thus
c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k = 0⃗V .

Since B is linearly independent, then c1 = c2 = · · · = ck = 0 and thus

x⃗ = 0u⃗1 + 0u⃗2 + · · ·+ 0u⃗k.

This tells us that

[x⃗]B = ⟨0, 0, . . . , 0⟩ = 0⃗k.

Theorem 4.8.1. Suppose S is a subspace of a vector space V and B =
{u⃗1, . . . , u⃗k} is an ordered basis of S. Let T = {x⃗1, x⃗2, . . . , x⃗m} be any set of
vectors in S, and let CT =

{
[x⃗1]B, [x⃗2]B, . . . , [x⃗m]B

}
be the set of vectors in

Rk consisting of the coordinate vectors of the elements of T with respect to
the basis B. Then T is linearly independent in V if and only if CT is linearly
independent in Rk.
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Proof. Suppose that T is linearly independent in V . This means that the
equation

c1x⃗1 + c2x⃗2 + · · ·+ cmx⃗m = 0⃗V

has only the trivial solution. We want to prove that the set of vectors CT is
linearly independent in Rk. To do this, we need to show that the equation

c1[x⃗1]B + c2[x⃗2]B + · · ·+ cm[x⃗m]B = 0⃗k (4.32)

has only the trivial solution. Using Lemma 4.8.1 (both parts) we see that

c1[x⃗1]B + c2[x⃗2]B + · · ·+ cm[x⃗m]B = [c1x⃗1 + c2x⃗2 + · · ·+ cmx⃗m]B .

Thus equation (4.32) is equivalent to

[c1x⃗1 + c2x⃗2 + · · ·+ cmx⃗m]B = 0⃗k.

By Lemma 4.8.2 it must be the case that

c1x⃗1 + c2x⃗2 + · · ·+ cmx⃗m = 0⃗V

and we know that (by assumption) this equation has only the trivial solution.
Therefore equation (4.32) has only the trivial solution, and this shows that
the set of vectors CT is linearly independent in Rk. The proof of the fact
that if CT is linearly independent in Rk then T is linearly independent in V
is similar.

Note what Theorem 4.8.1 is telling us. It is telling us that we can deter-
mine the linear dependence or independence of a set of vectors in some vector
space V by examining the relationship between the coordinate vectors in Rk.
This means that we can employ our tools from Rk, especially matrices! The
following example provides an illustration of this.

Example 4.8.1. We can use coordinate vectors with respect to the ordered
basis S = {1, x, x2} to show that the subset {p, q, r} of P2 is linearly indepen-
dent, where

p(x) = 1− x+ x2, q(x) = 2− x, and r(x) = 3 + x2.

First, we obtain the coordinate vectors with respect to S for each of the poly-
nomials p, q, and r. These are

[p]S = ⟨1,−1, 1⟩, [q]S = ⟨2,−1, 0⟩, and [r]S = ⟨3, 0, 1⟩.
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Theorem 4.8.1 tells us that the linear dependence or independence of these
vectors in R3 is equivalent to the linear dependence or independence of {p, q, r}
in P2. One way to investigate the linear independence in R3 is to use a ma-
trix. Using the coordinate vectors as column vectors, and using row reduction 1 2 3

−1 −1 0
1 0 1

 rref−→

 1 0 0
0 1 0
0 0 1

 .

The matrix is row equivalent to the identity which shows that the columns—
the coordinate vectors, are linearly independent. We conclude, as we did in
Example 4.7.9, that the set {p, q, r} is linearly independent in P2.

Exercise 4.8.2. Let B = {E11, E12, E21, E22} be the ordered basis of M2×2

where

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
.

Use coordinate vectors to determine whether the following collection of vectors
is linearly dependent or linearly independent in M2×2.

A1 =

[
1 1
0 1

]
, A2 =

[
2 −1
1 −2

]
, A3 =

[
0 2
1 3

]
, A4 =

[
1 6
0 8

]
.

Because linear dependence and independence can be determined by the
relationship between coordinate vectors in some Rk, we can extend the results
from Lemma 4.3.1 and Theorem 4.3.1 to general vector spaces. In particular,
we have the following lemma.

Lemma 4.8.3. Suppose S is a subspace of a vector space V and B =
{u⃗1, . . . , u⃗k} is an ordered basis of S. If T = {v⃗1, v⃗2, . . . , v⃗m} is any set
of m vectors in S where m > k, then T is linearly dependent.

This leads to the following theorem that confirms that all bases for a
given subspace of a vector space must have the same number of elements.

Theorem 4.8.2. Let n ≥ 2 and 1 ≤ k ≤ n. Suppose S is a subspace of a
vector space V and B = {u⃗1, . . . , u⃗k} is a basis of S. Then every basis of S
consists of exactly k vectors.
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Theorem 4.8.2 provides a rigorous justification for using the term “di-
mension”. For example, we have seen that M2×2 has a basis that consists
of exactly four vectors – the set of vectors {E11, E12, E21, E22} from Exer-
cise 4.8.2. This means that all bases of M2×2 consist of exactly four vectors
and thus we are justified in declaring that

dim
(
M2×2

)
= 4.

Similarly, we know that set {1, x, x2, . . . , xn} is a basis for Pn. This basis
consists of n+ 1 elements. Hence

dim
(
Pn

)
= n+ 1.

4.9 Additional Exercises

(Jump to Solutions)

1. Prove statement a of Theorem 4.1.2. That is, show that any set of
vectors in Rn that includes the zero vector, 0⃗n, is linearly dependent.

2. Prove that the set {⃗0n} is a subspace of Rn for any n ≥ 2.

3. Prove that if S is a subspace of Rn, then S must contain the zero vec-
tor, 0⃗n.

4. Consider the subspace

S = Span{⟨1, 2, 1, 1⟩, ⟨3, 5, 3, 4⟩, ⟨1, 1, 1, 2⟩, ⟨2, 1, 1, 4⟩}

of R4. Find a basis for S.

5. Let n ≥ 2; suppose S is a subspace of Rn and B = {u⃗1, . . . , u⃗k} is a
basis for S where 1 ≤ k ≤ n. Explain why

[⃗0n]B = 0⃗k.
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That is, explain why the coordinate vector for the zero vector in S
(which is the zero vector in Rn) must be the zero vector in Rk.

6. Determine whether the columns of A are linearly independent or lin-
early dependent. If the columns are linearly dependent, find a linear
dependence relation.

(a) A =

 1 1 2
2 −1 0
1 −3 1



(b) A =


1 −2 0 1
2 −4 2 6
0 0 3 6

−3 6 1 −1



(c) A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2



(d) A =


3 2 3
1 0 1
0 −2 5

−1 8 4



7. Verify that Pn satisfies axioms 1–4 and axioms 7–10 of Definition 4.6.1.
(Note that axioms 5 and 6 have already been discussed.)

8. For each statement, indicate whether the statement is true or false.
Give a brief explanation of reason for each conclusion.

(a) If A is an n× n matrix, then RS(A) = CS(A).
(b) If A is an n× n matrix, then dim

(
RS(A)

)
= dim

(
CS(A)

)
.

(c) If A is a 3 × 3 matrix and rank(A) = 3, then the homogeneous
equation Ax⃗ = 0⃗3 has only the trivial solution.
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(d) The dimension of P5 is dim
(
P5

)
= 5.

(e) If A is an m × n matrix with linearly dependent columns, then
the equation Ax⃗ = 0⃗m must have infinitely many solutions.

(f) If A is an m × n matrix with linearly dependent columns, then
the equation Ax⃗ = y⃗ must have infinitely many solutions for any
y⃗ in Rm.

(g) An element of a vector space is called a vector.

(h) If p is a vector in P4 and B is some basis of P4, then the coordinate
vector [p]B is a vector in R5.

(i) For matrix A, if the first three rows of rref(A) are nonzero, then
the first three rows of A are linearly independent.

(j) For matrix A, if the first three column vectors of rref(A) are three
different standard unit vectors, then the first three columns of A
are linearly independent.

9. For each matrix, find bases for the row space, the column space, and
the null space.

(a) A =

 1 2 −1 3
2 4 −2 6
1 4 0 0



(b) B =


1 2 1
3 5 0
4 6 −2
2 3 −1


(c) C =

 −2 2 −3 −2 −8
3 −3 3 1 10
2 −2 2 0 4


10. The first three Chebyshev8 polynomials are

T0(x) = 1, T1(x) = x, and T2(x) = 2x2 − 1.

8Pafnuty Lvovich Chebyshev (1821–1894) was a prominent Russian mathematician.
Some transliterations of his name begins with the letter T, hence the convention of using
Ti when naming the polynomials. The polynomials, more accurately called the Chebyshev
polynomials of the first kind, arise as solutions to a specific family of differential equations
and have applications in numerical analysis, signal processing, and other areas.



4.9. ADDITIONAL EXERCISES 243

Show that the set C = {T0, T1, T2} is a basis for P2.

11. Suppose A is a 7× 10 matrix.

(a) If RS(A) is a subspace of Rk, what is k?

(b) If CS(A) is a subspace of Rk, what is k?

(c) If N (A) is a subspace of Rk, what is k?

(d) If rank(A) = 7, find nullity(A).

(e) If the homogeneous equation Ax⃗ = 0⃗7 has four free variables, what
is dim(RS(A))?

(f) If A is full rank, what is rank(A)? (Recall that full rank means
that the rank is the largest it can be.)

(g) If rank(A) = 4, find nullity(AT ).

(h) If rank(AT ) = 6, what is dim(CS(A))?

12. Which of the following sets, S, are subspaces of R∞? Explain your
answers.

(a) S = Span {⟨1, 3, 5, 7, . . .⟩ , ⟨2, 4, 6, 8, . . .⟩}
(b) S = {a⃗ = ⟨a1, a2, a3, . . .⟩ ∈ R∞ | an ≥ 0 for all n = 1, 2, 3, . . .}
(c) S = {a⃗ ∈ R∞ | a⃗ diverges} (Note: This question requires knowl-

edge of Calculus II material.)

(d) S = {a⃗ ∈ R∞ | all entries of a⃗ are either 0 or 1 or − 1}
(e) S = {a⃗ ∈ R∞ | a⃗ has only finitely many non–zero entries}

13. Let S be the set of all functions, f , in C1 (R) that are equal to their
derivative. In other words,

S =
{
f ∈ C1 (R) | f ′ = f

}
.

(a) Which of the following functions, with domain R, are in the set
S?

i. f (x) = x
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ii. f (x) = x2

iii. f (x) = ex

iv. f (x) = 4ex

v. f (x) = 7

vi. f (x) = sin (x)

vii. f (x) = e3x

(b) Is S a subspace of C1 (R)? Explain.

14. Let T be the set of all functions, f , in C1 (R) whose derivatives are
equal to the function x2. In other words,

S =
{
f ∈ C1 (R) | f ′ (x) = x2 for all x ∈ R

}
.

(a) Which of the following functions, with domain R, are in the set
S?

i. f (x) = x

ii. f (x) = x2

iii. f (x) = x3

iv. f (x) = x3 − 12

v. f (x) = 1
3
x3 + 27

vi. f (x) = 3x3

(b) Is T a subspace of C1 (R)? Explain.

15. Let K be the set of all functions, f , in C0 ([−π, π]) that satisfy∫ π

−π

f (x) dx = 0.

(a) Which of the following functions, with domain [−π, π], are in the
set K?

i. f (x) = x

ii. f (x) = x2

iii. f (x) = x3

iv. f (x) = sin (x)

v. f (x) = cos (x)
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vi. f (x) = x sin (x)

vii. f (x) = x cos (x)

(b) Is K a subspace of C0 ([−π, π])? Explain.

16. Let L be the set of all functions, f , in C0 ([−π, π]) that satisfy∫ π

−π

f (x) dx = 1.

Is L a subspace of C0 ([−π, π])? Explain.

17. Consider the set of functions

S = {1, ex}

in F (R) .

Show that S is linearly independent and is thus a basis for Span (S).

Determine [7− 8ex]S.

18. Consider the set

V = {⟨x1, x2⟩ | x1 ∈ R and x2 ∈ R} .

In other words, V = R2, but we are going to define one of the operations
on V differently than how we defined it for R2 in Chapter 1. Thus V
and R2 are equal as sets, but not as vector spaces. In fact, the goal of
this problem is to prove that V is not a vector space!

We will define addition of elements of V in the usual way: For any
elements x⃗ and y⃗ in V we define

x⃗+ y⃗ = ⟨x1, x2⟩+ ⟨y1, y2⟩ = ⟨x1 + y1, x2 + y2⟩ .

However, we will define scalar multiplication in a different way: For
any element x⃗ ∈ V and scalar c ∈ R we define

cx⃗ = ⟨0, 0⟩ .

Explain why V with the operations defined as we have defined them
above is not a vector space. This is a good exercise in understanding
Definition 4.6.1. (Which of the ten axioms of Definition 4.6.1 does V
satisfy and which of the axioms does it not satisfy?)
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Chapter 5

Linear Transformations

The concept of function is a concept that you are familiar with from previous
mathematics courses you have taken. In calculus, you studied a variety
of functions such as polynomial functions, rational functions, trigonometric
functions, exponential functions, and others. It is at this point in our linear
algebra course that we introduce the function concept in the setting of vector
spaces. However, in the vector space setting we will only consider special
kinds of functions called linear transformations. Roughly speaking, these
are functions that map lines to lines or points. A little less rough (but still
rough) description of a linear transformation is as follows:

A linear transformation, T , from a vector space V to a vector
space W is a function T : V → W such that if L is any line in V ,
then applying T to L produces a line or a point in W .

Don’t worry if you didn’t understand the above statement when you first
read it. It is just a vague definition that attempts to capture the overall
idea of what a linear transformation is. You know what a vector space is,
but the above statement will make sense to you only after we have given
precise definitions of the terms “linear transformation” and “line”, and you
have had an opportunity to get familiar with these concepts as you proceed
through this chapter and work on the exercises. After finishing your study
of this chapter, you should come back and read the above statement again
and hopefully it will make sense to you at that point!

247
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5.1 General Ideas Pertaining to Functions

If V and W are vector spaces, then a linear transformation, T , from V to W ,
is a function that assigns each vector in V to some vector in W , but not every
function from V to W is a linear transformation. A linear transformation
is a function that satisfies two properties called linearity properties that are
described in Definition 5.2.1 which is given in Section 5.2. The notation
that we will use to say that T is a linear transformation from V to W is
T : V → W . This kind of notation is used when discussing functions in
general (not just linear transformations) and we need to make sure that we
understand it and some ideas and vocabulary related to it before we provide
our definition of a linear transformation.

5.1.1 Domain, Codomain, Images, and Range

In general, if D and C are two non–empty sets and we write f : D → C,
then we are saying that f is a function whose domain is the set D and whose
codomain is the set C. This means that f takes inputs from the set D and
assigns them (by some rule) to outputs in the set C. So when you see the
notation f : D → C, here is how you should interpret it:

f︸︷︷︸
Rule

: D︸︷︷︸
set of all inputs

−→ C︸︷︷︸
set where outputs live

. (5.1)

If x is any element of the domain D, then f (x) denotes the element of C
that x is assigned to by f . In other words, if x is some element of D and the
function f assigns x to y, then we write f (x) = y. Instead of using the word
“assign” we can use the word “map”. Hence we can either say that f assigns
x to y or we can say that f maps x to y. If f (x) = y, then we refer to y
as the image of x under f . This is illustrated by the schematic diagram
shown in Figure 5.1.

More generally, if S is any subset of the domain D, then we use the
notation f (S) to denote the set of all images of the elements of S and we call
this the image of S under f . To write this formally (using set notation),
the image of a set S under f is defined to be

f (S) = {y ∈ C | y = f (x) for at least one x ∈ S} .

Written in a more compact form,

f (S) = {f (x) | x ∈ S} . (5.2)
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Figure 5.1: y is the image of x under f .

The schematic diagram shown in Figure 5.2 shows a subset, S, in the domain
D and its image, f (S) , in the codomain C.

Figure 5.2: f(S) is the image of S under f .

In writing the description (5.1), it was not by accident that we said that
D is the “set of all inputs” and that C is the “set where outputs live”.
Depending on how we specify the codomain, C, it may or may not be the
case that C is the set of all outputs of the function f . The subset of C that
is the set of all outputs of the function f is what we call the range of f .
The range of f is denoted by Range (f). A formal definition of Range (f) is

Range (f) = {y | y = f (x) for at least one x ∈ D} .

An equivalent (and more compact) way to write the definition of Range (f)
is

Range (f) = {f (x) | x ∈ D} .
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In light of (5.2), an even more compact way to define Range (f) is

Range (f) = f (D) .

So when thinking about the concept of range, here is what you should be
thinking:

f︸︷︷︸
Rule

: D︸︷︷︸
set of all inputs

−→ Range (f)︸ ︷︷ ︸
set of all outputs

(5.3)

The schematic diagram in Figure 5.3 illustrates Range (f) = f (D).

Figure 5.3: f(D) is the image of D under f .

You may be asking yourself why it is even necessary to bother with the
idea of a codomain. Once we have specified the domain D and the rule f ,
why don’t we just simply write f : D → Range (f) as in (5.3)? Indeed it is
correct to write this. However, when working with functions, it is often the
case that the range of the particular function that is being investigated is
not immediately obvious. Hence we choose some set, C, that we are sure is
large enough to guarantee that all of the function outputs are contained in
C, and we call this set the codomain. There is not a unique way to specify
the codomain. We just need to be sure that it is a set that contains all of the
outputs of the function. Furthermore, many investigations that arise in both
theoretical and applied problems center around a whole class of functions (not
just one function) that all have the same domain but have different ranges.
But even though all of these functions have different ranges, the ranges are
all contained in some common set C. An example of this type of situation
was seen in Section 4.7.4.1 where we discussed the set F (D) of all real–
valued functions that have some common domain D. When we stipulated
that we were considering real–valued functions, what we were actually doing
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was stipulating that the codomain of each of the functions being considered
was understood to be the set of all real numbers R. The functions in F (D)
are all real–valued functions but they do not all have the same range. As a
specific example, consider the functions f : R → R and g : R → R defined,
respectively, by

f (x) = 3x

g (x) = x2.

Both f and g have domain R and codomain R. However, the ranges of these
functions are

Range (f) = f (R) = R

Range (g) = g (R) = [0,∞).

Exercise 5.1.1. Determine the range of each of the following functions
f : R → R. This exercise requires that you remember some things about
elementary functions that you studied in calculus. All of these functions are
continuous and thus the range of each function is an interval. You should
try to do this exercise without using technology but it is OK if you just graph
the given function using technology and determine the range by looking at the
graph.

The goal of this linear algebra course is not to study the types of functions
that are contained in this exercise. (That is done in calculus.) It is OK if
you skip this exercise (as long as your Instructor says it is OK). The exercise
has been included here to help you to realize that the concept of Range is one
that applies to functions in general - not just the functions we will study in
linear algebra.

The first one is done as an example.

1. f (x) =
√
x2 + 1

Solution: The function y = x2 is an upward–opening parabola with
vertex at the point (0, 0). This means that x2 ranges over the interval
[0,∞) as x ranges over the interval (−∞,∞).

The function y = x2+1 is a vertical translation of the function y = x2.
Specifically, it is a translation in the upward direction by 1 unit. Thus
x2 + 1 ranges over the interval [1,∞) as x ranges over the interval
(−∞,∞).
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Figure 5.4: Graph of f(x) =
√
x2 + 1

If we take the square root of any number in the interval [1,∞), then
we obtain another number in the interval [1,∞). In particular

√
1 = 1

and if x is any number greater than 1, then
√
x > 1. Thus

√
x2 + 1

ranges over the interval [1,∞) as x ranges over the interval (−∞,∞).

We conclude that Range (f) = [1,∞). The graph of f in Figure 5.4.

2. f (x) = 4x

3. f (x) = 27

4. f (x) = x2 − 6

5. f (x) = ex

6. f (x) = cos (x)

7. f (x) = |cos (x)|

8. f (x) = 1− x2

9. f (x) = |1− x2|

10. f (x) =
√

|1− x2|

5.1.2 Concepts of Onto, One-to-One, and Invertibility

If f is a function with domain D and designated codomain C, then we say
that f maps D into C. If it happens to be the case that Range (f) = C
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Figure 5.5: f maps D onto C.

(i.e., f (D) = C), then we say that f maps D onto C. The situation where
f maps D onto C is illustrated in the schematic diagram in Figure 5.5.

As a specific example to illustrate the into/onto idea, once again consider
the functions f : R → R and g : R → R defined by

f (x) = 3x

g (x) = x2.

Both of these functions map R into R. f maps R onto R because f (R) = R.
However, g does not map R onto R because g (R) = [0,∞) ̸= R.

In addition to the “onto” concept, another important concept pertaining
to functions is the concept of a function being one–to–one. We have defined
Range (f) = f (D) and this means that Range (f) is the set of all elements,
y, in the codomain C such that there is at least one element x ∈ D such that
f (x) = y. Depending on what function, f , we are dealing with, it could be
the case that there is some element y ∈ Range (f) for which there is more
than one x ∈ D such that f (x) = y. If this is the case, then we say that the
function f is not one–to–one. A specific example of a function that is not
one–to–one is the function g : R → R defined by g (x) = x2. To see why g is
not one–to–one, just observe that g (2) = 4 and g (−2) = 4. The element 4
is in Range (g) = [0,∞) but there are two different elements (2 and −2) in
the domain of g such that g (x) = 4. The schematic diagram in Figure 5.6
illustrates a function that is not one–to–one.

To summarize what we have said in the preceding paragraph: if f : C →
D is a function and if there is at least one element y ∈ Range (f) such that
f (x1) = y and f (x2) = y for two different elements x1 and x2, in D, then
we say that f is not one–to–one. We therefore say that f is one–to–one
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Figure 5.6: f is not one-to-one.

if for each element y ∈ Range (f) there is a unique element x in D such
that f (x) = y. As a specific example, the function f : R → R defined by
f (x) = 3x is one–to–one because for any element y in Range (f) = R, there
is a unique element x in the domain R such that 3x = y. For example, if
we take the element y = 8 then the only element of R such that f (x) = 8
is x = 8/3 because the only solution of the equation 3x = 8 is x = 8/3.
Contrast this with the function g : R → R defined by g (x) = x2, which is
not one–to–one: If we take the element y = 8 ∈ R, then there is more than
one solution in R of the equation x2 = 8. This equation has two different
solutions in R, which are x1 =

√
8 and x2 = −

√
8.

We can nicely summarize the foregoing discussion regarding the concepts
of “onto” and “one–to–one” with the following definition.

Definition 5.1.1. Suppose that D and C are non–empty sets and suppose
that f : D → C.

1. We say that the function f maps D onto C if for each element y ∈ C,
the equation f (x) = y has at least one solution in D.

2. We say that the function f is one–to–one if for each element y ∈
Range (f) the equation f (x) = y has a unique solution in D.

Here is another way to interpret Definition 5.1.1 in words, using some
other vocabulary words we have already encountered earlier in this course:

1. The function f : D → C maps D onto C if for each element y ∈ C,
the equation f (x) = y is consistent.
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2. The function f : D → C is one–to–one if, assuming the equation
f (x) = y is consistent, it has a unique solution.

Functions that are both onto and one–to–one are said to be invertible.
If f : D → C is both onto and one–to–one, then for every element y ∈ C
there is a unique element x ∈ D such that f (x) = y. In other words, f
is invertible if for all y ∈ C, the equation f (x) = y is consistent and has a
unique solution. If f : D → C is invertible, then there is a corresponding
function, called the inverse of f and denoted by f−1 that “undoes what f
does”. Specifically f−1 : C → D is the function defined by

f−1 (y) = x where x is the unique solution of f (x) = y.

We can define invertibility using a definition that is in the spirit of Defi-
nition 5.1.1.

Definition 5.1.2. Suppose that D and C are non–empty sets and suppose
that f : D → C. We say that f is invertible if for each element y ∈ C, the
equation f (x) = y has a unique solution.

The inverse concept is illustrated in the schematic diagram in Figure 5.7.

Figure 5.7: Illustration of f−1.

The inputs of f−1 are the outputs of f and the outputs of f−1 are the
inputs of f . When a certain x is put in to the function f , it produces the
output f (x). Then when this f (x) is put in to the function f−1, it produces
the original x. This is summarized as follows: If f : D → C is invertible,
then

For all x ∈ D, f−1 (f (x)) = x
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and
For all x ∈ C, f

(
f−1 (x)

)
= x.

Also, observe that if f is invertible, then the domain of f−1 is the range of f
and the range of f−1 is the domain of f .

5.1.3 Examples and Exercises

We will end this section with some examples illustrating the onto, one–to–
one, and invertibility concepts and some exercises that should help you mas-
ter these concepts. Our first two examples will use functions from calculus,
which are non–linear functions, but then we will switch to examples that use
linear functions from a vector space Rn into a vector space Rm. (We have
not yet defined what the terms “non–linear function” and “linear function”
mean, but we will do that in the upcoming section.) After these first two
examples, and for the rest of this chapter, we will not give any more exam-
ples involving non–linear functions. You will probably find that the examples
involving the non–linear functions are “harder” than the ones involving the
linear functions. The reason is that the concepts of onto, one–to–one, and in-
vertible involve studying equations of the form f (x) = y and these equations
can be difficult to study if f is a non–linear function such as f (x) = sin (x).
However these equations are much easier to study if f is a linear function
such as f (x) = 3x. In fact, one of our main focuses in this course so far
has been to study equations of the type f (x⃗) = y⃗ where the function f is
defined by f (x⃗) = Ax⃗ where A is some given matrix. For those who wish to
skip Examples 5.1.1 and 5.1.2 and Exercises 5.1.2 and 5.1.3 (assuming your
instructor says it is OK to skip them!), you can resume reading with Example
5.1.3. We have chosen to include Examples 5.1.1 and 5.1.2 to emphasize that
the concepts of onto, one–to–one, and invertibility apply much more broadly
beyond linear algebra.

Example 5.1.1. Consider the function f : R → R defined by f (x) = x2.
This function has domain R and has range

Range (f) = f (R) = [0,∞).

f does not map R onto R because Range (f) ̸= R. In addition, f is not
one–to–one because f (2) = f (−2) = 4. (Thus two different inputs of f give
the same output.)
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We will now “fix up” the definition of f by changing the domain and
codomain, keeping the formula the same. This will result in the “new” func-
tion f being invertible.

Let f be the function f : [0,∞) → [0,∞) defined by f (x) = x2. This
function has domain [0,∞) and has range

Range (f) = f ([0,∞)) = [0,∞).

In addition f is both onto [0,∞) and one–to–one. It is onto [0,∞) because
for any choice of y ∈ [0,∞), the equation x2 = y has a solution in [0,∞).
In fact such a solution is unique. For example, the unique solution of the
equation x2 = 9 that lies in the domain of f is x = 3. Since x2 = y has a
unique solution for each y in Range (f), then f is invertible. The inverse of
f is what we call the square root function. It is the function

f−1 (x) =
√
x.

Writing
√
32 = 3 is the same as writing f−1 (f (3)) = 3.

Writing
(√

3
)2

= 3 is the same as writing f
(
f−1 (3)

)
= 3.

Example 5.1.2. Consider the function f :
[
−π

2
, π
2

]
→ [−1, 1] defined by

f (x) = sin (x). This function has domain
[
−π

2
, π
2

]
and has range

Range (f) = f
([

−π

2
,
π

2

])
= [−1, 1] .

We have purposely chosen the domain and codomain to make f be both onto
its codomain and one–to–one. By looking at the graph of f which is shown
in Figure 5.8, it can be seen that for every y in the codomain [−1, 1], there
is a unique x in the domain

[
−π

2
, π
2

]
such that f (x) = y. This tells us that

f is invertible.
The inverse of this function is the inverse sine function which is denoted

either by sin−1 or by arcsin. As a specific example, since

sin
(π
3

)
=

√
3

2
,

then

sin−1

(√
3

2

)
=

π

3
.
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Figure 5.8: f(x) = sin(x).

Note that it is also true that

sin

(
2π

3

)
=

√
3

2
,

but is is not true that

sin−1

(√
3

2

)
=

2π

3
.

That is because the number 2π/3 does not lie in the in the interval
[
−π

2
, π
2

]
.

There is only one number, x, in the interval
[
−π

2
, π
2

]
for which sin (x) =

√
3/2

and that number is x = π/3.

Exercise 5.1.2. In calculus (or perhaps in a precalculus course), you learned
that the inverse of an exponential function is a logarithm function. This
exercise should help you to understand the process of deriving that idea.

Let f : R → (0,∞) be the function f (x) = ex.

1. Draw the graph of f (either by hand or using technology).

2. Do you see that f maps R onto the interval (0,∞) and that f is one–
to–one?

3. The inverse of f is called the natural logarithm function and is denoted
by “ln” or “loge”. What is the domain of f−1? What is the range of
f−1?
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4. Fill in the blanks:

ln (ex) = x for all x ∈

and
eln(x) = x for all x ∈ .

Exercise 5.1.3. Let f : D → R be defined by the formula

f (x) =
1

x
.

1. What is the largest possible subset of R that you can choose for the do-
main, D, such that this formula makes sense (meaning that the formula
produces a real number for all x ∈ D)?

2. Draw the graph of f (either by hand or using technology).

3. Using the domain, D, that you designated in part 1, what is Range (f)?

4. Do you see that f maps D onto its range and that f is one–to–one?

5. Find the formula for f−1.

Example 5.1.3. Let f : R → R be the function defined by f (x) = 5x. If we
take any number y in the codomain R, then the equation

5x = y

has a unique solution in the domain R. Thus f is invertible.
The unique solution of 5x = y is

x =
1

5
y

and this tells us that the inverse of f is the function f−1 : R → R defined by

f−1 (x) =
1

5
x.

Here is a check that this is correct: For any x ∈ R we have

f−1 (f (x)) =
1

5
f (x) =

1

5
(5x) = x
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and

f
(
f−1 (x)

)
= 5f−1 (x) = 5

(
1

5
x

)
= x.

Clearly, if we take any constant a with a ̸= 0, then the function f : R →
R defined by f (x) = ax is invertible and the inverse of f is the function
f−1 : R → R defined by

f−1 (x) =
1

a
x.

What if a = 0? The function f : R → R defined by f (x) = 0x does
not map R onto R because Range (f) = {0} ≠ R. In addition, f is not
one–to–one because, for example f (12) = 0 and f (−37) = 0.

Example 5.1.4. The previous example considered functions f : R → R that
have the form f (x) = ax where a is a given constant. Throughout the rest
of this chapter, we will consider functions of this form, except where A is a
matrix! This is our first example.

Let A be the matrix

A =

[
0 −1
1 0

]
and let T : R2 → R2 be the function defined by

T (x⃗) = Ax⃗.

Some questions we would like to answer are

1. What is Range (T )?

2. Does T map R2 onto R2?

3. Is T one–to–one?

4. Is T invertible and, if so, what is T−1?

We are going to answer question 4 first (because the answer to question
4 will provide the answers to all of the other questions). We know that T is
invertible if any only if the equation

Ax⃗ = y⃗

has a unique solution for every choice of y⃗ in the codomain R2. We know
that this will be true if and only if both every row and every column of A has



5.1. GENERAL IDEAS PERTAINING TO FUNCTIONS 261

a pivot. Since A is a square matrix (size 2× 2), this will be true if and only
if rref (A) = I2. It is easy to check that it is indeed true that rref (A) = I2.
Hence T is invertible.

Since T is invertible, then T maps R2 onto R2 (which tells us that Range (T ) =
R2) and T is also one–to–one.

Can you guess what the formula for T−1 is?
In Example 5.1.3, we saw that if a ̸= 0, then the inverse of the function

f (x) = ax is the function f−1 (x) = 1
a
x = a−1x. Perhaps not surprisingly,

the inverse of T (x⃗) = Ax⃗ is

T−1 (x⃗) = A−1x⃗.

To see why this is so, note that for any x⃗ in R2, we have

T−1 (T (x⃗)) = A−1 (Ax⃗) =
(
A−1A

)
x⃗ = I2x⃗ = x⃗

and likewise
T
(
T−1 (x⃗)

)
= x⃗.

Example 5.1.5. Let A be the matrix

A =

[
1 0
0 0

]
and let T : R2 → R2 be the function defined by

T (x⃗) = Ax⃗.

Some questions we would like to answer are

1. What is Range (T )?

2. Does T map R2 onto R2?

3. Is T one–to–one?

4. Is T invertible and, if so, what is T−1?

The matrix A has reduced row echelon form and we see that

rref (A) = A ̸= I2.



262 CHAPTER 5. LINEAR TRANSFORMATIONS

Since not every row of A has a pivot, then there are some vectors y⃗ in R2

for which Ax⃗ = y⃗ is inconsistent. This tells us that T does not map R2 onto
R2.

Since not every column of A has a pivot, then even if Ax⃗ = y⃗ is consistent
(which will be true if y⃗ ∈ Range (T )), it has infinitely many solutions. This
tells us that T is not one–to–one.

Clearly T is not invertible.

What is Range (T )? We know that Range (T ) is the set of all outputs of
T . In other words,

Range (T ) =
{
Ax⃗ | x⃗ ∈ R2

}
.

Hence Range (T ) is precisely the column space of the matrix A. We know
that the column space of A is the span of the pivot columns of A. Thus

Range (T ) = Span {⟨ 1, 0⟩} .

Example 5.1.6. Let A be the matrix

A =

[
3 2 1
3 −1 −1

]
and let T : R3 → R2 be the function defined by

T (x⃗) = Ax⃗.

We can immediately see, due to the fact that A has more columns than rows,
that it is not possible for the equation Ax⃗ = y⃗ to have a unique solution (even
if Ax⃗ = y⃗ is consistent). Thus T is not one–to–one. This tells us that T is
not invertible.

Since

rref (A) =

[
1 0 −1

9

0 1 2
3

]
,

we see that every row of A has a pivot. This tells us that T does map R3

onto R2.

Finally, since Range (T ) is the column space of A, and since we know
that the column space of A is the span of the pivot columns of A, then

Range (T ) = Span {⟨3, 3⟩ , ⟨2,−1⟩} .
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Example 5.1.7. Let A be the matrix

A =

 2 0
−1 1
0 −2


and let T : R2 → R3 be the function defined by

T (x⃗) = Ax⃗.

Since not every row of A has a pivot, then there are some y⃗ ∈ R3 for
which Ax⃗ = y⃗ is inconsistent. This tells us that Range (T ) ̸= R3 and hence
T does not map R2 onto R3. Hence T is not invertible. Also

rref (A) =

 1 0
0 1
0 0

 ,

showing that all columns of A have a pivot. Therefore T is one–to–one.
The range of T is

Range (T ) = Span {⟨2,−1, 0⟩ , ⟨0, 1,−2⟩} .

Exercise 5.1.4. For each of the m×n matrices, A, given below, let T : Rn →
Rm be the function defined by T (x⃗) = Ax⃗. Answer each of the questions for
each one. Explain your answers. Studying the above examples will help you
see how you should explain your answers.

a) What is the domain of T?

b) What is the codomain of T?

c) Does T map Rn onto Rm?

d) Is T one–to–one?

e) Is T invertible? If it is, then what is T−1?

f) Describe the range of T as the span of some set of vectors in Rm.

1.

A =

[
−3 1
1 −2

]
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2.

A =

[
−1 0
0 1

]
3.

A =

[
0 3
0 −4

]
4.

A =

 2 4 4
−3 −4 2
−4 1 −4


5.

A =

 3 0 1
1 −4 1
4 −4 2


6.

A =

 −1 −1 3
−2 −2 6
3 3 −9


7.

A =

 −2 −4 4 0
0 2 3 −4
2 −3 1 1


8.

A =


2 0 0 −4
0 −4 2 −3
1 −4 −4 −1
−4 3 −4 2
2 0 1 2


9.

A =
[
4 2

]
10.

A =

 0 0 0
0 0 0
0 0 0

 .
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Exercise 5.1.5. Explain why if A is any m× n matrix and T : Rn → Rm is
the function defined by T (x⃗) = Ax⃗, then 0⃗m ∈ Range (T ).

Exercise 5.1.6. Suppose that A is an m × n matrix and suppose that T :
Rn → Rm is the function defined by T (x⃗) = Ax⃗.

Explain why if m ̸= n, then T is not invertible.

Exercise 5.1.7. Let M2×2 be the set of all 2× 2 matrices with real number
entries. Let f : M2×2 → M2×2 be the function defined by f (A) = rref (A)

1. Does f map M2×2 onto M2×2? Explain.

2. Is f one-to-one? Explain.

5.2 Linear Transformations from Rn to Rm

For the rest of this chapter we will focus on a certain class of functions called
linear transformations. These are functions whose domains and codomains
are vector spaces and which satisfy two requirements which are given in Def-
inition 5.2.1 below. We will start by focusing only on linear transformations
that have domain Rn (for some n) and codomain Rm (for some m). In Sec-
tion 5.6, we will generalize and study linear transformations whose domain
and codomain can be any vector space. For notation, we will use capital
letters such as T to denote linear transformations.

Definition 5.2.1. A linear transformation from Rn to Rm is a function
T : Rn → Rm that has the properties:

1. If x⃗ and y⃗ are any two vectors in Rn, then T (x⃗+ y⃗) = T (x⃗) + T (y⃗).

2. If x⃗ is any vector in Rn and c is any scalar, then T (cx⃗) = cT (x⃗).

Properties 1 and 2 of Definition 5.2.1 are usually referred to as linearity
properties. Any function, T , that satisfies Properties 1 and 2 is called
a linear function (we actually use the name “transformation” instead of
“function” in linear algebra) and any function that does not satisfy Properties
1 and 2 is called a nonlinear function. (See Exercise 3 in the Additional
Exercises, Section 5.8, for a nuance regarding use of the terms “linear” and
“nonlinear”.)
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In the introductory section of this chapter (page 247), we stated a rather
crude definition of what a linear transformation is – saying that a linear
transformation is a function that maps lines to lines or points. Upon your
first reading of Definition 5.2.1, it is probably not at all clear to you that this
definition describes a kind of function that maps lines to lines or points. If you
find the definition to be mysterious or as having come from “out of the blue”,
then that is normal. Any time we are introduced to a new mathematical
concept and this introduction comes from reading a definition, we usually
can’t really grasp the definition until after we have had the opportunity to
work with it using concrete examples. We will do that in Section 5.3. After
reading some examples and working some exercises, you will hopefully be
convinced that Definition 5.2.1 contains precisely the right ingredients (no
more or no less) to define a class of functions that map lines to lines or points.

We have already seen some examples of linear transformations in Section
5.1.3. The functions that were studied in Examples 5.1.4, 5.1.5, 5.1.6, and
5.1.7, and the functions that were studied in Exercise 5.1.4 were all functions
defined by formulas of the form T (x⃗) = Ax⃗ where A was a given matrix.
These are all linear transformations. The fact that any function of the form
T (x⃗) = Ax⃗ is a linear transformation is stated in the following lemma. The
proof of the lemma relies on the matrix algebra properties that were studied
in Chapter 3.

Lemma 5.2.1. Suppose that A is an m × n matrix. Then the function
T : Rn → Rm defined by T (x⃗) = Ax⃗ is a linear transformation.

Proof. In order to prove that T is a linear transformation, we need to show
that T (x⃗) = Ax⃗ satisfies both of the linearity properties stated in Definition
5.2.1.

First we will verify that Property 1 is satisfied: Let x⃗ and y⃗ be any two
vectors in Rn. Then

T (x⃗+ y⃗) = A (x⃗+ y⃗) = Ax⃗+ Ay⃗ = T (x⃗) + T (y⃗) .

Next we will verify that Property 2 is satisfied: Let x⃗ be a vector in Rn

and let c be a scalar. Then

T (cx⃗) = A (cx⃗) = c (Ax⃗) = cT (x⃗) .
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Lemma 5.2.1 tells us that every function of the form T (x⃗) = Ax⃗, where A
is a matrix, is a linear transformation. Our first big theorem regarding linear
linear transformations is that the only linear transformations T : Rn → Rm

are functions of the form T (x⃗) = Ax⃗. The theorem also tells us how to find
the matrix A.

Theorem 5.2.1. Suppose that T : Rn → Rm is a linear transformation.
Then there is a unique m×n matrix A, such that T (x⃗) = Ax⃗ for all x⃗ ∈ Rn.

Furthermore, the matrix A is the matrix whose column vectors are

Colj (A) = T (e⃗j)

where E = {e⃗1, e⃗2, . . . , e⃗n} is the standard basis for Rn.

Proof. Suppose that T : Rn → Rm is a linear transformation.
Let x⃗ = ⟨x1, x2, . . . , xn⟩ be some arbitrarily chosen vector in Rn.
Then

x⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n.

Since T is a linear transformation, we can use the linearity properties to
compute T (x⃗). We obtain

T (x⃗) = T (x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n) (5.4)

= T (x1e⃗1) + T (x2e⃗2) + · · ·+ T (xne⃗n)

= x1T (e⃗1) + x2T (e⃗2) + · · ·+ xnT (e⃗n) .

Now define A to be the m× n matrix whose column vectors are

Colj (A) = T (e⃗j) . (5.5)

By looking at the calculation done in (5.4), we see that T (x⃗) is a linear
combination of the column vectors of A using the entries of x⃗ as weights.
Therefore T (x⃗) = Ax⃗.

We have shown that the matrix A defined by (5.5) is such that T (x⃗) = Ax⃗
for all x⃗ ∈ Rn. We still need to prove that this matrix A is the only matrix
for which this is true. Thus, suppose that B is some m × n matrix such
that T (x⃗) = Bx⃗ for all x⃗ ∈ Rn. Then for any standard basis vector e⃗j,
j = 1, 2, . . . , n, we have T (e⃗j) = Be⃗j and thus

Colj (B) = Be⃗j = T (e⃗j) = Colj (A) .

Since Colj (B) = Colj (A) for all j = 1, 2, . . . , n, then B = A, which is what
we wanted to prove.
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Theorem 5.2.1 really says a lot. It not only tells us that every linear
transformation T : Rn → Rm has the form but T (x⃗) = Ax⃗, but it also tells
us how to find the matrix A. To find the matrix A, we only need to evaluate
the linear transformation T at each of the basis vectors in the standard basis
E = {e⃗1, e⃗2, . . . , e⃗n}. This means that a linear transformation is completely
determined by what it does to the standard basis vectors! We will refer to
the unique matrix A such that T (x⃗) = Ax⃗ for all x⃗ ∈ Rn as the standard
matrix of T or simply as the matrix of T . Since A is uniquely determined
by T , you may be wondering why we would ever bother to use the word
“standard” when referring to this matrix. Why not just call the matrix A
“the matrix” for T? There are no other matrices, B, such that T (x⃗) = Bx⃗
for all x⃗ ∈ Rn. The only matrix that works for this purpose is A. We can
and will refer to A as “the matrix” of T , but the reason we may sometimes
want to call A “the standard matrix” for T is because we use the standard
basis, E , of Rn to find A. As we will see, we can also use any basis, B, of
Rn (not just the standard basis) to determine a linear transformation, and
in doing so we get another matrix that is related to T in a way that we will
later make precise.

Example 5.2.1. Let T : R2 → R2 be the function defined by

T (⟨x1, x2⟩) = ⟨−x2, x1⟩ . (5.6)

Use Theorem 5.2.1 to find the matrix A such that T (x⃗) = Ax⃗ for all x⃗ ∈ R2.
Solution: Theorem 5.2.1 tells us that the matrix A is the matrix whose

columns are Colj (A) = T (e⃗j) where E = {e⃗1, e⃗2} = {⟨1, 0⟩ , ⟨0, 1⟩} is the
standard basis for R2. Using the formula (5.6), we obtain

T (e⃗1) = T (⟨1, 0⟩) = ⟨−0, 1⟩ = ⟨0, 1⟩
T (e⃗2) = T (⟨0, 1⟩) = ⟨−1, 0⟩ .

Thus the matrix for T is

A =

[
0 −1
1 0

]
.

To check that this is correct, we need to check that T (x⃗) = Ax⃗ for all x⃗ ∈ R2.
If we take any x⃗ = ⟨x1, x2⟩ in R2, then

T (x⃗) = T (⟨x1, x2⟩) = ⟨−x2, x1⟩
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and

Ax⃗ = x1Col1 (A) + x2Col2 (A)

= x1 ⟨0, 1⟩+ x2 ⟨−1, 0⟩
= ⟨0, x1⟩+ ⟨−x2, 0⟩
= ⟨−x2, x1⟩ .

This verifies that T (x⃗) = Ax⃗ for all x⃗ in R2.

Exercise 5.2.1. Let T : R2 → R2 be the function defined by

T (⟨x1, x2⟩) = ⟨x1 − x2, 2x1⟩ .

Use Theorem 5.2.1 to find the matrix A such that T (x⃗) = Ax⃗ for all x⃗ ∈ R2.

Recall that if A = [aij] is an m × n matrix and x⃗ = ⟨x1, x2, . . . , xn⟩ is a
vector in Rn, then

Ax⃗ = ⟨Row1 (A) · x⃗,Row2 (A) · x⃗, . . . .Rowm (A) · x⃗⟩ .

This tells us that if T : Rn → Rm is the linear transformation that has matrix
A, then

T (x⃗) = ⟨Row1 (A) · x⃗,Row2 (A) · x⃗, . . . .Rowm (A) · x⃗⟩ .

Since, for any i = 1, 2, . . . ,m, we have

Rowi (A) · x⃗ = ai1x1 + ai2x2 + · · ·+ ainxn,

we see that each entry of the vector T (x⃗) is a linear expression in the variables
x1, x2, . . . , xn. This makes it easy to recognize which formulas give linear
transformations and which do not. For example, just by glancing at the
formula

T (⟨x1, x2⟩) = ⟨2x1 + 4x2,−3x1 + 7x2⟩ ,
we can see that T is a linear transformation, because the components of T (x⃗)
are defined to be 2x1+4x2 and −3x1+7x2, which are both linear expressions
in the variables x1 and x2. Likewise, we can just glance at the formula

T (⟨x1, x2⟩) =
〈
2x1 − 6x2,−3x2

1 + 5x2

〉
,

and see that this is not a linear transformation because the second component
of T (x⃗) is −3x2

1 + 5x2 and this is not a linear expression in x1 and x2 (due
to the fact that we see x2

1 in the expression).
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Exercise 5.2.2. Determine whether or not each of the following expressions
defines a linear transformation T : Rn → Rm (for appropriate m and n).

1. T (⟨x1, x2⟩) = ⟨−4x1 − 4x2,−5x1 + 3x2⟩

2. T (⟨x1, x2, x3⟩) = ⟨x1,−2x2 + x3,0⟩

3. T (⟨x1, x2⟩) = ⟨x1, 6x2,−3x1⟩

4. T (⟨x1, x2⟩) = ⟨x1, 6⟩

5. T (⟨x1, x2, x3⟩) =
〈√

x2
1 + x2

2 + x2
3, 0
〉

6. T (⟨x1, x2⟩) = ⟨5x1 − 3x5
2, 9x2⟩

7. T (⟨x1, x2⟩) = ⟨0, 0⟩

8. T (⟨x1, x2, x3, x4⟩) = ⟨x1 − x2 + x3 − 4x4, x1 − 2x4, 3x2 + x3⟩

Exercise 5.2.3. Each of the functions T : Rn → Rm given below is a linear
transformation (for some approriate values of n and m). Use Theorem 5.2.1
to find the matrix A such that T (x⃗) = Ax⃗ for all x⃗ ∈ Rn.

1. T (⟨x1, x2⟩) = ⟨x1, 0⟩

2. T (⟨x1, x2⟩) = ⟨−x1, x2⟩

3. T (⟨x1, x2⟩) = ⟨2x1, 2x2⟩

4. T (⟨x1, x2⟩) = ⟨2x1,−3x2⟩

5. T (⟨x1, x2⟩) = ⟨x2, x2⟩

6. T (⟨x1, x2⟩) =
〈
1
2
x1 +

1
2
x2,

1
2
x1 +

1
2
x2

〉
7. T (⟨x1, x2⟩) = ⟨−4x1,−2x1 + 5x2⟩

8. T (⟨x1, x2, x3⟩) = ⟨8x1 − 4x2 + x3,−4x1 + 3x3, 3x1 + x2 − 5x3⟩

9. T (⟨x1, x2, x3⟩) = ⟨−7x1 + 5x3,−4x1 + x2 + 7x3⟩

10. T (⟨x1, x2, x3⟩) = ⟨−8x2 + x3,−5x1 + 2x2 − 6x3, 3x1 + 6x2 − 8x3,−2x1 + 7x2 − 7x3⟩
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We conclude this section with a theorem that states a simple basic prop-
erty of all linear transformations T : Rn → Rm.

Theorem 5.2.2. If T : Rn → Rm is a linear transformation, then

T
(
0⃗n

)
= 0⃗m.

Proof. If T : Rn → Rm is a linear transformation, then we know by Theorem
5.2.1 that there is a (unique) m× n matrix A such that T (x⃗) = Ax⃗ for all x⃗
in Rn. Plugging in x⃗ = 0⃗n, we obtain

T
(
0⃗n

)
= A0⃗n = 0⃗m.

The fact that T
(
0⃗n

)
= 0⃗m must be true for any linear transformation is

important. For one thing, it tells us that the vector 0⃗m is always in Range (T ).
In other words, the homogeneous equation T (x⃗) = 0⃗m is always consistent
because it has at least the trivial solution x⃗ = 0⃗n. As you might suspect
based on your experience so far in this course, it is a question of interest to
ask whether or not the equation T (x⃗) = 0⃗m has any non–trivial solutions.
If it does, then the linear transformation T is not one–to–one and hence not
invertible. We will consider this and related issues in the upcoming Section
5.2.1.

5.2.1 Fundamental Subspaces of Linear Transforma-
tions

In Section 4.2.1, we discussed the four fundamental subspaces of an m × n
matrix, A. Two of these subspaces are the column space of A and the null
space of A.

The column space of A, denoted by CS (A), is defined to be

CS (A) = Span {Col1 (A) ,Col2 (A) , . . . ,Coln (A)} .

Since the column space of A is the span of the column vectors of A, then an
equivalent way to define the column space of A is

CS (A) = {Ax⃗ | x⃗ ∈ Rn} . (5.7)
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The null space of A, denoted by N (A), is defined to be the set of all
x⃗ ∈ Rn such that Ax⃗ = 0⃗m. Thus

N (A) =
{
x⃗ ∈ Rn | Ax⃗ = 0⃗m

}
. (5.8)

CS (A) is a subspace of Rm and N (A) is a subspace of Rn and in Section
4.5, we presented the Fundamental Theorem of Linear Algebra, part of which
tells us that the sum of the dimensions of CS (A) and N (A) must be n. Thus
it is true for any m× n matrix, A, that

dim (CS (A)) + dim (N (A)) = n. (5.9)

When we are considering a linear transformation T : Rn → Rm, the
concept that is analogous to column space is the concept of range! Recall
that Range (T ) is defined to be

Range (T ) = {T (x⃗) | x⃗ ∈ Rn} . (5.10)

By looking at the definition of column space given in (5.7), we see that if A is
the matrix of T , meaning that T (x⃗) = Ax⃗ for all x⃗ in Rn, then the definition
of Range (T ) given in (5.10) is identical to (5.7). Thus

Range (T ) = CS (A) .

The linear transformation concept that is analogous to the concept of the
null space of a matrix is one that we have not yet defined, but it is what you
may suspect. It is the set of all vectors x⃗ ∈ Rn such that T (x⃗) = 0⃗m. We
call this set the kernel of T or the null space of T .

Definition 5.2.2. For a linear transformation T : Rn → Rm, the kernel of
T (also called the null space of T ) is defined to be

ker (T ) =
{
x⃗ ∈ Rn | T (x⃗) = 0⃗m

}
.

As can be seen by looking at (5.8), if A is the matrix such that T (x⃗) = Ax⃗
for all x⃗ ∈ Rn, then

ker (T ) = N (A) .

We know that N (A) is subspace of Rn and hence ker (T ) (which is the
same thing as N (A)) is a subspace of Rn, and we can translate the second
statement of the Fundamental Theorem of Linear Algebra (Theorem 4.5.1),
which is the statement given in (5.9), to make a corresponding statement
that applies to linear transformations.
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Theorem 5.2.3. Suppose that T : Rn → Rm is a linear transformation.
Then

dim (Range (T )) + dim (ker (T )) = n.

In Section 5.4, we will prove that any linear transformation, T , maps lines
to lines or points. We will see that the subspace ker (T ) plays an interesting
role in determining whether a particular line is mapped by T to a line or to
a point. An important connection between Range (T ) and ker (T ) and the
concepts of onto and one–to–one is given in the following corollary.

Corollary 5.2.1. Suppose that T : Rn → Rm is a linear transformation.
Then

1. T maps Rn onto Rm if and only if dim (Range (T )) = m and

2. T is one to one if and only if dim (ker (T )) = 0.

Proof. Suppose that T maps Rn onto Rm. This means that Range (T ) = Rm

and we conclude that

dim (Range (T )) = dim (Rm) = m.

Conversely, suppose that dim (Range (T )) = m. Since Range (T ) is a sub-
space of Rm and since the only subspace of Rm that has dimension m is Rm

itself, then Range (T ) = Rm, which means that T maps Rn onto Rm.
Suppose that T is one to one. Then the equation T (x⃗) = 0⃗n has only

the trivial solution x⃗ = 0⃗n. This means that ker (T ) =
{
0⃗n

}
and hence

dim (ker (T )) = 0.
Conversely, suppose that dim (ker (T )) = 0. Then, by Theorem 5.2.3, we

know that dim (Range (T )) = n. Since the matrix, A, that defines T is an
m×n matrix and Range (T ) is the column space of A, then the column space
of A has dimension n, which means that every column of A is a pivot column
and hence T is one–to–one.

We now provide an example and some exercises that illustrate Theorem
5.2.3.

Example 5.2.2. Let A be the linear transformation defined by

T (⟨x1, x2⟩) = ⟨x1 + 3x2, 3x1 + 9x2⟩ .
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We will illustrate Theorem 5.2.3 for this transformation.
First we note that the

T (⟨1, 0⟩) = ⟨1, 3⟩
T (⟨0, 1⟩) = ⟨3, 9⟩

and thus the matrix of T is

A =

[
1 3
3 9

]
.

Since

rref (A) =

[
1 3
0 0

]
,

we see that
Range (T ) = CS (A) = Span {⟨1, 3⟩} .

In addition we see that

ker (T ) = N (A) = Span {⟨−3, 1⟩} .

Hence
dim (Range (T )) + dim (ker (T )) = 1 + 1 = 2.

Exercise 5.2.4. Illustrate Theorem 5.2.3 for the linear transformations T :
Rn → Rm given in 1-5. Specifically,

a) Find the matrix, A, of T .

b) Find Range (T ) and write it in the form Range (T ) = Span {basis vectors}.

c) Find ker (T ) and write it in the form ker (T ) = Span {basis vectors}.

d) Verify that dim (Range (T )) + dim (ker (T )) = n.

1. T (⟨x1, x2⟩) = ⟨3x1 + 4x2, 4x2⟩

2. T (⟨x1, x2⟩) = ⟨x1, 5x1⟩

3. T (⟨x1, x2, x3⟩) = ⟨x1 + x2 + x3, x1 + x2 + x3, x1 + x2 + x3⟩

4. T (⟨x1, x2, x3, x4⟩) = ⟨5x1 + 7x2 − 3x3 − 2x4, 6x1 + 2x2 + x3 + 2x4⟩
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5. T (⟨x1, x2, x3⟩) = ⟨0, 0, 0, 0, 0⟩.

Exercise 5.2.5. Suppose that T : R6 → R3 is a linear transformation.

Explain why it is not possible that ker (T ) =
{
0⃗6

}
.

Exercise 5.2.6. Suppose that T : R4 → R5 is a linear transformation.
Explain why it is not possible that Range (T ) = R5.

Exercise 5.2.7. Suppose that E : R4 → R4 is the identity transforma-
tion, which is defined by E (x⃗) = x⃗ for all x⃗ ∈ R4. What are the dimensions
of Range (E) and ker (E)?

Exercise 5.2.8. Suppose that Z : R4 → R4 is the zero transformation,
which is defined by Z (x⃗) = 0⃗4 for all x⃗ ∈ R4. What are the dimensions of
Range (Z) and ker (Z)?

5.3 Visualizing Linear Transformations

Our understanding of a function is enhanced if we can draw a picture of the
function. For example. if we just say that f is the function

f (x) = sin (x) ,

then all we see is a formula. But if we draw the graph of this function (shown
in Figure 5.9), then the function comes alive.

-4π -2π 2π 4π
x

-1.0

-0.5

0.5

1.0

y

Figure 5.9: f(x) = sin(x)

The graph gives us the “big picture” of f (x) = sin (x). In a glance, we can
see that the maximum value of the function is 1 and that the minimum value
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if −1. We can see that the graph of the function is smooth (differentiable)
and that it oscillates repeatedly between the values 1 and −1. We can see
that the graph crosses the x axis infinitely many times and hence we know
that the equation sin (x) = 0 has infinitely many solutions in R. As the old
saying goes, “a picture is worth a thousand words.”

Linear transformations are functions, and at the beginning of this chap-
ter we introduced the topic of linear transformations by saying that linear
transformations are functions that map lines to lines or points. “Lines” and
“points” are things we can draw pictures of, so might we somehow be able to
draw a picture of a linear transformation? If so, then that should help us bet-
ter understand how linear transformations behave, just as drawing the graph
of f (x) = sin (x) helps us to understand how that function behaves. The
good news is that we can draw pictures that help us understand the behavior
of linear transformations but, as experience has taught us, we should proba-
bly not try to stretch out artistic abilities too far. We should probably limit
our efforts to trying to draw pictures of linear transformations T : R2 → R2.
That is what we will do in this section. So let us now embark on the effort
to make some linear transformations “come alive”.

Something that we are going to find to be useful in drawing pictures of
linear transformations T : R2 → R2 is Theorem 5.2.1, which tells us that
such a linear transformation is completely determined by its action on the
standard basis vectors e⃗1 = ⟨1, 0⟩ and e⃗2 = ⟨0, 1⟩. If we are given T (e⃗1) and
T (e⃗2), then we immediately know that the formula for T is

T (x⃗) = Ax⃗ for all x⃗ = ⟨x1, x2⟩ in R2

where A is the 2× 2 matrix such that

Col1 (A) = T (e⃗1)

Col2 (A) = T (e⃗2) .

In the examples we are about to present, we will make use of this fact, but
we will also employ the more elementary “hands–on” approach of just choos-
ing some selected vectors and plotting their standard representatives along
with the standard representatives of their images under T . Studying these
examples and working some exercises should help you get more comfortable
with linear transformations. In particular, you should begin to see why the
word “transformation” is a good word to describe what these functions do.
They “transform” vectors in R2 into other vectors in R2.
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5.3.1 Example: A Rotation Transformation

We will begin by studying the linear transformation T : R2 → R2 defined by

T (⟨x1, x2⟩) = ⟨−x2, x1⟩ . (5.11)

Let us get comfortable with the basic idea of how we can start drawing a
picture of this function by picking vectors in the domain and plotting them
along with their images in the range.

If we (randomly) choose the vectors ⟨1, 0⟩ and ⟨4,−2⟩ in the domain, we
see that their images under T are

T (⟨1, 0⟩) = ⟨0, 1⟩

and
T (⟨4,−2⟩) = ⟨2, 4⟩

We can draw a picture illustrating the fact that T (⟨1, 0⟩) = ⟨0, 1⟩ by draw-
ing the standard representative of the input ⟨1, 0⟩ in black and drawing the
standard representative of the output ⟨0, 1⟩ in red. (Or you may choose other
colors if these are not your favorites.) Likewise, we can illustrate the fact
that T (⟨4,−2⟩) = ⟨2, 4⟩ by drawing the standard representative of the input
⟨4,−2⟩ in black and drawing the standard representative of the output ⟨2, 4⟩
in red. This is illustrated in Figure 5.10.

Exercise 5.3.1. For the linear transformation T ⟨x1, x2⟩ = ⟨−x2, x1⟩ and
each of the inputs given below, compute the corresponding output and draw a
picture that contains both the input and the output, with inputs and outputs
in different colors.

1. T (⟨0,−3⟩)

2. T (⟨3, 2⟩)

3. T (⟨−1, 1⟩)

4. T (⟨−2, 4⟩)

The following two exercises (5.3.2 and 5.3.3) are designed to illustrate the
two linearity properties (given in Definition 5.2.1) that make T (⟨x1, x2⟩) =
⟨−x2, x1⟩ be a linear transformation.
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-4 -2 2 4
x1

-4

-2

2

4

x2

〈1, 0〉

〈4, -2〉

T 〈1, 0〉  〈0, 1〉

T 〈4, -2〉  〈2, 4〉

Figure 5.10: Mapping Two Vectors Using T (⟨x1, x2⟩) = (⟨−x2, x1⟩)

Exercise 5.3.2. For the linear transformation T ⟨x1, x2⟩ = ⟨−x2, x1⟩, draw
a picture that contains all of the following:

1. the standard representatives of the vectors x⃗ = ⟨1, 0⟩ and and y⃗ = ⟨1, 1⟩.

2. the standard representative of the vector x⃗+ y⃗ along with the other two
sides of the parallelogram that you would use to illustrate the vector
addition x⃗+ y⃗ (as in Chapter 1).

3. the standard representatives of the vectors T (x⃗) and T (y⃗).

4. the standard representative of the vector T (x⃗) + T (y⃗) along with the
other two sides of the parallelogram that you would use to illustrate the
vector addition T (x⃗) + T (y⃗) (as in Chapter 1).

5. the standard representative of the vector T (x⃗+ y⃗).
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If you did all of this correctly, you should see that

T (x⃗+ y⃗) = T (x⃗) + T (y⃗) .

Exercise 5.3.3. Let x⃗ be the vector x⃗ = ⟨1,−1⟩. For the linear transforma-
tion T ⟨x1, x2⟩ = ⟨−x2, x1⟩, draw a picture that contains all of the following:

1. the standard representatives of the vectors x⃗ and 2x⃗.

2. the standard representatives of the vectors T (x⃗) and T (2x⃗).

3. the standard representative of the vector 2T (x⃗)

If you did all of this correctly, you should see that

T (2x⃗) = 2T (x⃗) .

Perhaps by working Exercises 5.3.1, 5.3.2 and 5.3.3, you have started to
get a sense of what the linear transformation T (⟨x1, x2⟩) = ⟨−x2, x1⟩ “does”
to its inputs. Can we describe in words what T does? In other words, can we
describe in words how T “transforms” vectors in R2? By working through
Exercises 5.3.1, 5.3.2 and 5.3.3, you may have observed that the effect of
applying T to a vector in R2 is to rotate that vector counterclockwise by an
angle of 90◦. This is in fact what T does. We call this the action of T . Here
is how we describe in words what the action of T is:

The action of the linear transformation T (⟨x1, x2⟩) = ⟨−x2, x1⟩
is to rotate nonzero vectors in R2 though an angle of 90◦ coun-
terclockwise.

Notice that in the above statement, we have added the caveat that T
rotates all nonzero vectors by 90◦. This is because

T (⟨0, 0⟩) = ⟨0, 0⟩

and the concept of angle does not apply to the zero vector because the zero
vector has no length or direction. The fact that T (⟨0, 0⟩) = ⟨0, 0⟩ comes
as no surprise because Theorem 5.2.2 tells us that any linear transformation
maps zero vectors to zero vectors.

If you are a little uncomfortable that we have jumped to the conclusion
that T rotates all nonzero vectors in R2 based on just looking at some specific
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examples of these rotations in Exercises 5.3.2 and 5.3.3, then that is good!
Looking at specific examples is not good enough to allow us to jump to a
general claim such as the one we have made. Nonetheless, we suspect that the
claim is correct and, fortunately, we can provide a mathematical justification
of the claim.

To verify that the action of T is to rotate all non–zero vectors in R2

counterclockwise by 90◦, first observe that if x⃗ = ⟨x1, x2⟩ is any nonzero
vector in R2, then the dot product of x⃗ with T (x⃗) is

x⃗ · T (x⃗) = ⟨x1, x2⟩ · ⟨−x2, x1⟩ = (x1) (−x2) + (x2) (x1) = 0.

This tells us that x⃗ and T (x⃗) are orthogonal to each other (meaning that
the angle between x⃗ and T (x⃗) is 90◦).

Secondly, note that x⃗ and T (x⃗) have the same magnitude because

∥x⃗∥ =
√

x2
1 + x2

2

and

∥T (x⃗)∥ =

√
(−x2)

2 + x2
1 =

√
x2
1 + x2

2.

We have proved that T rotates each vector x⃗ ∈ R2 to a vector that is
perpendicular to x⃗ and has the same length as x⃗. The only thing we have
not proved is that the rotation is counterclockwise (rather than clockwise).
We won’t do that right here, but the direction of rotation will become evident
when we study the general problem of rotation by and given angle θ in Section
5.3.6.

We have approached the problem of trying to visualize the action of
T (⟨x1, x2⟩) = ⟨−x2, x1⟩ in a rather informal way so far. We have just done a
few sample calculations and drawn a few pictures. It is amazing that we have
gotten so far in our understanding of T just by doing this! It seems that we
now know pretty much everything there is to know about T . Now that we
know that T rotates all nonzero vectors in R2 counterclockwise through an
angle of 90◦, we can answer the following questions just based on the mental
picture of T that we have:

Is T invertible? Yes. If we choose any vector y⃗ in R2 and rotate it 90◦

clockwise, then we obtain a unique vector x⃗ such that T (x⃗) = y⃗. In
other words, there is a unique way to “undo” the action of T .



5.3. VISUALIZING LINEAR TRANSFORMATIONS 281

What is ker (T )? ker (T ) =
{
0⃗2

}
. If we take any nonzero vector and rotate

it by 90◦ then we get a nonzero vector. Thus the only vector x⃗ such
that T (x⃗) = 0⃗2 is x⃗ = 0⃗2.

Let’s us now check that the observations we have been able to make based
on our informal investigation agree with the theory that we studied in Section
5.2.

First note that we can use Theorem 5.2.1 to find the matrix of T . Since

T ( e⃗1) = T (⟨1, 0⟩) = ⟨0, 1⟩
T ( e⃗2) = T (⟨0, 1⟩) = ⟨−1, 0⟩ ,

then the matrix of T is

A =

[
0 −1
1 0

]
.

Since rref (A) = I2, then we can immediately see that T is invertible, that

Range (T ) = R2 and that ker (T ) =
{
0⃗2

}
. Also, the inverse of the matrix A

is

A−1 =

[
0 1
−1 0

]
and this tells us that T−1 has formula

T−1 (x) = A−1x⃗ = ⟨x2,−x1⟩ .

Exercise 5.3.4. We have seen above that the inverse of T (⟨x1, x2⟩) = ⟨−x2, x1⟩
is T−1 (⟨x1, x2⟩) = ⟨x2,−x1⟩. Describe in words what the action of T−1 is
and draw a few pictures to check your claim.

We have undertaken quite a detailed examination of the linear transfor-
mation that rotates vectors in R2 by 90◦ counterclockwise. We have pur-
posely spent a lot of time on this example because it is our first illustration
of what tools can be applied in trying to understand how linear transforma-
tions behave. In the examples we will study in Sections 5.3.2 - 5.3.5, we will
not provide as much detail as we did with the current example. Instead, we
will ask you to study the details in exercises. In Section 5.3.6, we will gen-
eralize the rotation transformation that we presented in the current section
by considering rotations by any given angle θ.

The basic procedure for trying to understand the action of a linear trans-
formation T : R2 → R2 is:
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1. Draw pictures! Pick out a few sample vectors and plot the inputs and
their corresponding outputs. It is a good idea to draw things to scale
using either graph paper and a ruler or some software such as Desmos.

2. Use the theory of Section 5.2 to determine information about invert-
ibility, range and kernel.

3. Compare what you learned by drawing pictures and what you learned
by using the theory. The pictures and the theory should agree with
each other.

5.3.2 Example: A Projection Transformation

In this section we will study the linear transformation that projects every
vector in R2 onto the x1 axis. The formula for this linear transformation is

T (⟨x1, x2⟩) = ⟨x1, 0⟩ .

By doing a few computations and drawing a few pictures, we can quickly get
the idea of the action of T . Every nonzero vector in R2 is assigned to the
vector that is the shadow that we would see on the x1 axis if we were to draw
the picture of x⃗ in standard position and then shine a light perpendicular to
the x1 axis. The action is illustrated in Figure 5.11

Exercise 5.3.5. Draw pictures of the inputs ⟨−3, 5⟩ and ⟨4,−4⟩ and their
corresponding outputs under the projection transformation T (⟨x1, x2⟩) =
⟨x1, 0⟩.

Exercise 5.3.6. Just based on your picture drawing, try to answer the fol-
lowing questions.

1. What is the range of T? Give your answer in the form Range (T ) =
Span { }.

2. Does T map R2 onto R2?

3. Is T one–to–one? Hint: Does the equation T (x⃗) = ⟨8, 0⟩ have a unique
solution?

4. Is T invertible? Why or why not?
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(x1, x2)

(x1, 0)

x  < x1, x2 >

T ( x) < x1, 0 > = shadow of x

light

Figure 5.11: Projection of x⃗ onto the x1 Axis

5. What is the kernel of T? Give your answer in the form ker (T ) =
Span { }.

6. dim (Range (T )) = and dim (ker (T )) = , and thus

dim (Range (T )) + dim (ker (T )) = .

Exercise 5.3.7. Hopefully you were able to answer all of the questions in
Exercise 5.3.6 by just drawing pictures. Now find the standard matrix, A, of
T and use it to answer all of the same questions asked in Exercise 5.3.6.

5.3.3 Example: Scaling Transformations

Consider the linear transformation T : R2 → R2 defined by

T (x⃗) = 2x⃗.
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If x⃗ = ⟨x1, x2⟩, then 2x⃗ = ⟨2x1, 2x2⟩, so we can write the formula for T as

T (⟨x1, x2⟩) = ⟨2x1, 2x2⟩ ,

but for the purpose of answering some questions (especially in trying to form
a general picture in our minds of the action of T ) it is convenient to just
think of T as T (x⃗) = 2x⃗.

Exercise 5.3.8. For the linear transformation T (x⃗) = 2x⃗,

1. Plot the inputs ⟨3, 4⟩ and ⟨−2, 2⟩ along with their corresponding outputs
under T .

2. We know from what we learned in Chapter 1 that if x⃗ is any nonzero
vector, then the magnitude of the vector 2x⃗ is times the magnitude
of x⃗ and that the vector 2x⃗ points in the direction that x⃗ points.

Exercise 5.3.9. Based on your drawing of pictures and on your answers in
Exercise 5.3.8, try to answer the following questions concerning the linear
transformation T (x⃗) = 2x⃗.

1. What is the range of T? Give your answer in the form Range (T ) =
Span { }.

2. Is T invertible? If so, find a formula for T−1.

3. What is the kernel of T? Give your answer in the form ker (T ) =
Span { }.

4. dim (Range (T )) = and dim (ker (T )) = , and thus

dim (Range (T )) + dim (ker (T )) = .

Exercise 5.3.10. Write down the standard matrix, A, of the linear transfor-
mation T (x⃗) = 2x⃗ and use it to answer all of the same questions that were
asked about T in the previous exercise.

Linear transformations of the form T (x⃗) = rx⃗, where r is a scalar are
called scaling transformations. If r > 1 then the transformation is called a
dilation or stretching. If 0 < r < 1 then the transformation is called a
contraction or shrinking.
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Exercise 5.3.11. What is the linear transformation, T , from R2 to R2 such
that for all nonzero x⃗ ∈ R2, T (x⃗) has 4 times the magnitude of x⃗ and points
in the opposite direction of x.

Exercise 5.3.12. What is the linear transformation, T , from R2 to R2 such
that for all nonzero x⃗ ∈ R2, T (x⃗) has 1/3 the magnitude of x⃗ and points in
the same direction of x.

5.3.4 Example: A Reflection Transformation

A reflection transformation is one that reflects every vector in R2 across
some given line (which passes through the origin) in R2. The reflection of a
vector x⃗ through the line L is the vector T (x⃗) such that T (x⃗) is the mirror
image of x⃗ using the line L as the mirror. In this example we will study
the linear transformation that reflects vectors through the mirror which is
the line x2 = x1. This reflection is illustrated in Figure 5.12 for the vector
x⃗ = ⟨2, 4⟩.

(2, 4)

(4, 2)

x  < 2, 4 >

T ( x) < 4, 2 >
 reflection of x

mirror

Figure 5.12: Reflection through the x2 = x1 Mirror

Exercise 5.3.13. Let T : R2 → R2 be the reflection transformation described
above. Find T (⟨1, 0⟩) and T (⟨0, 1⟩). Based on this, using Theorem 5.2.1,
you can write down the standard matrix, A, of T , and then you can write a
formula for T in the form T (⟨x1, x2⟩) = .
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Exercise 5.3.14. Answer the following questions concerning the reflection
linear transformation.

1. What is the range of T? Give your answer in the form Range (T ) =
Span { }.

2. Is T invertible? If so, find a formula for T−1.

3. What is the kernel of T? Give your answer in the form ker (T ) =
Span { }.

4. dim (Range (T )) = and dim (ker (T )) = , and thus

dim (Range (T )) + dim (ker (T )) = .

Exercise 5.3.15. Use the formula for T that you found to show that for any
x⃗ ∈ R2 it is true that x⃗ and T (x⃗) have the same magnitude. Does this make
sense based on pictures?

5.3.5 Example: A Shearing Transformation

As our final example of visualizing linear transformations, we will consider
what is known as a shearing transformation. We will consider the shearing
transformation T : R2 → R2 defined by

T (⟨x1, x2⟩) = ⟨x1 + x2, x2⟩ .

We can understand the action of T by strategically choosing some inputs
and plotting them together with their outputs. It requires a little more
plotting than the amount that was needed in the previous examples we looked
at to see what the shearing does.

Exercise 5.3.16. Plot the inputs

⟨−1, 2⟩ ⟨0, 2⟩ ⟨1, 2⟩
⟨−1, 1⟩ ⟨0, 1⟩ ⟨1, 1⟩
⟨−1, 0⟩ ⟨0, 0⟩ ⟨1, 0⟩
⟨−1,−1⟩ ⟨0,−1⟩ ⟨1,−1⟩
⟨−1,−2⟩ ⟨0,−2⟩ ⟨1,−2⟩

and their corresponding outputs. Plot as many inputs and outputs as you
need to in order to get a visual picture of the action of T . Then write a
sentence of two that describes the action of T .
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Exercise 5.3.17. For the linear transformation T (⟨x1, x2⟩) = ⟨x1 + x2, x2⟩,
find the standard matrix, A, of T .

Exercise 5.3.18. Answer the following questions regarding the shearing trans-
formation T (⟨x1, x2⟩) = ⟨x1 + x2, x2⟩.

1. What is the range of T? Give your answer in the form Range (T ) =
Span { }.

2. Is T invertible? If so, find a formula for T−1.

3. What is the kernel of T? Give your answer in the form ker (T ) =
Span { }.

4. dim (Range (T )) = and dim (ker (T )) = , and thus

dim (Range (T )) + dim (ker (T )) = .

5.3.6 Rotation Transformations in General

In Section 5.3.1, we carried out a careful investigation of the linear transfor-
mation that rotates all vectors in R2 by 90◦ counterclockwise. That linear
transformation is defined by

T (⟨x1, x2⟩) = ⟨−x2, x1⟩ .

Its matrix is

A =

[
0 −1
1 0

]
We will now investigate how rotations work in general. For a given angle θ,
we will find the linear transformation that rotates all vectors in R2 through
an angle of θ. If θ > 0, then we get a counterclockwise rotation. If θ < 0, then
we get a clockwise rotation. Since we are studying a whole class of linear
transformations, we should use some appropriate notation to name these
transformations. We don’t want to just use the name T over and over again
to refer to different linear transformations that are all related to one another.
We will use the name Rθ to name the linear transformation that rotates all
vectors in R2 by angle θ. Thus, for example, R90◦ is the transformation that
rotates all vectors by 90◦ counterclockwise and R−30◦ is the transformation
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that rotates all vectors by 30◦ clockwise. Since the inverse of rotating by
angle θ is to rotate by −θ, then

R−1
θ = R−θ.

We will be finding the matrices for the linear transformations Rθ and we will
name these matrices Aθ.

To get familiar with what we are going to do, including the notation
described above, let’s first look at a specific example. We will then move on
to the general treatment.

Example 5.3.1. We will find the linear transformation, R45◦, that rotates
all vectors in R2 through an angle of 45◦ counterclockwise.

45 °

45 °

〈1, 0〉

〈0, 1〉

R45◦(〈1, 0〉)
R45◦(〈0, 1〉)

 2 2, 2 2- 2 2, 2 2

-1.0 -0.5 0.5 1.0
x1

-1.0

-0.5

0.5

1.0

x2

Figure 5.13: R45◦ = Rotation by 45◦ Counterclockwise

By using our knowledge of the unit circle and looking at Figure 5.13, we
see that

R45◦ (⟨1, 0⟩) =
〈√

2/2,
√
2/2
〉

R45◦ (⟨0, 1⟩) =
〈
−
√
2/2,

√
2/2
〉
.

Theorem 5.2.1 tell use that the matrix for R45◦ is

A45◦ =

[ √
2/2 −

√
2/2√

2/2
√
2/2

]
.
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Thus R45◦ (⟨x1, x2⟩) = A45◦ ⟨x1, x2⟩ for all ⟨x1, x2⟩ in R2. If we want to, we
can write the formula for R45◦ as

R45◦ (⟨x1, x2⟩) =

〈√
2

2
x1 −

√
2

2
x2,

√
2

2
x1 +

√
2

2
x2

〉
.

R45◦ is invertible and its inverse is R−1
45◦ = R−45◦. The matrix for R−1

45◦ is

A−1
45◦ = A−45◦ =

[ √
2/2

√
2/2

−
√
2/2

√
2/2

]
.

Exercise 5.3.19. In Example 5.3.1 we found the linear transformation R45◦

that rotates all angles in R2 by an angle of 45◦ counterclockwise. We also
found R−1

45◦ = R−45◦. Try to come up with the answers to the following without
using any of the formulas found in Example 5.3.1. Just do it based on your
knowledge of the unit circle. Then use the formulas to see if you got it right.

1. R45◦
(〈√

2/2,
√
2/2
〉)

2. R45◦
(〈√

2/2,−
√
2/2
〉)

3. R45◦ (⟨−1, 0⟩)

4. R−1
45◦ (⟨0,−1⟩).

Exercise 5.3.20. Find the linear transformation, R30◦, that rotates all vec-
tors in R2 through an angle of 30◦ counterclockwise. Then find R−1

30◦.

To find the linear transformation Rθ for a general θ, we draw the general
unit circle picture shown in Figure 5.14.

From the Figure, we see that

Rθ (⟨1, 0⟩) = ⟨cos (θ) , sin (θ)⟩
Rθ (⟨0, 1⟩) = ⟨cos (90◦ + θ) , sin (90◦ + θ)⟩ .

We now use the trigonometric identities

cos (90◦ + θ) = − sin (θ)

sin (90◦ + θ) = cos (θ)
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θ

θ

〈1, 0〉

〈0, 1〉

Rθ(〈1, 0〉)

Rθ(〈0, 1〉)

(cos (θ), sin (θ))

(cos (90◦ + θ), sin (90◦ + θ))

-1.0 -0.5 0.5 1.0
x1

-1.0

-0.5

0.5

1.0

x2

Figure 5.14: Rθ = Rotation by Angle θ

to obtain
Rθ (⟨0, 1⟩) = ⟨− sin (θ) , cos (θ)⟩ .

Hence the matrix for Rθ is

Aθ =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
. (5.12)

Let’s plug a few specific θ values into formula (5.12). If we plug in θ = 90◦,
we get

Aθ =

[
cos (90◦) − sin (90◦)
sin (90◦) cos (90◦)

]
=

[
0 −1
1 0

]
which is the same thing we got in Section 5.3.1. If we plug in θ = 45◦, we
get

Aθ =

[
cos (45◦) − sin (45◦)
sin (45◦) cos (45◦)

]
=

[ √
2/2 −

√
2/2√

2/2
√
2/2

]
which is the same thing we got in Example 5.3.1.

We have now found the linear transformation that rotates all vectors in
R2 by a given angle θ. It is Rθ (x⃗) = Aθx⃗ where Aθ is the matrix given by
formula (5.12). We can also write the formula for Rθ as

Rθ (⟨x1, x2⟩) = ⟨cos (θ)x1 − sin (θ)x2, sin (θ)x1 + cos (θ)x2⟩ . (5.13)



5.3. VISUALIZING LINEAR TRANSFORMATIONS 291

Exercise 5.3.21. For any given angle θ, the matrix, Aθ, for Rθ is given by
formula (5.12). Find the matrix, A−1

θ = A−θ, for R−1
θ = R−θ.

Hint: Just plug in −θ in place of θ in formula (5.12) and use the even–odd
identities for sine and cosine which are

cos (−θ) = cos (θ)

sin (−θ) = − sin (θ) .

Exercise 5.3.22. In Exercise 5.3.21, you found A−1
θ . Check that you got the

right answer by computing A−1
θ Aθ.

Exercise 5.3.23. Since the linear transformation Rθ rotates all vectors in
R2 by angle θ, it should be true for any x⃗ that the magnitude of Rθ (x⃗) is the
same as the magnitude of x⃗. Verify that this is true by using the formula
(5.13).

Exercise 5.3.24. Use the formula (5.13) to verify that if x⃗ = ⟨x1, x2⟩ is any
nonzero vector in R2 and θ is any angle, then

x⃗ ·Rθ (x⃗) = ∥x⃗∥2 cos (θ) .

Conclude that x⃗ · Rθ (x⃗) > 0 if θ is acute and that x⃗ · Rθ (x⃗) < 0 if θ is
obtuse. What is true about x⃗ ·Rθ (x⃗) when θ = 90◦ or when x⃗ = 0⃗2?

Exercise 5.3.25. Suppose that α and θ are some given angles. The point
(cos (α) , sin (α)) is the point on the unit circle shown in Figure 5.15.

If we rotate the vector x⃗ = ⟨cos (α) , sin (α)⟩ through angle θ by applying
the linear transformation Rθ, then we get the vector

Rθ (x⃗) = ⟨cos (α + θ) , sin (α + θ)⟩ . (5.14)

The above equation is true for any angles α and θ.

Use the formula (5.13) to compute Rθ (x⃗) and compare what you get to
the formula (5.14) for Rθ (x⃗) shown above. You should see two familiar
trigonometric identities pop out.

Repeat this exercise by computing R−θ (x⃗) using both formula (5.14) and
formula (5.13). You should obtain two more familiar trigonometric identi-
ties.
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α

θ

(cos (α), sin (α))

(cos (α + θ), sin (α + θ))

x
Rθ(x

)

1
x1

1

x2

Figure 5.15: Rotation by Angle θ

5.4 Linear Transformation of Lines

Recall that at the beginning of this chapter we said that linear transfor-
mations are functions that map lines to lines or points. In Section 5.2, we
provided our formal definition of what a linear transformation is. Definition
5.2.1 tells us that a linear transformation T : Rn → Rm is a function that
satisfies the linearity properties

T (x⃗+ y⃗) = T (x⃗) + T (y⃗)

T (cx⃗) = cT (x⃗)

for all vectors x⃗ and y⃗ in Rn and for all scalars c. It was mentioned right
after we stated Definition 5.2.1 that it might not be clear to you right after
reading the definition that the definition describes a class of functions that
map lines to lines or points. In Section 5.3, you had ample opportunity to
acquaint yourself with some specific linear transformations from R2 to R2

and hopefully that helped you to start seeing that linear transformations do
map lines to lines or points. In this section we will verify that this is true.

Before we can show that linear transformations map lines to lines or
points, we need to be sure that we have a clear understanding of what we
mean by a “line”. In previous math courses you have taken, you learned
how to draw pictures of lines in R2 and write equations for these lines. One
way to determine a line, L, in R2 is to be given two points, P = (p1, p2) and
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Q = (q1, q2) on the line. Using those two points (and assuming that q1 ̸= p1,
which means that L is not a vertical line), you can compute the slope,

m =
q2 − p2
q1 − p1

,

of the line and then write an equation for the line using the point–slope
equation

x2 − p2 = m (x1 − p1) .

As an example, let us find an equation for the line, L, in R2 that contains
the points P = (0, 2) and Q = (4,−5). To do this, we compute the slope,

m =
−5− 2

4− 0
= −7

4

and then we see that the line has equation

L : x2 − 2 = −7

4
(x1 − 0)

which can be written as

L : x2 = −7

4
x1 + 2.

The point–slope method for writing the equation of a line in R2 can
always be used, except when L is a vertical line. This is because the slope
of a vertical line is undefined. If L is a vertical line that contains the point
P = (p1, p2), then the equation of L is

L : x1 = p1.

For example, the equation of the vertical line that contains the point P =
(3, 2) is

L : x1 = 3.

Exercise 5.4.1. Write equations for the lines, L, that are described below.
Draw a picture of each line.

1. L contains the points P = (3, 1) and Q = (2,−4).

2. L contains the points P = (−4,−1) and Q = (−3,−3).
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3. L contains the points P = (3, 5) and Q = (−12, 5).

4. L contains the points P = (3,−2) and Q = (3,−1).

Although the point–slope method is certainly nice for writing equations
of lines in R2, there is no way to adapt this approach to write equations for
lines in R3. That is because there is no way to compute a single number,
m, that could be considered the “slope” of a line in R3. Think about it:
Suppose you are given the two points P = (−1, 2, 3) and Q = (−1, 1,−1)
in R3. There is a unique line, L, in R3 that contains these two points. But
what is its slope? We can’t really define it. However, what we can define is a
direction vector for L. A direction vector for L is any vector that is parallel
to L. If we are given a point, P , on L, and a direction vector, d⃗, for L, then
we can write a set of equations that describe L. We can also write a single
(vector form) equation for L. This leads us to our formal definition of what
we mean by a line in Rn (for any n ≥ 2).

Definition 5.4.1. Suppose that P = (p1, p2, . . . , pn) is a point in Rn and

suppose that d⃗ = ⟨d1, d2, . . . , dn⟩ is a non–zero vector in Rn. The line, L,

that contains the point P and has direction vector d⃗ is the set of all points
X = (x1, x2, . . . , xn) such that

1. The point P lies on L and

2. L is parallel to d⃗.

We can form a visual picture of lines in R2 and in R3. In Rn, when n > 3,
visualizing a line is difficult but the mathematics of working with lines in Rn

works the same for any n. Figure 5.16 illustrates this idea in R2.
In the Figure, we have drawn the line L that contains the point P =

(p1, p2) and is parallel to the non–zero vector d⃗ = ⟨d1, d2⟩. If X = (x1, x2) is
any arbitrarily chosen point on L (other than the point P itself), then the
vector −−→

PX = ⟨x1 − p1, x2 − p2⟩

is parallel to the vector d⃗ = ⟨d1, d2⟩. This means that
−−→
PX is a scalar multiple

of d⃗ and hence there is some scalar t such that
−−→
PX = td⃗. Writing this out

in detail, we obtain

⟨x1 − p1, x2 − p2⟩ = t ⟨d1, d2⟩ . (5.15)
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d

 < d1, d2 >

P  (p1, p2)

X  (x1, x2)

p

x

t d


L

Figure 5.16: x⃗ = p⃗+ td⃗

Equation (5.15) tells us that

x1 − p1 = td1

x2 − p2 = td2

and hence

x1 = p1 + td1 (5.16)

x2 = p2 + td2

−∞ < t < ∞

The equations (5.16) are what we refer to as parametric equations of
the line, L, that contains the point P = (p1, p2) and has direction vector

d⃗ = ⟨d1, d2⟩. When we write −∞ < t < ∞, we are saying that we are
allowing the scalar t (which is also referred to as a parameter) to range
over all real numbers. This traces out the entire line L. The line is infinitely
long. If we wish to only consider some piece of L, i.e., a line segment, then we
can restrict the parameter t to only be allowed to range over some smaller
interval. For example, instead of writing −∞ < t < ∞ we could write
0 ≤ t ≤ 1 and that would trace out only some line segment that lies on L.

Another way to interpret equation (5.15) is in terms of vectors. We can
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write equation (5.15) as

⟨x1, x2⟩ − ⟨p1, p2⟩ = t ⟨d1, d2⟩

or
⟨x1, x2⟩ = ⟨p1, p2⟩+ t ⟨d1, d2⟩ .

If we define x⃗ = OX = ⟨x1, x2⟩ and p⃗ =
−→
OP = ⟨p1, p2⟩ (as in Figure 5.16),

then we can write the above equation as

x⃗ = p⃗+ td⃗ (5.17)

−∞ < t < ∞.

Equation (5.17) is called a vector parametric equation (or, more briefly,
a vector equation) of the line L. Again, we have included −∞ < t < ∞
in the vector parametric description above because this produces the entire
line L but we could also produce a line segment by being more restrictive
with the parameter t. Moving forward, when we write parametric equations
or vector equations for lines, we will sometimes choose to save space by not
writing −∞ < t < ∞. When we do this, it will be understood that we
are considering the entire line and allowing −∞ < t < ∞. If we wish to
consider only a line segment, then we will specify a ≤ t ≤ b, indicating that
the parameter is being restricted to the interval [a, b].

Example 5.4.1. Let L be the line in R2 that contains the point P = (2, 1)

and has direction vector d⃗ = ⟨2,−3⟩. Draw a picture of this line and:

1. Write parametric equations for L.

2. Write a vector equation for L.

Solution: A picture of L is shown in Figure 5.17.

If X = (x1, x2) is any point on L, then
−−→
PX = td⃗ for some scalar t and

thus
⟨x1 − 2, x2 − 1⟩ = t ⟨2,−3⟩ .

From this we see that parametric equations for L are

x1 = 2 + 2t

x2 = 1− 3t

and a vector equation for L is

⟨x1, x2⟩ = ⟨2, 1⟩+ t ⟨2,−3⟩ .
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d

 < 2, -3 >

P  (2, 1)

L

1 2

1

2

Figure 5.17: ⟨x1, x2⟩ = ⟨2, 1⟩+ t⟨2,−3⟩

Example 5.4.2. Write parametric equations and vector equations for the
line, L, in R3 that contains the points P = (−1, 2, 3) and Q = (−1, 1,−1).

Solution: The directed line segment from the point P to the point Q
gives us a direction vector for L:

d⃗ =
−→
PQ = ⟨−1− (−1) , 1− 2,−1− 3⟩ = ⟨0,−1,−4⟩ .

A vector equation for L is

L : x⃗ = p⃗+ td⃗

which is

L : ⟨x1, x2, x3⟩ = ⟨−1, 2, 3⟩+ t ⟨0,−1,−4⟩ .

Parametric equations for L are

x1 = −1

x2 = 2− t

x3 = 3− 4t.

To check that this is correct, note that when we plug t = 0 into the parametric
equations we get the point P = (−1, 2, 3) and when we plug t = 1 into the
parametric equations we get the point Q = (−1, 1,−1).

Exercise 5.4.2. For each of the lines, L, that are described below, write
parametric equations and a vector equation for L. Graph the ones that are
in R2.
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1. L is the line in R2 that contains the point P = (4,−2) and has direction

vector d⃗ = ⟨0,−1⟩.

2. L is the line in R2 that contains the point P = (3, 2) and has direction

vector d⃗ = ⟨2, 2⟩.

3. L is the line in R2 that contains the points P = (0, 2) and Q =
(−2,−2).

4. L is the line in R2 that has equation x2 = 0.

5. L is the line in R2 that has equation x1 = 7.

6. L is the line in R2 that has equation x2 = x1 + 4.

7. L is the line in R3 that contains the point P = (2,−1,−1) and has

direction vector d⃗ = ⟨1, 2,−2⟩.

8. L is the line in R3 that contains the point P = (−1, 1, 1) and has

direction vector d⃗ = ⟨0, 0,−1⟩.

9. L is the line in R3 that contains the two points P = (−1, 2, 3) and
Q = (−1, 1,−1).

10. L is the line in R4 that contains the two points P = (4,−1,−2,−4)
and Q = (3, 2,−2,−2).

We are now prepared to prove that any linear transformation from R2

to R2 maps any line to a line or to a point. Recall, from Section 5.1, the
notation that we use for a function f : D → C to denote the image under
f of a subset of the domain. If S is a subset of the domain, D, then f (S)
denotes the image of S under f. That is,

f (S) = {f (x) | x ∈ S} .

For a linear transformation T : Rn → Rm, a line, L, in Rn is a subset of Rn,
and we denote its image under T by T (L).

Theorem 5.4.1. Suppose that T : Rn → Rm is a linear transformation and
suppose that L is a line in Rn. Specifically, suppose that

L : x⃗ = p⃗+ td⃗ (5.18)
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where d⃗ ̸= 0⃗n.
Then T (L) is either a point or a line in Rm. Specifically,

1. If d⃗ /∈ ker (T ), then T (L) is a line in Rm.

2. If d⃗ ∈ ker (T ), then T (L) is a point in Rm.

Proof. Before we start the proof, let us review what equation (5.18) means:

P = (p1, p2) is a certain point on L

p⃗ = ⟨p1, p2⟩ =
−→
OP

d⃗ ̸= 0⃗n is a direction vector for L

t is a scalar variable

X = (x1, x2) is an arbitrary point on L.

X varies as t varies.

x⃗ = ⟨x1, x2⟩ =
−−→
OX.

This is all summarized in Figure 5.16 (for the case of a line in R2).
If we take any point X on L and apply the linear transformation T to x⃗,

then we obtain (by using the linearity properties of T )

y⃗ = T (x⃗) = T
(
p⃗+ td⃗

)
= T (p⃗) + tT

(
d⃗
)
.

Hence

T (L) = {T (x⃗) | x⃗ ∈ L} =
{
T (p⃗) + tT

(
d⃗
)

| −∞ < t < ∞
}
.

We see that if d⃗ /∈ ker (T ), meaning that T
(
d⃗
)
̸= 0⃗m, then T (L) is a line

that contains the point T (p⃗) and has direction vector T
(
d⃗
)
. An equation

for this line is

T (L) : y⃗ = T (p⃗) + tT
(
d⃗
)
.

If d⃗ ∈ ker (T ), then T
(
d⃗
)

= 0⃗m and we simply have T (L) = {T (p⃗)},
meaning that T (L) consists of a single point.
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A nice thing about Theorem 5.4.1 is that it not only tells us that linear
transformations map lines to lines or points, but it also tells us the criterion
that determines whether a particular line is mapped to a line or a point. We
will illustrate using a few examples from the linear transformations that we
studied in Section 5.3.

Example 5.4.3. In Section 5.3.1, we studied the linear transformation T :
R2 → R2 defined by

T (⟨x1, x2⟩) = (⟨−x2, x1⟩)
and we discovered that this transformation rotates all vectors in R2 by an
angle of 90◦ counterclockwise without changing the lengths of the vectors.
This linear transformation is invertible meaning that

ker (T ) =
{
0⃗2

}
.

Hence if
L : x⃗ = p⃗+ td⃗

is any line in R2, then since d⃗ ̸= 0⃗2 and ker (T ) contains only the vector 0⃗2,

we see that d⃗ /∈ ker (T ). Therefore T (L) is a line. This linear transformation
maps all lines in R2 to lines in R2.

If we are given a particular line, L, in R2, then we can easily find the line
T (L). For example, suppose that L is the horizontal line

L : x2 = 8

that is pictured in Figure 5.18. Every point on L has the form (t, 8) where t
can be any value. Now note that

T (⟨t, 8⟩) = (⟨−8, t⟩) .

The points of the form (−8, t) lie on the vertical line x1 = −8. Thus every
point on the horizontal line x2 = 8 is a mapped by T to a point on the vertical
line x1 = −8 as shown in Figure 5.18.

Exercise 5.4.3. Let T be the rotation transformation

T (⟨x1, x2⟩) = (⟨−x2, x1⟩)

and let L be the line
L : x2 = 2x1 + 1.

Find T (L) and graph L and T (L) together.
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(t, 8)

T (t, 8) (-8, t)

L

T(L)

-12 -4 4 12
x1

-12

-4

4

12
x2

Figure 5.18: Line x2 = 8 Mapped to Line x1 = −8

Example 5.4.4. Figure 5.19 shows a picture of the capital letter “A” which
was constructed by choosing five points in R2 and then connecting these points
with line segments to form the letter “A”.

(-2,-2)

(0,2)

(2,-2)

(-1,0) (1,0)

x1

x2

Figure 5.19: Letter ”A”

Figure 5.20 shows the transformation of the letter “A” that is obtained by
applying the linear transformation T (⟨x1, x2⟩) = ⟨−x2, x1⟩. As can be seen,
the transformation rotates the “A” counterclockwise by 90◦. Each of the three
line segments that make up the original “A” are mapped to line segments on
the transformed “A”.

Example 5.4.5. In Section 5.3.2 we studied the linear transformation

T (⟨x1, x2⟩) = ⟨x1, 0⟩
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(-2,-2)

(0,2)

(2,-2)

(-1,0) (1,0)(-2,0)

(2,2)

(0,-1)

(0,1)

x1

x2

Figure 5.20: Letter ”A” Rotated 90◦

which projects all vectors in x⃗ ∈ R2 onto the x1 axis. Since all vectors are
projected onto the x1 axis, then

Range (T ) = Span {⟨1, 0⟩} .

The kernel of T consists of all solutions of the equation

T (⟨x1, x2⟩) = ⟨0, 0⟩ ,

which can be written, using the formula for T , as

⟨x1, 0⟩ = ⟨0, 0⟩ .

Any vector of the form ⟨x1, x2⟩ = ⟨0, t⟩, where t can be any real number,
satisfies the above equation and thus

ker (T ) = Span {⟨0, 1⟩} .

According to Theorem 5.4.1, any line in R2 that does not have direction
vector d⃗ = ⟨0, 1⟩ is mapped to a line. (In this case, the line is the x1 axis.)

However, if a line does have direction vector d⃗ = ⟨0, 1⟩, then that line is
mapped to a point (which is a single point on the x1 axis). The only lines

that have direction vector d⃗ = ⟨0, 1⟩ are vertical lines. Hence,

• If L is not a vertical line, then T (L) = the x1 axis

• If L : ⟨k, 0⟩+ t ⟨0, 1⟩ is a vertical line, then T (L) = {⟨k, 0⟩}.

Exercise 5.4.4. In Section 5.3.3, we studied the linear transformation

T (x⃗) = 2x⃗

which maps all vectors in R2 to a vector pointing in the same direction but
having twice the length.
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1. Explain why there are no lines in R2 that are mapped by T to a point.
(Hint: What is ker (T )?)

2. Show that every line, L, in R2 is mapped by T to a line that is parallel
to L. In other words, show that if L is any line in R2, then T (L) is
parallel to L.

3. Show that if L is a line that contains the point (0, 0), then T (L) = L.

Exercise 5.4.5. In Section 5.3.4 we studied the linear transformation

T (⟨x1, x2⟩) = ⟨x2, x1⟩

which reflects all vectors through the line x2 = x1. Does this linear trans-
formation map any lines in R2 to points or does it map all lines to lines?
Explain.

Exercise 5.4.6. In Section 5.3.5 we studied the shearing transformation

T (⟨x1, x2⟩) = ⟨x1 + x2, x2⟩ .

If you didn’t quite picture the action of the shearing transformation when
you studied Section 5.3.5, then perhaps this exercise will help you picture it
better.

1. Show that if L is a horizontal line in R2, meaning that L has equation

L : x2 = k

where k is a constant, then T (L) = L.

2. Suppose that L is the vertical line

L : x1 = 4.

Find T (L). Then draw pictures of L and T (L) in different colors.

3. More generally, suppose that L is the vertical line

L : x1 = k

where k is a constant. Find T (L).
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(0,1) (1,1)

(0,0)
(1,0)

(0,-1) (1,-1)

x1

x2

Figure 5.21: Letter E

Exercise 5.4.7. Figure 5.21 shows a picture of capital letter “E”. Shear the
letter E using the shearing transformation T (⟨x1, x2⟩) = ⟨x1 + x2, x2⟩ and
draw a picture of the sheared E.

Having shown that linear transformations map lines to lines or points, we
can actually say something more specific. If we have two lines, L1 and L2,
in Rn that are parallel to each other, then any direction vector for L1 is also
a direction vector for L2. If d⃗ ̸= 0⃗n is a direction vector for L1, then d⃗ is also
a direction vector for L2. This means that L1 and L2 have vector equations

L1 : x⃗ = p⃗1 + td⃗

L2 : x⃗ = p⃗2 + td⃗.

When we transform points on L1 using a linear transformation T , we obtain

T (x⃗) = T (p⃗1) + tT
(
d⃗
)

and when we transform points on L2 using this same linear transformation
we obtain

T (x⃗) = T (p⃗2) + tT
(
d⃗
)
.

Thus, assuming that T
(
d⃗
)

̸= 0⃗n, we see that T (L1) has direction vector

T
(
d⃗
)
and T (L2) also has direction vector T

(
d⃗
)
, which means that the lines
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T (L1) and T (L2) are parallel to each other. If it is the case that T
(
d⃗
)
= 0⃗n,

then T (L1) = {T (p⃗1)} and T (L2) = {T (p⃗2)}. This is summarized in the
following corollary to Theorem 5.4.1.

Corollary 5.4.1. Linear transformations map parallel lines to parallel lines
(or to points). Specifically, if T : Rn → Rm is a linear transformation and
L1 and L2 are the lines

L1 : x⃗ = p⃗1 + td⃗

L2 : x⃗ = p⃗2 + td⃗

in Rn, where d⃗ ̸= 0⃗n, then

1. If d⃗ /∈ ker (T ), then T (L1) and T (L2) are parallel lines in Rm.

2. If d⃗ ∈ ker (T ) , then T (L1) and T (L2) are points in Rm.

Example 5.4.6. In Example 5.4.3, we saw that the linear transformation
T (⟨x1, x2⟩) = ⟨−x2, x1⟩ rotates horizontal lines in R2 to vertical lines in R2.

More generally, if L is a line with direction vector d⃗ = ⟨d1, d2⟩ ̸= 0⃗2, then

T
(
d⃗
)
= ⟨−d2, d1⟩ and we see that T

(
d⃗
)
is orthogonal to d⃗. Hence T rotates

any line, L, to a line that is perpendicular to L. This means that T maps
parallel lines to parallel lines.

In Example 5.4.5, we saw that the linear transformation T (⟨x1, x2⟩) =
⟨x1, 0⟩ projects all lines in R2 onto the x1 axis, with the exception of verti-
cal lines. All non–vertical lines, whether parallel to each other or not, are
projected onto the same line (the x1 axis). Vertical lines are mapped to a sin-
gle point on the x1 axis. That is because a vertical line has direction vector
d⃗ = ⟨0, 1⟩ and T (⟨0, 1⟩) = ⟨0, 0⟩ so d⃗ ∈ ker (T ).

In Exercise 5.4.4, you were asked to show that the linear transformation
T (x⃗) = 2x⃗ maps any line, L, to a line that is parallel to L. Thus T maps
parallel lines to parallel lines.

5.5 Compositions and Similarity

The idea of composing two functions is applicable to functions in general
and this idea is highly useful in studying linear transformations. In fact, we
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will see that our need to form compositions of linear transformations is the
reason that we define matrix multiplication the way that we do.

Suppose that f : Df → Cf is a function and suppose that g : Dg → Cg

is some other function. Here we are denoting the domains of f and g by Df

and Dg respectively, and we are denoting the codomains of f and g by Cf

and Cg respectively. If Range (g) is a subset of Df , then we can form a new
function which is called a composition. This function, which is denoted
by f ◦ g (and spoken as “f composition g”) is the function that takes each
element x in Dg, then maps it via g to Range (g) to obtain the element g (x),
and then takes g (x) and maps it via f to the element f (g (x)) in Cf . It is
possible for us to form this function because we are assuming that Range (g)
is a subset of Df , ensuring that for each x ∈ Dg we have g (x) ∈ Df . Thus
f ◦ g is the function f ◦ g : Dg → Cf

(f ◦ g) (x) = f (g (x)) for all x ∈ Dg.

Figure 5.22 shows a schematic diagram of f ◦ g.

Figure 5.22: The Composition f ◦ g

Function composition is something you have encountered in your previous
math courses.1 As an example, suppose that g (x) = 2x and f (x) = sin (x).
Then f ◦ g is the function

(f ◦ g) (x) = f (g (x)) = sin (g (x)) = sin (2x)

and g ◦ f is the function

(g ◦ f) (x) = g (f (x)) = 2f (x) = 2 sin (x) .

1A topic that you probably remember from calculus where function composition comes
into play is the Chain Rule, which tells us how to take the derivative of a composition of
functions. It tells us that (f ◦ g)′ (x) = f ′ (g (x)) g′ (x) .
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The above example shows that it is not true in general that g ◦ f = f ◦ g.
Forming and working with compositions of linear transformations T :

Rn → Rm is particularly easy. To see why, let’s start by just considering
two linear functions g : R → R and f : R → R defined by g (x) = bx and
f (x) = ax where a and b are some given constants. The composition f ◦ g
is the function f ◦ g : R → R defined by

(f ◦ g) (x) = f (g (x)) = f (bx) = a (bx) = (ab)x

and the composition g ◦ f is the function g ◦ f : R → R defined by

(g ◦ f) (x) = g (f (x)) = g (ax) = b (ax) = (ba)x = (ab)x.

We see that in this case it is true that g ◦ f = f ◦ g.
Because of the way we have defined matrix multiplication, forming the

composition of linear transformations from Rn to Rm works very similarly
to forming compositions of linear functions from R to R. This is because
the formula for any linear transformation from Rn to Rm can be written as
the multiplication of a vector by a matrix. If S : Rn → Rp is the linear
transformation defined by S (x⃗) = ASx⃗ where AS is a p × n matrix and
T : Rp → Rm is the linear transformation defined by T (x⃗) = AT x⃗ where AT

is an m× p matrix, then T ◦ S : Rn → Rm is defined by

(T ◦ S) (x⃗) = T (S (x⃗)) = T (ASx⃗) = AT (ASx⃗) = (ATAS) x⃗.

Hence if S has standard matrix AS and T has standard matrix AT , then
T ◦S has standard matrix ATAS. Notice that we have used the all–important
associative property of matrix multiplication in deducing this fact. Also note
that since matrix multiplication is not commutative, then even if T ◦ S and
S ◦ T are both defined, it is not generally true that T ◦ S = S ◦ T .

Example 5.5.1. Suppose that S : R3 → R2 is the linear transformation

S (⟨x1, x2, x3⟩) = ⟨2x1 + x2, 2x1 + x2 + x3⟩ (5.19)

and suppose that T : R2 → R3 is the linear transformation

T (⟨x1, x2⟩) = ⟨−x1, 3x1 − x2,−2x1 + 3x2⟩ . (5.20)

1. Fill in the blanks: T ◦ S is a linear transformation from to .
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2. Find the standard matrix for S and the standard matrix for T . Give
the name AS to the standard matrix for S and give the name AT to the
standard matrix for T .

3. Find the standard matrix for T ◦ S.

4. Write the formula for T ◦ S in the form (T ◦ S) (⟨x1, x2, x3⟩) = .

Solution:

1. Since S : R3 → R2 and Since T : R2 → R3, then T ◦ S : R3 → R3.

2. Recall that the standard matrix for S is the matrix whose column vectors
the images under S of the standard basis vectors of R3. Since

S (⟨1, 0, 0⟩) = ⟨2 (1) + 0, 2 (1) + 0 + 0⟩ = ⟨2, 2⟩
S (⟨0, 1, 0⟩) = ⟨2 (0) + 1, 2 (0) + 1 + 0⟩ = ⟨1, 1⟩
S (⟨0, 0, 1⟩) = ⟨2 (0) + 0, 2 (0) + 0 + 1⟩ = ⟨0, 1⟩ ,

then the standard matrix for S is

AS =

[
2 1 0
2 1 1

]
.

Likewise, the standard matrix for T is the matrix whose column vectors
are the images under T of the standard basis vectors of R2. Since

T (⟨1, 0⟩) = ⟨− (1) , 3 (1)− 0,−2 (1) + 3 (0)⟩ = ⟨−1, 3,−2⟩
T (⟨0, 1⟩) = ⟨−0, 3 (0)− 1,−2 (0) + 3 (1)⟩ = ⟨0,−1, 3⟩ ,

then the standard matrix for T is

AT =

 −1 0
3 −1
−2 3

 .

3. The standard matrix for T ◦ S is

ATAS =

 −1 0
3 −1
−2 3

[ 2 1 0
2 1 1

]
=

 −2 −1 0
4 2 −1
2 1 3

 .
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4. Since (T ◦ S) (x⃗) = (ATAS) (x⃗) for all x⃗ ∈ R3, we have

(T ◦ S) (x⃗) = (ATAS) (x⃗) (5.21)

=

 −2 −1 0
4 2 −1
2 1 3

 ⟨x1, x2, x3⟩

= ⟨−2x1 − x2, 4x1 + 2x2 − x3, 2x1 + x2 + 3x3⟩ .

As a test to see if we have found the right formula for T ◦S, let us take the
randomly chosen vector x⃗ = ⟨−3, 2, 2⟩ ∈ R3 and compute (T ◦ S) (x⃗) one step
at a time using formulas (5.19) and (5.20) and then compute (T ◦ S) (x⃗) in
just one step by using formula (5.21). We should get the same answer either
way.

Using formulas (5.19) and (5.20), we obtain

S (x⃗) = S (⟨−3, 2, 2⟩) = ⟨2 (−3) + 2, 2 (−3) + 2 + 2⟩ = ⟨−4,−2⟩

and

T (S (x⃗)) = T (⟨−4,−2⟩)
= ⟨− (−4) , 3 (−4)− (−2) ,−2 (−4) + 3 (−2)⟩
= ⟨4,−10, 2⟩ .

Using (5.21) we obtain

(T ◦ S) (x⃗) = (T ◦ S) (⟨−3, 2, 2⟩)
= ⟨−2 (−3)− 2, 4 (−3) + 2 (2)− 2, 2 (−3) + 2 + 3 (2)⟩
= ⟨4,−10, 2⟩ .

Exercise 5.5.1. For the linear transformations S and T given by formulas
(5.19) and (5.20) in Example 5.5.1,

1. Fill in the blanks: S ◦ T is a linear transformation from to .

2. The standard matrices for S and T have already been found in Example
5.5.1.

3. Find the standard matrix for S ◦ T .
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4. Write the formula for S ◦ T in the form (S ◦ T ) (⟨x1, x2⟩) = .

Exercise 5.5.2. Let S : R2 → R2 be the linear transformation defined by

S (⟨x1, x2⟩) = ⟨0, x2⟩ .

This linear transformation projects all vectors in R2 onto the x2 axis.

Let T : R2 → R2 be the linear transformation defined by

T (⟨x1, x2⟩) = ⟨x1, 0⟩ .

This linear transformation projects all vectors in R2 onto the x1 axis.

1. Without doing any calculations, what should T ◦ S do to all vectors in
R2? Explain in words.

2. Write down the matrix for S, the matrix for T , and the matrix for
T ◦ S.

3. Write down a formula for T ◦S in the form T ⟨x1, x2⟩ = . Does your
answer agree with what you guessed in answering part 1?

Exercise 5.5.3. In Section 5.3.6, we studied the rotation transformations
Rθ. Let R45◦ : R2 → R2 be the linear transformation that rotates vectors in
R2 counterclockwise through angle 45◦.

1. What does the linear transformation R45◦ ◦ R45◦ do to vectors in R2?
Explain in words and fill in the blank below

R45◦ ◦R45◦ = .

2. Show that A45◦A45◦ = A90◦.

3. Without doing any computations, what do you guess that we get when
we multiply the matrix A45◦ by itself eight times? In other words, what
do you guess is (A45◦)

8. After guessing, compute (A45◦)
8 to see if your

guess is correct.
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Exercise 5.5.4. The linear transformation S : R2 → R2 defined by

S (x⃗) = 3x⃗

expands all vectors in R2 by a multiplier of 3. (This means that S (x⃗) points
in the same direction as x⃗ and has 3 times the magnitude of x⃗).

The linear transformation T : R2 → R2 defined by

T (x⃗) = 4x⃗

expands all vectors in R2 by a multiplier of 4. (This means that T (x⃗) points
in the same direction as x⃗ and has 4 times the magnitude of x⃗).

1. Explain in words what T ◦ S does to vectors in R2.

2. Write down the matrices AS and AT and AT◦S.

3. Write a formula for T ◦ S in the form (T ◦ S) (x⃗) = .

4. Show that S ◦ T = T ◦ S. Does this make sense?

Note that if T : Rn → Rn is an invertible linear transformation and T has
matrix AT , then T−1 has matrix (AT )

−1. In other words, AT−1 = (AT )
−1.

The identity transformation En : Rn → Rn is the transformation defined
by

En (x⃗) = x⃗ for all x⃗ ∈ Rn.

The identity transformation does nothing to all vectors in Rn. The matrix
for En is In (the n × n identity matrix) because En (x⃗) = x⃗ = Inx⃗. Thus if
T is any invertible linear transformation from Rn to Rn we have

T−1 ◦ T = En

T ◦ T−1 = En

AT−1AT = In

ATAT−1 = In.

Example 5.5.2. Consider the linear transformation, R45◦ that rotates all
vectors in R2 counterclockwise by 45◦. The matrix for this transformation is

A45◦ =

[
cos (45◦) − sin (45◦)
sin (45◦) cos (45◦)

]
=

[ √
2
2

−
√
2
2√

2
2

√
2
2

]
.
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How do we “undo” a rotation of 45◦ counterclockwise? The answer is that
we rotate 45◦ clockwise. In other words, we apply the linear transformation
R−45◦. The matrix for R−45◦ is

A−45◦ =

[
cos (−45◦) − sin (−45◦)
sin (−45◦) cos (−45◦)

]
=

[ √
2
2

√
2
2

−
√
2
2

√
2
2

]
.

Note that

A−45◦A45◦ =

[ √
2
2

√
2
2

−
√
2
2

√
2
2

][ √
2
2

−
√
2
2√

2
2

√
2
2

]
= I2,

which is what we expect because R45◦ and R−45◦ are inverses of each other.

Exercise 5.5.5. Let R30◦ be the linear transformation that rotates all vectors
in R2 by 30◦ clockwise. Write down the matrices for R30◦ and (R30◦)

−1 and
verify that the product of these matrices (in either order) is I2.

Exercise 5.5.6. We showed in Section 5.3.6 that the linear transformation
that rotates all vectors in R2 by angle θ is Rθ (x⃗) = Aθx⃗ where Aθ is the
matrix

Aθ =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
.

This tells us that the linear transformation (Rθ)
−1 = R−θ has matrix

A−θ =

[
cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

]
=

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.

Verify that this is correct by computing A−θAθ.

The idea of function composition is very useful in studying linear trans-
formations. By just being familiar with a few linear transformations like
those we studied in Section 5.3, we can use the ones we are familiar with
to construct new linear transformations by forming compositions. This is
illustrated in the next two examples.

Example 5.5.3. Let us construct the linear transformation T : R2 → R2

that first rotates a vector in R2 by 60◦ counterclockwise, then reflects the
resulting vector through the x1 axis, and then doubles the magnitude of the
resulting vector.
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Solution: We will construct T a piece at a time and then form the
composition of the pieces.

The first piece is the piece R60◦ that rotates vectors by 60◦ counterclock-
wise. This piece has matrix

A60◦ =

[
cos (60◦) − sin (60◦)
sin (60◦) cos (60◦)

]
=

[
1/2 −

√
3/2√

3/2 1/2

]
.

The second piece is the reflection S (⟨x1, x2⟩) = ⟨x1,−x2⟩ which has ma-
trix

AS =

[
1 0
0 −1

]
.

The third piece is the expansion by a multiplier of 2 which is P (x⃗) = 2x⃗,
which has matrix

AP =

[
2 0
0 2

]
.

The combined effect of first applying R60◦, and then applying S, and then
applying P is T = P ◦ S ◦R60◦, which has matrix

AT = APASA60◦

=

[
2 0
0 2

] [
1 0
0 −1

] [
1/2 −

√
3/2√

3/2 1/2

]
=

[
1 −

√
3

−
√
3 −1

]
.

Hence T is the linear transformation

T (⟨x1, x2⟩) = AT ⟨x1, x2⟩ =
〈
x1 −

√
3x2,−

√
3x1 − x2

〉
.

Let us check some specific vectors and see if what we compute agrees with the
visual picture we have of this transformation:

T (⟨1, 0⟩) =
〈
1−

√
3 (0) ,−

√
3 (1)− 0

〉
=
〈
1,−

√
3
〉

seems to make sense because if we start with the vector ⟨1, 0⟩ and then rotate it
60◦ counterclockwise, we end up in the first quadrant of R2. If we then reflect
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through the x1 axis, we are in the fourth quadrant. Doubling the magnitude
keeps us in the fourth quadrant. Note that

〈
1,−

√
3
〉
is in the fourth quadrant.

T (⟨0, 1⟩) =
〈
0−

√
3 (1) ,−

√
3 (0)− 1

〉
=
〈
−
√
3,−1

〉
seems to make sense because if we start with the vector ⟨0, 1⟩ and then rotate
it 60◦ counterclockwise, we end up in the second quadrant. If we then reflect
through the x1 axis, we are in the third quadrant. Doubling the magnitude
keeps us in the third quadrant. Note that

〈
−
√
3,−1

〉
is in the third quadrant.

Exercise 5.5.7. In Example 5.5.3, we formed the composition P ◦ S ◦R60◦.
What if we had composed these in a different order? Would we get a different
linear transformation than we got in Example 5.5.3. This exercise is aimed at
investigating that question. Try to answer these questions without doing any
calculations. Just try to visualize and maybe draw a few pictures to answer
the questions. Then write down formulas for each of the transformations
under investigation.

1. Is P ◦R60◦ ◦S the same or different from P ◦S ◦R60◦? In other words,
is doing things in the order

• reflect through x1 axis

• rotate by 60◦ counterclockwise

• double magnitude

the same as doing things in the order

• rotate by 60◦ counterclockwise

• reflect through x1 axis

• double magnitude?

Hint: Pick out a vector or two and visualize what quadrant that vec-
tor ends up in after each series of three successive transformations is
applied.

2. Is S ◦R60◦ ◦ P the same or different from P ◦ S ◦R60◦?

3. Is S ◦ P ◦R60◦ the same or different from P ◦ S ◦R60◦?
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(x1, x2)

(y1, y2)

x  < x1, x2 >

T ( x) < y1, y2 >

 reflection of x

L

30 °

Figure 5.23: Reflecting Through L

Example 5.5.4. Let us find the linear transformation T : R2 → R2 that
reflects all vectors in R2 through the line, L, that makes an angle of 30◦ with
the x1 axis. See Figure 5.23.

Solution: Referring to Figure 5.23, observe that reflecting the vector x⃗
through the line L can be accomplished in three steps:

a) First rotate the picture by 30◦ clockwise.

b) Then reflect through the x1 axis.

c) Then rotate 30◦ counterclockwise.

The matrix for the linear transformation, R−30◦, that rotates vectors 30◦

clockwise is

A−30◦ =

[ √
3/2 1/2

−1/2
√
3/2

]
.

The matrix for the linear transformation, S, that reflects vectors through the
x1 axis, is

AS =

[
1 0
0 −1

]
.
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The matrix for the linear transformation, R30◦, that rotates vectors 30
◦ coun-

terclockwise rotation is

A30◦ =

[ √
3/2 −1/2

1/2
√
3/2

]
.

Thus the matrix for the linear transformation, T = R30◦ ◦ S ◦ R−30◦ that
reflects vectors through the line L is

AT = A30◦ASA−30◦ =

[
1/2

√
3/2√

3/2 −1/2

]
.

The formula for T is

T (⟨x1, x2⟩) =

〈
1

2
x1 +

√
3

2
x2,

√
3

2
x1 −

1

2
x2

〉
.

The idea that was used in Example 5.5.4 was to relate a linear trans-
formation that we were trying to find (reflection through the line, L, that
makes an angle of 30◦ with the x1 axis) to a “similar” linear transformation
(reflection through the x1 axis). Our strategy for doing this was

1. Map the problem to a simpler setting by rotating the whole picture 30◦

clockwise.

2. Solve the problem in the simpler setting. (The problem in the simpler
setting is just to reflect through the x1 axis.)

3. Map the problem back to the original setting by rotating the whole
picture 30◦ counterclockwise.

More generally, suppose that we want to find some “complicated” linear
transformation T : R2 → R2. We could proceed as follows: Think of some
“easier” linear transformation S : R2 → R2 that is “similar” to T . (For
example, maybe T is projection onto some arbitrary line, L, in R2. Then we
could choose S to be projection onto the x1 axis.) Then

1. Map the problem to the simpler setting by applying some invertible
linear transformation P .

2. Solve the problem in the simpler setting. (That is, find S.)
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3. Then map the problem back to the original setting by applying P−1.

The result is that we have

T = P−1 ◦ S ◦ P

where S is “simple” in comparison with T .
In the above discussion, we been have putting the words “simple” and

“complicated” and “similar” in quotes, because we are using these terms
informally. We have not given precise meanings to the terms. We can at
least see, though, how we can give a precise meaning to the term “similar”.
We will do that now. The idea of similarity of linear transformations (and
similarity of matrices) is important in the study of linear transformations.

Definition 5.5.1. A linear transformation T : Rn → Rn is said to be sim-
ilar to a linear transformation S : Rn → Rn if there exists an invertible
linear transformation P : Rn → Rn such that T = P−1 ◦ S ◦ P .

Likewise, an n×n matrix A is said to be similar to an n×n matrix B,
if there exists an invertible n× n matrix C such that A = C−1BC.

Note that if the linear transformation T : Rn → Rn is similar to the
linear transformation S : Rn → Rn, and AT is the matrix for T and AS is
the matrix for S, then AT is similar to AS.

Example 5.5.5. Let us show that the linear transformation T : R2 → R2

that projects all vectors in R2 onto the line L : x2 = x1 is similar to the linear
transformation S : R2 → R2 that projects all vectors in R2 onto the x1 axis.

First note that S has a simple formula. It is S (⟨x1, x2⟩) = ⟨x1, 0⟩. Since
the line L : x2 = x1 makes an angle of 45◦ with the positive x1 axis, we can
find T by first rotating the picture by 45◦ clockwise, then applying S, and
then rotating the picture back to its original setting.

The matrix for 45◦ rotation clockwise is

R−45◦ =

[
cos (−45◦) − sin (−45◦)
sin (−45◦) cos (−45◦)

]
=

[ √
2/2

√
2/2

−
√
2/2

√
2/2

]
.

The matrix for S is

AS =

[
1 0
0 0

]
.
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The matrix for 45◦ rotation counterclockwise is

R45◦ =

[
cos (45◦) − sin (45◦)
sin (45◦) cos (45◦)

]
=

[ √
2/2 −

√
2/2√

2/2
√
2/2

]
.

Thus T = R45◦ ◦ S ◦R−45◦ and the matrix for T is

AT = A45◦ASA−45◦

=

[ √
2/2 −

√
2/2√

2/2
√
2/2

] [
1 0
0 0

] [ √
2/2

√
2/2

−
√
2/2

√
2/2

]
=

[
1
2

1
2

1
2

1
2

]
.

The formula for T is

T (⟨x1, x2⟩) =
〈
1

2
x1 +

1

2
x2,

1

2
x1 +

1

2
x2

〉
.

We have shown that the linear transformation T is similar to the linear trans-
formation S and we have also shown that the matrix

AT =

[
1
2

1
2

1
2

1
2

]
is similar to the matrix AS =

[
1 0
0 0

]
.

T and S are both projection transformations, but they project onto different
lines. S projects onto the x1 axis and T projects onto the line L : x2 = x1.

Observe that the matrix

AS =

[
1 0
0 −1

]
(5.22)

from Example 5.5.4 is simpler than the matrix

AT =

[
1/2

√
3/2√

3/2 −1/2

]
(5.23)

from that example. Likewise, the matrix

AS =

[
1 0
0 0

]
(5.24)
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from Example 5.5.5 is simpler than the matrix

AT =

[
1
2

1
2

1
2

1
2

]
(5.25)

from that example.
Why might we view the AS matrices (5.22) and (5.24) as being “simpler”

than the corresponding matrices AT matrices (5.23) and (5.25)? Perhaps
because they have “lots of zeros” and thus we get the intuitive sense that
they are easier to work with than matrices that don’t have “lots of zeros”.
In fact, the matrices in (5.22) and (5.24) are examples of what we refer to
as diagonal matrices and they are, in many ways, easier to work with than
matrices that are not diagonal matrices. In particular, it is easy to raise
a diagonal matrix to a power (meaning to multiply the matrix by itself a
certain number of times). To see an example of this, let us use the pair of
matrices AS given in (5.22) and AT given in (5.23). We will compute A2

S and
A2

T .
The computation of A2

S is

A2
S = ASAS =

[
1 0
0 −1

] [
1 0
0 −1

]
= I2. (5.26)

The fact that A2
S = I2 makes sense because the composition S◦S is reflection

through the x1 axis followed by another reflection through the x1 axis, which
is the same as doing nothing. Hence S ◦ S is the identity transformation.

The computation of A2
T is

A2
T = ATAT =

[
1/2

√
3/2√

3/2 −1/2

] [
1/2

√
3/2√

3/2 −1/2

]
= I2 (5.27)

and this also makes sense because the composition T ◦T is reflection through
the line L, that makes an angle of 30◦ with the positive x1 axis, followed by
another reflection through the line L, which is the same as doing nothing.
Hence T ◦ T is the identity transformation.

The matrix multiplication done in (5.26) requires less computation than
the matrix multiplication done in (5.27) because two of the entries of AS are
0 (and it is easy to multiply by 0) whereas AT does not have any entries of 0.
Let us formally define what we mean by a diagonal matrix and then state a
theorem that tells us that it is easy to compute powers of a diagonal matrix.
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Definition 5.5.2. An n×n matrix A is said to be a diagonal matrix if the
only non–zero entries of A are on its main diagonal. Specifically, A = [aij]
is a diagonal matrix if aij = 0 for all i ̸= j.

Example 5.5.6. The matrix

A =

[
3 0
0 −5

]
is a diagonal matrix and the matrix

A =

 1 0 0
0 −1 0
0 0 0


is also a diagonal matrix.

Theorem 5.5.1. If

A =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann


is a diagonal matrix, then for any integer p ≥ 1 we have

Ap =


ap11 0 0 · · · 0
0 ap22 0 · · · 0
0 0 ap33 · · · 0
...

...
...

. . .
...

0 0 0 · · · apnn

 .

Theorem 5.5.1 tells us that any power of a diagonal matrix, A, is also a
diagonal matrix and the entries on the main diagonal of Ap are simply the
entries on the main diagonal of A raised to the p power. For example if

A =

[
3 0
0 −5

]
,



5.5. COMPOSITIONS AND SIMILARITY 321

then

A2 =

[
32 0

0 (−5)2

]
=

[
9 0
0 25

]
and

A3 =

[
33 0

0 (−5)3

]
=

[
27 0
0 −125

]
.

We will look at the problem of “diagonalizing” a given matrix in more
detail in Chapter 6. This is the problem of deciding whether a given matrix
A is similar to some diagonal matrix B or not. (We will see that it turns out
that some matrices are diagonalizable and some are not.) We conclude this
section with some exercises on the concept of similarity.

Exercise 5.5.8. If we are given any n × n matrix B then it is easy to find
another n × n matrix A that is similar to B. All we need to do is take any
invertible n× n matrix C and let A = C−1BC.

1. Let B be the matrix

B =

[
1 1
−3 −3

]
.

Find a matrix, A, that is similar to B.

2. Let B be the matrix

B =

 −2 3 −1
−1 −3 2
3 −1 −2

 .

Find a matrix, A, that is similar to B.

Exercise 5.5.9. 1. Explain why any n×n matrix, A, is similar to itself.

2. Explain why if A is similar to B, then B is similar to A.

3. Explain why if A is similar to B and B is similar to C, then A is
similar to C.

Exercise 5.5.10. Explain why the only matrix that is similar to

O2×2 =

[
0 0
0 0

]
is O2×2.



322 CHAPTER 5. LINEAR TRANSFORMATIONS

Exercise 5.5.11. Explain why the only linear transformation from R2 to R2

that is similar to the identity transformation E (x⃗) = x⃗ is E itself.

Exercise 5.5.12. Explain why the only linear transformation from R2 to R2

that is similar to the linear transformation T (x⃗) = 2x⃗ is T itself.

5.6 Linear Transformations for General Vec-

tor Spaces

Thus far we have considered only linear transformations T : Rn → Rm.
Since all such transformations have the form T (x⃗) = Ax⃗ where A is some
m× n matrix, we have the tools that we need (matrix algebra) to be able to
understand these linear transformations very well. We can answer questions
regarding the range and kernel of T by using A and can also determine
whether or not T is invertible. We can easily form the composition of two
linear transformations by multiplying their matrices. We will now be more
general and define what we mean by a linear transformation T : V → W
where V and W can be any vector spaces. It will be seen that all of the
central concepts that apply to linear transformations T : Rn → Rm such as
range, kernel, and invertibility, carry over in a natural way to more general
linear transformations T : V → W . The only difference is that it does not
any longer make sense to write T (x⃗) = Ax⃗, where A is a matrix, because
the vectors in V are not assumed to be vectors in Rn. We will see, however,
that when the vector spaces V and W are finite dimensional, we can still use
matrix tools to study T : V → W by working with coordinate vectors.

The definition of a linear transformation T : V → W parallels Definition
5.2.1.

Definition 5.6.1. Suppose that V and W are vector spaces. A linear trans-
formation from V to W is a function T : V → W that has the properties:

1. If x⃗ and y⃗ are any two vectors in V , then T (x⃗+ y⃗) = T (x⃗) + T (y⃗).

2. If x⃗ is any vector in V and c is any scalar, then T (cx⃗) = cT (x⃗).

We have already seen many examples of linear transformations T : Rn →
Rm. Let us now look at two examples that involve other vector spaces.
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Example 5.6.1. Let S : R∞ → R∞ be the function defined by

S (⟨a1, a2, a3, . . .⟩) = ⟨a2, a3, a4, . . .⟩ .

This is called a shifting transformation because the action of S is to discard
the first component of the input and then shift all other components one
position to the left. We will use Definition 5.6.1 to prove that S is a linear
transformation. We will only prove that the first requirement of Definition
5.6.1 is satisfied and leave it as an exercise for you to prove that the second
requirement of the definition is also satisfied.

Suppose that a⃗ = ⟨a1, a2, a3, . . .⟩ and b⃗ = ⟨b1, b2, b3, . . .⟩ are vectors in R∞.
Then

S
(
a⃗+ b⃗

)
= S (⟨a1, a2, a3, . . .⟩+ ⟨b1, b2, b3, . . .⟩)

= S (⟨a1 + b1, a2 + b2, a3 + b3, . . .⟩)
= ⟨a2 + b2, a3 + b3, a4 + b4, . . .⟩
= ⟨a2, a3, a4, . . .⟩+ ⟨b2, b3, b4, . . .⟩

= S (⃗a) + S
(⃗
b
)
.

This shows that S satisfies the first requirement of Definition 5.6.1.

Exercise 5.6.1. Show that the shifting transformation, S, defined in Exam-
ple 5.6.1 satisfies the second requirement of Definition 5.6.1.

Example 5.6.2. In Calculus I, you learned about derivatives. The process
of taking the derivative of a function is called differentiation. You probably
did not realize at the time that differentiation is a linear transformation! The
reason (which you learned in Calculus I) is that

1. If f and g are two differentiable functions, then f + g is also a differ-
entiable function and

(f + g)′ = f ′ + g′

and

2. If f is a differentiable function and c is a constant (scalar), then cf is
also a differentiable function and

(cf)′ = cf ′.
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To formalize this fact, we define D : C1 (R) → C0 (R) to be the function

D (f) = f ′.

Then D is a linear transformation because for all f and g in C1 (R) and all
scalars c we have both

D (f + g) = D (f) +D (g)

and
D (cf) = cD (f) ,

showing that both requirements of Definition 5.6.1 are satisfied.
To illustrate with a specific example, suppose that f is the function defined

by f (x) = x3 and g is the function defined by g (x) = sin (x). Then

D (f + g) = D
(
x3 + sin (x)

)
= 3x2 + cos (x)

= D (f) +D (g)

and

D (3f) = D
(
3x3
)

= 9x2

= 3
(
3x2
)

= 3D (f) .

Exercise 5.6.2. For the differentiation transformation D (f) = f ′, compute

1. D (cos (x))

2. D (x4 − 1)

3. D (5x3 − 2x+ 16)

4. D (ex)

5. D
(
−3

2
ex sin (x)− 7

2
ex cos (x)

)
Exercise 5.6.3. Let M2×2 be the vector space of all 2× 2 matrices with real
entries. Let f : M2×2 → M2×2 be the function defined by f (A) = rref (A). Is
f a linear transformation? Explain why or why not.
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5.6.1 Range, Kernel, and Invertibility

The definitions of the range and the kernel of a linear transformation T :
V → W are easily generalized from the definitions that we gave for these
concepts for linear transformations T : Rn → Rm.

Definition 5.6.2. If V and W are vector spaces and T : V → W is a linear
transformation, we define the range of T to be

Range (T ) = {y⃗ ∈ W | T (x⃗) = y⃗ for at least one x⃗ ∈ V }

and we define the kernel (also called null space) of T to be

ker (T ) =
{
x⃗ ∈ V | T (x⃗) = 0⃗W

}
.

Note that two alternative ways to describe Range (T ) are

Range (T ) = {T (x⃗) | x⃗ ∈ V }

and
Range (T ) = T (V ) .

Just as was the case for linear transformations T : V → W , it is always
true that Range (T ) is a subspace of W and that ker (T ) is a subspace of V .
You are asked to prove these facts in Exercises 5.6.5 and 5.6.6. Furthermore,
it is also true that if V is a finite dimensional vector space, then the analog of
Theorem 5.2.3 (Fundamental Theorem of Linear Algebra) holds. Specifically
if V is finite dimensional, then

dim (Range (T )) + dim (ker (T )) = dim (V ) .

The concept of invertibility of a linear transformation T : Rn → Rm also
carries over to linear transformations T : V → W . In fact this concept was
defined more generally for functions (not necessarily linear transformations)
f : A → B in Section 5.1.2.

Definition 5.6.3. Suppose that V and W are vector spaces and suppose
that T : V → W is a linear transformation. We say that T is invertible
if Range (T ) = W and T is also one–to–one. If T is invertible, then the
inverse of T is defined to be the function T−1 : W → V defined by

T−1 (y⃗) = x⃗ where x⃗ is the unique vector in V such that T (x⃗) = y⃗.
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Note that if T : V → W is invertible, then(
T−1 ◦ T

)
(x⃗) = T−1 (T (x⃗)) = x⃗ for all x⃗ ∈ V

and (
T ◦ T−1

)
(x⃗) = T

(
T−1 (x⃗)

)
= x⃗ for all x⃗ ∈ W .

For an invertible linear transformation T : Rn → Rm, it was easily seen
that T−1 is also a linear transformation. That was because we saw that
if A is the matrix of T , then A−1 is the matrix of T−1. When dealing
with linear transformations in general, we don’t have a formula of the form
T (x⃗) = Ax⃗ to work with. Nonetheless, it is always true that the inverse of
an invertible linear transformation is a linear transformation. This is stated
in the following theorem.

Theorem 5.6.1. Suppose that V and W are vector spaces and suppose that
T : V → W is an invertible linear transformation. Then T−1 : W → V as
defined in Definition 5.6.3 is also a linear transformation.

Proof. We need to show that T−1 satisfies both of the requirements of Def-
inition 5.6.1. Suppose that x⃗ and y⃗ are vectors in W . Since T is invertible,
there is a unique vector u⃗ in V such that T (u⃗) = x⃗ and hence u⃗ = T−1 (x⃗).
Likewise, there is a unique vector v⃗ in V such that T (v⃗) = y⃗ and hence
v⃗ = T−1 (y⃗). Since T is a linear transformation then

T (u⃗+ v⃗) = T (u⃗) + T (v⃗) = x⃗+ y⃗

which implies that

T−1 (x⃗+ y⃗) = u⃗+ v⃗ = T−1 (x⃗) + T−1 (y⃗) .

This shows that T−1 satisfies the first requirement of Definition 5.6.1. In Ex-
ercise 5.6.4, you are asked to show that T−1 satisfies the second requirement
of Definition 5.6.1.

Exercise 5.6.4. Complete the proof of Theorem 5.6.1 by showing that T−1

satisfies the second requirement of Definition 5.6.1.

Exercise 5.6.5. Suppose that T : V → W is a linear transformation. Prove
that Range (T ) is a subspace of W .
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Exercise 5.6.6. Suppose that T : V → W is a linear transformation. Prove
that ker (T ) is a subspace of V .

Example 5.6.3. In Example 5.6.1, we considered the shifting transformation
S : R∞ → R∞ defined by

S (⟨a1, a2, a3, . . .⟩) = ⟨a2, a3, a4, . . .⟩ .

What is the range of S? In other words, what is the set of all vectors b⃗ ∈
R∞ for which there exists a vector a⃗ ∈ R∞ such that S (⃗a) = b⃗? After
a moment of thought, we can see that Range (S) = R∞. If we take any

vector b⃗ = ⟨b1, b2, b3, . . .⟩ ∈ R∞, then b⃗ is the image under S of the vector
a⃗ = ⟨0, b1, b2, b3, . . .⟩ because

S (⃗a) = S (⟨0, b1, b2, b3, . . .⟩) = ⟨b1, b2, b3, . . .⟩ = b⃗.

What is the kernel of S? In other words, what is the set of all vectors
a⃗ ∈ R∞ for which S (⃗a) = 0⃗? (Recall that in R∞, the zero vector is 0⃗ =
⟨0, 0, 0, . . .⟩.) After some thought, we see that ker (S) consists of all vectors
a⃗ ∈ R∞ that have the form

a⃗ = ⟨a1, 0, 0, 0, . . .⟩

(meaning that all components of a⃗ are 0 except possibly for the first compo-
nent). For such vectors a⃗ we see that

S (⃗a) = S (⟨a1, 0, 0, 0, . . .⟩) = ⟨0, 0, 0, . . .⟩ = 0⃗.

Furthermore, if the vector a⃗ has a nonzero component anywhere beyond the
first component, then S (⃗a) ̸= 0⃗. We can write ker (S) as

ker (S) = Span {⟨1, 0, 0, 0, . . .⟩} .

Exercise 5.6.7. In Example 5.6.3, we discovered that the range and kernel
of the shifting transformation, S, are

Range (S) = R∞

ker (S) = Span {⟨1, 0, 0, 0, . . .⟩} .

The fact that Range (S) = R∞ means that S maps R∞ onto R∞. Explain
why S is not one–to–one and hence not invertible.
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Example 5.6.4. In Example 5.6.2 we studied the differentiation transfor-
mation D : C1 (R) → C0 (R) defined by

D (f) = f ′.

Recall that C1 (R) is the set of all functions with domain R that are
differentiable and have continuous derivatives. That is why it was okay
for us to designate the codomain of D to be C0 (R), which is the set of all
continuous functions that have domain R. If f has a continuous derivative,
then D (f) = f ′ is a continuous function.2

You may recall that one part of the Fundamental Theorem of Calculus
(studied in Calculus I) tells us that any continuous function has an an-
tiderivative. This means that if g is any continuous function, then there
exists a differentiable function f such that D (f) = g. Therefore the range of
D is

Range (D) = C0 (R) .

Exercise 5.6.8. In Example 5.6.4 we explained why the differentiation trans-
formation, D (f) = f ′ has range Range (D) = C0 (R). Explain why D is not
one–to–one and hence not invertible.

Hint: How many solutions does the equation D (f) = 5 have?

Example 5.6.5. In this example we look at the differentiation transforma-
tion, but with domain restricted to P2 = Span {1, x, x2}. The elements of P2

are polynomial functions that have degree 2 or less. Thus the elements of P2

have the form
p (x) = a0 + a1x+ a2x

2 (5.28)

where a0, a1, and a2 can be any scalars. When we take the derivative of such
a function we obtain a polynomial function of degree 1 or less:

D (p) = a1 + 2a2x. (5.29)

This means that if want to study the transformation D (p) = p′ with
domain P2, we can choose the codomain to be P1. We might as well do that,
since then we have that D maps P2 onto P1. In other words Range (D) = P1.
To be sure we see why Range (D) = P1, note that if

q (x) = b0 + b1x ∈ P1,

2There do exist functions that are differentiable but whose derivatives are not contin-
uous. These functions are studied in other courses.
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then q = D (p) where p ∈ P2 is the function

p (x) = b0x+
1

2
b1x

2.

Is D one–to–one? The answer is no. To see why not, let q ∈ P1 be the
function

q (x) = 5 + 4x.

There are infinitely many functions p ∈ P2 such that D (p) = q. For example

D
(
5x+ 2x2

)
= 5 + 4x

and
D
(
9 + 5x+ 2x2

)
= 5 + 4x.

We conclude that D is not invertible, because D is not one–to–one.
Examining this from the point of view of Fundamental Theorem of Linear

Algebra, since dim (Range (D)) = dim (P1) = 2, then we must have

2 + dim (ker (D)) = dim (P2) = 3

and hence we must have dim (ker (D)) = 1. To see why dim (ker (D)) = 1,
note that ker (D) consists of all functions p ∈ P2 such that D (p) = z where
z is the zero polynomial (meaning the polynomial such that z(x) = 0 for all
x ∈ R). The only functions in P2 that have derivative z are the constant
functions. Thus ker (D) = Span {1}, meaning that dim (ker (D)) = 1.

Exercise 5.6.9. In Example 5.6.5 we saw that the differentiation transfor-
mation D : P2 → P1 defined by D (p) = p′ maps P2 onto P1 but is not
one–to–one and hence not invertible. Let P ∗

2 = Span {x, x2}. Thus P ∗
2 con-

sists of all polynomial functions of the form

p (x) = a1x+ a2x
2.

Since the derivative of such a function has the form

D (p) = a1 + 2a2x,

then we can choose our codomain to be P1.
Let D : P ∗

2 → P1 be the differentiation transformation D (p) = p′.



330 CHAPTER 5. LINEAR TRANSFORMATIONS

1. Explain why D is one–to–one and hence invertible.

2. Determine Range (D) and ker (D) and show that the Fundamental The-
orem of Linear Algebra

dim (Range (D)) + dim (ker (D)) = dim (P ∗
2 )

is satisfied.

5.6.2 Powers of Linear Transformations T : V → V

From this point on we will consider only linear transformations T : V → V ,
where the domain and codomain of T are the same vector space. For such
linear transformations, we have Range (T ) ⊆ V and thus we can compute
T ◦ T . In fact, since Range (T ◦ T ) ⊆ V , we can compute T ◦ T ◦ T and so
on. We can compose T with itself as many times as we like. The standard
notation that is used when composing a linear transformation with itself n
times is T n. Thus

T 2 = T ◦ T
T 3 = T ◦ T ◦ T

...

etc.

Exercise 5.6.10. Let S : R∞ → R∞ be the shifting transformation

S (⟨a1, a2, a3, . . .⟩) = ⟨a2, a3, a4, . . .⟩

that was introduced in Example 5.6.1. Give formulas for S2 and S3.

S2 (⟨a1, a2, a3, . . .⟩) =
S3 (⟨a1, a2, a3, . . .⟩) = .

Hint: Remember that S2 = S ◦ S. This means that

S2 (⃗a) = (S ◦ S) (⃗a) = S (S (⃗a)) .

Exercise 5.6.11. Let D : C∞ (R) → C∞ (R) be the differentiation trans-
formation D (f) = f ′. This is the same transformation that was introduced



5.6. LINEAR TRANSFORMATIONS FORGENERAL VECTOR SPACES331

in Example 5.6.2, except that we are now restricting the domain to include
only functions that have derivatives of all orders; i.e., functions whose first
derivative, second derivative, third derivative....and all derivatives exist. In
restricting the domain of D to be C∞ (R), the linear transformation D now
maps its domain into its domain and thus it is possible to form any number
of compositions of D with itself. As an example, we have

D
(
x3
)
= 3x2

D2
(
x3
)
= D

(
D
(
x3
))

= 6x

D3
(
x3
)
= D (6x) = 6

D4
(
x3
)
= D (6) = 0.

We see that Dn (x3) = 0 for all n ≥ 4.

1. Find Dn (x4 − 2x3 + 5x− 2) for all n = 1, 2, 3, . . .

2. Find Dn (sin (x)) for n = 1, 2, 3 and 4.

3. Find Dn (ex) for all n = 1, 2, 3, . . .

4. Find Dn (xex) for n = 1, 2 and 3.

5. Find Dn (x sin (x)) for n = 1, 2, 3 and 4.

5.6.3 Working with Coordinate Vectors

We will now consider linear transformations T : S → S where S is a finite
dimensional subspace of a vector space V . The vector space V itself can be
either finite dimensional or infinite dimensional but we will only be using a
finite dimensional subspace of V as the domain of our linear transformation
and we will only consider linear transformations that map this finite dimen-
sional subspace into itself. Hence we will be able to discuss composition of
T with itself any number of times as in Section 5.6.2.

If S is a finite dimensional subspace of the vector space V and B =
{u⃗1, u⃗2, . . . , u⃗k} is an ordered basis for S consisting of k vectors (where k ≥ 1),
then the coordinate vector of any vector x⃗ ∈ S with respect to the ordered
basis B is the vector in Rk whose components are the unique weights that
are used in writing x⃗ as a linear combination of the vectors in B. In other
words,

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k (5.30)
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if and only if

[x⃗]B = ⟨c1, c2, . . . , ck⟩ . (5.31)

Lemma 4.8.1 in Section 4.8 tells us that if x⃗ and y⃗ are any two vectors in
S and c is any scalar, then

[x⃗+ y⃗]B = [x⃗]B + [y⃗]B (5.32)

and

[cx⃗]B = c [x⃗]B . (5.33)

The facts (5.32) and (5.33) tell us that the mapping from S into Rk that maps
each vector x⃗ ∈ S to its coordinate vector [x⃗]B is a linear transformation!
Furthermore, this linear transformation is invertible because (5.30) is true
if and only if (5.31) is true. We will refer to the linear transformation that
maps a vector x⃗ ∈ S to its coordinate vector with respect to basis B as
a coordinate mapping. Rather than giving a capital letter name to the
coordinate mapping (as we normally do for linear transformations), we will
just use the bracket symbol [·]B to denote the coordinate mapping and we
will use the symbol [·]−1

B to denoted the inverse of the coordinate mapping.
Thus [·]B : S → Rk is the linear transformation defined by

[x⃗]B = ⟨c1, c2, . . . , ck⟩

where ⟨c1, c2, . . . , ck⟩ is the unique vector in Rk that satisfies (5.30), and
[·]−1

B : Rk → S is the linear transformation defined by

[⟨c1, c2, . . . , ck⟩]−1
B = x⃗

where x⃗ is the unique vector in S that satisfies (5.30). The dot (·) that
appears in the notations [·]B and [·]−1

B is just a place holder. If we plug
some specific vector into [·]B or [·]−1

B , then that vector takes the place of the
dot. This kind of notation is commonly used in mathematics in situations
where such a notation is convenient. Before proceeding, let us look at some
examples to make sure that we understand the bracket notation for the co-
ordinate mapping and inverse coordinate mapping (because we will be using
this notation a lot in what follows).

Example 5.6.6. We showed in Example 4.7.7 that the set of vectors B =
{1, x, x2} is linearly independent and is thus an ordered basis for the vector
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space P2 = Span {1, x, x2}. The elements of P2 are polynomial functions of
the form

p (x) = a0 + a1x+ a2x
2.

The coordinate vector of the above function p with respect to the ordered basis
B is

[p (x)]B = ⟨a0, a1, a2⟩ .

If ⟨c0, c1, c2⟩ is any vector in R3, then the inverse coordinate vector of
⟨c0, c1, c2⟩ is the function

[⟨c0, c1, c2⟩]−1 = c0 + c1x+ c2x
2.

As specific examples,[
−5 + 2x+ 3x2

]
B = ⟨−5, 2, 3⟩

and
[⟨−4,−1,−5⟩]−1

B = −4− x− 5x2.

Example 5.6.7. Consider the vector space R∞. We can obtain a two di-
mensional subspace of R∞ by choosing any two vectors, a⃗ and b⃗, in R∞ such

that B =
{
a⃗, b⃗
}

is a linearly independent set and then taking our subspace

to be S = Span
{
a⃗, b⃗
}
. Let us choose

a⃗ = ⟨1, 0, 1, 0, 1, 0, . . .⟩ (alternating 1 and 0 starting with 1)

b⃗ = ⟨0, 1, 0, 1, 0, 1, . . .⟩ (alternating 1 and 0 starting with 0).

The set B =
{
a⃗, b⃗
}

is linearly independent because it is a set of two vectors

and neither one of them is a scalar multiple of the other one. Thus B ={
a⃗, b⃗
}
is an ordered basis for the two dimensional subspace S = Span

{
a⃗, b⃗
}
.

Let x⃗ be the vector

x⃗ = ⟨−2, 2,−2, 2,−2, 2, . . .⟩ .

Then x⃗ ∈ S because x⃗ = −2a⃗ + 2⃗b. The coordinate vector of x⃗ with respect
to the ordered basis B is

[x⃗]B = ⟨−2, 2⟩
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and the inverse coordinate vector of ⟨−2, 2⟩ is

[⟨−2, 2⟩]−1
B = x⃗.

Both of the above two facts are due to the fact that x⃗ = −2a⃗+ 2⃗b.

Example 5.6.8. Let S = Span {sin (x) , cos (x)}. We showed in Example
4.7.12 that the set of functions B = {sin (x) , cos (x)} is linearly independent.
Thus B is a basis for S. The coordinate vector of the function −3 sin (x) +
cos (x) with respect to the ordered basis is

[−3 sin (x) + cos (x)]B = ⟨−3, 1⟩

and the inverse coordinate vector of the vector ⟨−3, 1⟩ is

[⟨−3, 1⟩]−1
B = −3 sin (x) + cos (x) .

Exercise 5.6.12. For the vector space P2 = Span {1, x, x2} with ordered
basis B = {1, x, x2}, find

a) [2 + 2x+ 2x2]B

b) [1]B

c) [x]B

d) [x2]B

e) [⟨1,−2,−2⟩]−1
B

f) [⟨0, 1, 1⟩]−1
B

Exercise 5.6.13. Let a⃗ and b⃗ be the vectors given in Example 5.6.7. We

showed in that example that B =
{
a⃗, b⃗
}

is linearly independent and is thus

an ordered basis for S = Span
{
a⃗, b⃗
}
. Find

a) [⟨0, 0, 0, 0, 0, 0, 0, . . .⟩]B

b) [⟨1, 2, 1, 2, 1, 2, 1, . . .⟩]B

c) [⟨2,−4⟩]−1
B
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Exercise 5.6.14. The set of vectors

B = {sin (x) , cos (x) , x sin (x) , x cos (x)}

is linearly independent and is thus a basis for

S = Span {sin (x) , cos (x) , x sin (x) , x cos (x)} .

Find

a) [−3 sin (x) + 2 cos (x) + 3x sin (x)− 3x cos (x)]B

b) [cos (x)]B

c) [−4 cos (x) + 5x sin (x) + x cos (x) + 3 sin (x)]B

d) [ ⟨−4, 2, 4,−1⟩]−1
B

1. [ ⟨0, 0, 1, 0⟩]−1
B

We will now see how we can use coordinate vectors as a handy tool for
studying a linear transformation T : S → S where S is finite dimensional and
B = {u⃗1, u⃗2, . . . , u⃗k} is an ordered basis for S. The idea, which is described
precisely in Theorem 5.6.2, is to consider a similar linear transformation
TB : Rk → Rk that mimics T . The advantage of working with TB is that we
have a matrix to work with because TB has the form TB (c⃗) = ABc⃗ for some
k× k matrix AB. Theorem 5.6.2 tells us how to find the matrix AB, which is
called the matrix of the linear transformation T with respect to the
ordered basis B.

Theorem 5.6.2. Suppose that S is a finite dimensional subspace of a vec-
tor space V (where V may be finite dimensional or infinite dimensional)
and suppose that T : S → S is a linear transformation. Suppose also that
B = {u⃗1, u⃗2, . . . , u⃗k} is an ordered basis of S. Define AB to be the k×k matrix
whose columns are

Colj (AB) = [T (u⃗j)]B (5.34)

and let TB : Rk → Rk be the linear transformation defined by TB (c⃗) = ABc⃗
for all c⃗ ∈ Rk. Then for all x⃗ ∈ S we have

T (x⃗) = [AB [x⃗]B]
−1
B . (5.35)
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S S

Rk Rk

T

TB

[ · ]B [ · ]B
-1

Figure 5.24: T = [·]B
−1 ◦ TB ◦ [·]B

Before giving the formal proof of Theorem 5.6.2, let us try to understand
what the theorem is saying in an informal way. Figure 5.24 shows two dif-
ferent routes of getting from S to S. One route (the shorter route indicated
in black) is to go directly from S so S using the map T . The other route
(longer route indicated in red) is to first go form S to Rk using the coordinate
mapping [·]B, then go from Rk to Rk using the map TB, and then go from Rk

to S using the inverse coordinate mapping [·]B
−1.

Figure 5.25 illustrates the effect (using each of the two routes) on a specific
vector x⃗ ∈ S. The direct route takes us directly from x⃗ to T (x⃗):

x⃗ 7→ T (x⃗) .

The indirect route takes us from x⃗ to T (x⃗) via the steps

x⃗
[·]B7→ [x⃗]B

TB7→ AB [x⃗]B
[·]−1

B7→ [AB [x⃗]B]
−1
B = T (x⃗) .

Of course, the reason we need to prove the theorem is to make sure that
the equality at the end of the above sequence of mappings is correct. You
may have noticed that the notation being used is a bit cumbersome due to
the fact that we need to write the subscript “B” so many times. That is
true. We really don’t need to write it because we are only dealing with one
ordered basis B, so there is no room for confusion if we leave the subscript
B out of the notation. Thus let us suppress the writing of B. To economize
on notation, we will just write [·] instead of [·]B with the understanding that
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x T( x)

[ x] A [ x]

T

A

[ · ] [ · ]-1T ( x) [ A [ x] ]-1

Figure 5.25: T (x⃗) = [A[x⃗]]−1

[·] really means [·]B. We will also suppress the writing of the subscript B for
the matrix AB, thus simply writing A instead of AB. With these notational
conveniences, equation (5.35) of Theorem 5.6.2 can be written more simply
(with less messy notation) as T (x⃗) = [A [x⃗]]−1. The diagram in Figure 5.24
uses the notation with subscript B included and the diagram in Figure 5.25
leaves out the subscript B.

And now for the proof of Theorem 5.6.2:

Proof. We want to prove that if x⃗ is any vector in S, then T (x⃗) = [A [x⃗]]−1.
Let x⃗ ∈ S. Since B = {u⃗1, u⃗2, . . . , u⃗k} is an ordered basis for S, then there
are unique scalars c1, c2, . . . , ck such that

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k.

This means that
[x⃗] = ⟨c1, c2, . . . , ck⟩ .

The matrix AB (which we have decided to just call A) is the matrix whose
column vectors are as defined in equation (5.34):

Colj (A) = [T (u⃗j)] .

Recall that A [x⃗] is the linear combination of the column vectors of A using
the entries of [x⃗] as weights, and thus

A [x⃗] = c1Col1 (A) + c2Col2 (A) + · · ·+ ck Colk (A)

= c1 [T (u⃗1)] + c2 [T (u⃗2)] + · · ·+ ck [T (u⃗k)] .
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Using the coordinate mapping property (5.33), we obtain

A [x⃗] = [c1T (u⃗1)] + [c2T (u⃗2)] + · · ·+ [ckT (u⃗k)]

and then using property (5.32) we obtain

A [x⃗] = [c1T (u⃗1) + c2T (u⃗2) + · · ·+ ckT (u⃗k)] .

Now we use the fact that T is a linear transformation to obtain

A [x⃗] = [c1T (u⃗1) + c2T (u⃗2) + · · ·+ ckT (u⃗k)]

= [T (c1u⃗1) + T (c2u⃗2) + · · ·+ T (cku⃗k)]

= [T (c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k)]

= [T (x⃗)] .

Since [T (x⃗)] = A [x⃗], then T (x⃗) = [A [x⃗]]−1.

As is always the case, understanding new ideas requires looking at exam-
ples, which we will now do. Before looking at the examples, we provide a
theorem that tells us some of the important information we can learn about
T by using the matrix A (= AB). We will omit the proof of the theorem.

Theorem 5.6.3. Suppose that S is a finite dimensional subspace of a vector
space V and suppose that T : S → S is a linear transformation. Suppose also
that B = {u⃗1, u⃗2, . . . , u⃗k} is an ordered basis for S and let A be the matrix
of T with respect to the ordered basis B. This is the matrix whose column
vectors are given by (5.34). Then

1. The set of vectors {y⃗1, y⃗2, . . . , y⃗p} is a basis for Range (T ) if and only
if the set of vectors {[y⃗1] , [y⃗2] , . . . , [y⃗p]} is a basis for CS (A).

2. The set of vectors {x⃗1, x⃗2, . . . , x⃗q} is a basis for ker (T ) if and only if
the set of vectors {[x⃗1] , [x⃗2] , . . . , [x⃗q]} is a basis for N (A).

3. For any integer n ≥ 1 and any x⃗ ∈ S, T n (x⃗) = [An [x⃗]]−1.

4. For any vector y⃗ ∈ Range (T ), T (x⃗) = y⃗ if and only if A [x⃗] = [y⃗].

Part 1 of Theorem 5.6.3 says that to find a basis for Range (T ), we just
need to find a basis for CS (A) and then apply the inverse coordinate mapping
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to these vectors. Likewise, part 2 of the theorem says that to find a basis
for ker (T ), we just need to find a basis for N (A) and then take the inverse
coordinate mapping. Finding bases for CS (A) and N (A) is something we
know how to do. Part 3 of the theorem is very useful because it allows us to
form a composition of T with itself as many times as we like, say n times, by
computing An. This is something that can be easily done using a calculator
(or some other software) even when the matrix A is rather large in size and/or
n is large. Part 4 of the theorem tells us that solving an equation of the form
T (x⃗) = y⃗ in S is equivalent to solving a matrix–vector equation in Rk.

Example 5.6.9. Let P2 be the vector space of polynomial functions of degree
2 or less. We know that B = {1, x, x2} is an ordered basis for P2. Let D :
P2 → P2 be the differentiation transformation defined by D (p (x)) = p′ (x).

Let us answer four questions about D that correspond to the four parts of
Theorem 5.6.3. The questions we will answer are

1. Find Range (D).

2. Find ker (D).

3. Find Dn for all n ≥ 1.

4. Find all functions p (x) ∈ P2 such that D (p (x)) = −3 + 2x.

We will answer these questions directly (without using either Theorem
5.6.2 or Theorem 5.6.3) and then we will answer them using the theorems.
It will be seen that the questions can easily be answered directly, and hence
that the theorems are not really needed. Upcoming examples will be ones
in which similar questions cannot be as easily answered directly but can be
answered using the theorems.

Answering the Questions Directly: Every element p (x) ∈ P2 has
the form

p (x) = a0 + a1x+ a2x
2.

1) Using what we learned in calculus about differentiating polynomials, we
see that

D (p (x)) = p′ (x) = a1 + 2a2x.

This tells us that the derivative of a polynomial of degree 2 or less is a poly-
nomial of degree 1 or less and hence that Range (D) ⊆ P1. Conversely, if we
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take any polynomial q (x) = b0+ b1x in P1, then D (p (x)) = q (x) where p (x)
is the polynomial

p (x) = b0x+
1

2
b1x

2.

This tells us that P1 ⊆ Range (D). We conclude that Range (D) = P1.

2) To find ker (D), we need to find all polynomials p (x) = a0 + a1x +
a2x

2 ∈ P2 such that D (p (x)) = z (x) (where z is the zero polynomial).
Setting

a1 (1) + 2a2x = 0 for all x ∈ R

and using the fact that the set of functions {1, x} is linearly independent,
we conclude that a1 = 0 and 2a2 = 0 (and hence a2 = 0). This tells us
that ker (D) contains only constant functions, p (x) = a0. Every constant
function is a scalar multiple of the constant function 1. So we can say that
ker (D) = Span {1}.

Notice that we have found that Range (D) = P1 = Span {1, x} and ker (D) =
Span {1}. We see that Range (D) has dimension 2 and ker (D) has dimension
1 and that the Fundamental Theorem of Linear Algebra holds true because

dim (Range (D)) + dim (ker (D)) = 2 + 1 = 3 = dim (P2) .

3) For a polynomial p (x) = a0 + a1x+ a2x
2 ∈ P2, we have

D (p (x)) = p′ (x) = a1 + 2a2x

D2 (p (x)) = p′′ (x) = 2a2

D3 (p (x)) = p′′′ (x) = 0

and Dn (p (x)) = 0 for all n ≥ 3.

4) We want to find all solutions of the equation D (p (x)) = −3+2x that
lie in P2. In other words, we want to find all functions p (x) ∈ P2 such that
p (x) is an antiderivative of −3 + 2x. In calculus, we learned that∫

(−3 + 2x) dx = C − 3x+ x2

where C can be any constant. Hence the solutions of D (p (x)) = −3 + 2x
that lie in P2 are all functions of the form p (x) = C − 3x + x2. There are
infinitely many solutions because C can be any constant.
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Answering the Questions using the Theorems: First we will use
Theorem 5.6.2 to construct the matrix of D with respect to the ordered basis
B = {1, x, x2}. Since

D (1) = 0

D (x) = 1

D
(
x2
)
= 2x,

then

[D (1)] = ⟨0, 0, 0⟩
[D (x)] = ⟨1, 0, 0⟩[
D
(
x2
)]

= ⟨0, 2, 0⟩ .

Thus we have by Theorem 5.6.2 that

A =

 0 1 0
0 0 2
0 0 0

 .

1) Since

A =

 0 1 0
0 0 2
0 0 0

→

 0 1 0
0 0 1
0 0 0

 = rref (A) , (5.36)

we see that the set of vectors {⟨1, 0, 0⟩ , ⟨0, 2, 0⟩} is a basis for CS (A) (because
these are the pivot columns of A). Theorem 5.6.3 then tells us that the set
of vectors {

[⟨1, 0, 0⟩]−1 , [⟨0, 2, 0⟩]−1} = {1, 2x}

is a basis for Range (D). Since Span {1, 2x} is the same thing as Span {1, x},
we can say that

Range (D) = Span {1, x} = P1.

2) The row reduction done in (5.36) also shows us that a basis for N (A)
is {⟨1, 0, 0⟩} and Theorem 5.6.3 then tells us that a basis for ker (D) is{

[⟨1, 0, 0⟩]−1} = {1} .

Hence ker (D) = Span {1}, which is the set of all constant functions.
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3) Note that

A2 =

 0 1 0
0 0 2
0 0 0

2

=

 0 0 2
0 0 0
0 0 0


A3 =

 0 1 0
0 0 2
0 0 0

3

=

 0 0 0
0 0 0
0 0 0

 = O3×3

and hence An = O3×3 for all n ≥ 3.
Now observe that for any polynomial p (x) = a0 + a1x + a2x

2 in P2 we
have

A [p (x)] =

 0 1 0
0 0 2
0 0 0

 ⟨a0, a1, a2⟩ = ⟨a1, 2a2, 0⟩

and thus part of 3 of Theorem 5.6.3 tells us that

D (p (x)) = [A [p (x)]]−1 = a1 + 2a2x.

Likewise

A2 [p (x)] =

 0 0 2
0 0 0
0 0 0

 ⟨a0, a1, a2⟩ = ⟨2a2, 0, 0⟩

and hence
D2 (p (x)) = 2a3.

For any n ≥ 3 we have

An [p (x)] =

 0 0 0
0 0 0
0 0 0

 ⟨a0, a1, a2⟩ = ⟨0, 0, 0⟩

and hence
Dn (p (x)) = 0 for all n ≥ 3.

4) To solve D (p (x)) = −3 + 2x, we can solve the matrix–vector equa-
tion A [p (x)] = [−3 + 2x] and then apply the inverse coordinate map. Since
[−3 + 2x] = ⟨−3, 2, 0⟩, then to solve A [p (x)] = [−3 + 2x], we need to per-
form row reduction on the augmented matrix 0 1 0

0 0 2
0 0 0

∣∣∣∣∣∣
−3
2
0

 .



5.6. LINEAR TRANSFORMATIONS FORGENERAL VECTOR SPACES343

The row reduction can be achieved in just one step (a scaling operation on
the second row). We obtain 0 1 0

0 0 2
0 0 0

∣∣∣∣∣∣
−3
2
0

 rref→

 0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣
−3
1
0

 .

If we call the unknowns of our equation ⟨a0, a1, a2⟩ then we have

a0 = C (a free variable)

a1 = −3

a2 = 1

which we can write in the vector form ⟨a0, a1, a2⟩ = ⟨C,−3, 1⟩. Part 4 of
Theorem 5.6.3 then tells us that the solution set of D (p (x)) = −3 + 2x
consists of all functions of the form p (x) = C − 3x+ x2 where C can be any
constant.

Example 5.6.10. Let

S = Span {sin (x) , cos (x) , x sin (x) , x cos (x)} .

We leave it as an exercise to show that the set of vectors

B = {sin (x) , cos (x) , x sin (x) , x cos (x)}

is linearly independent and is thus an ordered basis for S. We once again
consider the differentiation transformation D : S → S. To find the matrix
of D with respect to the ordered basis B, we compute

D (sin (x)) = cos (x) (5.37)

D (cos (x)) = − sin (x)

D (x sin (x)) = sin (x) + x cos (x)

D (x cos (x)) = −x sin (x) + cos (x) .

and then observe that

[D (sin (x))] = ⟨0, 1, 0, 0⟩
[D (cos (x))] = ⟨−1, 0, 0, 0⟩

[D (x sin (x))] = ⟨1, 0, 0, 1⟩
[D (x cos (x))] = ⟨0, 1,−1, 0⟩ .
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From this we obtain the matrix of D with respect to the basis B, which is

A =


0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

 .

Since

rref (A) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

then

CS (A) = R4

N (A) =
{
0⃗4

}
and Theorem 5.6.3 then tells us that

Range (D) = S

ker (D) = {z} .

(Recall that we are using the notation z to denote the zero function.)
To illustrate part 3 of Theorem 5.6.3, suppose that we wish to compute

the fifth derivative of the function f (x) = 3x sin (x). We know how to do
this using the Product Rule of differentiation that we learned in Calculus I,
but it is tedious. We would start by computing the first derivative

D (3x sin (x)) = 3x cos (x) + 3 sin (x) .

Then we would compute the second derivative

D2 (3x sin (x)) = D (3x cos (x) + 3 sin (x))

= 3x (− sin (x)) + 3 cos (x) + 3 cos (x)

= −3x sin (x) + 6 cos (x) ,

and then we would need to repeat this process three more times to obtain the
fifth derivative. However, computing the fifth derivative can easily be achieved
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using the matrix

A =


0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0


(and a calculator) to obtain

A5 =




0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0




5

=


0 −1 5 0
1 0 0 5
0 0 0 −1
0 0 1 0

 .

The matrix A5 is the matrix of D5 with respect to the ordered basis B. Since
D5 is the fifth derivative transformation, then to find D5 (3x sin (x)), we
can instead find A5 ⟨0, 0, 3, 0⟩ because ⟨0, 0, 3, 0⟩ is the coordinate vector of
3x sin (x) with respect to the ordered basis B. After doing that, we convert
the answer back to the “S world” by applying the inverse coordinate mapping.

Since

A5 ⟨0, 0, 3, 0⟩ =


0 −1 5 0
1 0 0 5
0 0 0 −1
0 0 1 0

 ⟨0, 0, 3, 0⟩ = ⟨15, 0, 0, 3⟩ ,

then the inverse coordinate mapping gives

D5 (3x sin (x)) = 15 sin (x) + 3x cos (x) .

We can be completely general. Suppose we start with any function, f , in
S and suppose we want to compute the nth derivative of this function. That
is, we want to compute Dn (f). Since f has the form

f (x) = c1 sin (x) + c2 cos (x) + c3x sin (x) + c4x cos (x) ,

then

[f (x)] = ⟨c1, c2, c2, c4⟩ .

To find Dn (f (x)), we just compute An [f (x)] and then apply the inverse
coordinate map to obtain Dn (f (x)).
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As an example, suppose we want to find the tenth derivative of the func-
tion

f (x) = cos (x) + x sin (x) + 2x cos (x) .

This means that we want to find D10 (f (x)). Since the matrix of D10 with
respect to the ordered basis B is

A10 =




0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0




10

=


−1 0 0 −10
0 −1 10 0
0 0 −1 0
0 0 0 −1

 ,

and since
[f (x)] = ⟨0, 1, 1, 2⟩ ,

and since
A10 [f (x)] = ⟨−20, 9,−1,−2⟩ ,

then

D10 (cos (x) + x sin (x) + 2x cos (x)) = −20 sin (x)+9 cos (x)−x sin (x)−2x cos (x) .

(The continuation of this example may be most appreciated by
students who have studied integration techniques in Calculus II.
However, the continuation of the example really only requires an
understanding of what an antiderivative is.)

As an illustration of part 4 of Theorem 5.6.3, we can also use the matrix
A to compute integrals of the form∫

f (x) dx

where f is a function in the vector space S. For example, suppose we wish
to compute the integral ∫

x sin (x) dx.

If you have studied integration techniques in Calculus II, then you proba-
bly remember how to do this problem: use integration by parts. However,
since this is an antidifferentiation problem, we realize that what we are doing
is looking for the solutions of the equation D (F (x)) = x sin (x). Realiz-
ing that the coordinate vector of x sin (x) with respect to the ordered basis
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B is [x sin (x)] = ⟨0, 0, 1, 0⟩, we see that the equation that we need to solve
is A [F (x)] = ⟨0, 0, 1, 0⟩. Forming the appropriate augmented matrix and
performing row reduction we obtain

0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣
0
0
1
0

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1
0
0
−1


and we see that the unique solution of A [F (x)] = ⟨0, 0, 1, 0⟩ is [F (x)] =
⟨1, 0, 0,−1⟩. When we translate this fact back into the world of S, it means
that the unique solution, F (x) ∈ S, of D (F (x)) = x sin (x) is F (x) =
sin (x)− x cos (x). Thus∫

x sin (x) dx = sin (x)− x cos (x) .

You might be thinking that the above answer can’t be right. In fact, it is
not quite right. The equation D (F ) = x sin (x) actually has infinitely many
solutions. The correct answer is∫

x sin (x) dx = sin (x)− x cos (x) + C

where C can be any constant. Why did our method not yield the “+C” that
should be there? The reason is that we started by considering the vector space

S = Span {sin (x) , cos (x) , x sin (x) , x cos (x)}

and this space does not include any constant functions other than the zero
function z (x) = 0. If we had started, instead, with the vector space

S∗ = Span {1, sin (x) , cos (x) , x sin (x) , x cos (x)} ,

which does include all of the constant functions, then our matrix A would
be a 4 × 5 matrix. One free variable would be present and that free variable
gives us the “+C”. The problem that we solved was not to find all functions
F ∈ S∗ such that D (F ) = x sin (x). The problem that we solved was to find
all functions F ∈ S such that D (F ) = x sin (x).

Exercise 5.6.15. For the vector space P3 = Span {1, x, x2, x3} with ordered
basis B = {1, x, x2, x3}, let D : P3 → P3 be the differentiation transformation
D (p) = p′.
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1. Find the matrix, A, of D with respect to the basis B. .

2. Use A to determine Range (D) and ker (D).

3. Compute A2, A3, and A4. You should find that A4 = O4×4.

Exercise 5.6.16. Let B = {1, ex, e2x}. This set of functions is linearly
independent and is hence an ordered basis for S = Span {1, ex, e2x}. Let
D : S → S be the differentiation transformation D (f) = f ′.

1. Using calculus, we obtain

D (1) =

D (ex) =

D
(
e2x
)
=

2. Find the matrix, A, of D with respect to the basis B.

3. It is not too tedious to compute the third derivative of the function
f (x) = 4 − 6ex + 3e2x using calculus. Please do compute f ′′′ (x) =
D3 (f(x)) using calculus.

4. Use part 2 of Theorem 5.6.3 to compute f ′′′ (x) by using the matrix that
you found in question 2.

Exercise 5.6.17. Let B = {1, ex sin (x) , ex cos (x)}. This set of functions if
linearly independent and is hence a basis for S = Span {1, ex sin (x) , ex cos (x)}.

Use an appropriate matrix to find the fifth derivative of the function

f (x) = 5− ex sin (x) .

(It is a bit tedious to do this by just using calculus, but you may want to try
it just to see that your answer matches with what you got using a matrix.)

Exercise 5.6.18. Let B = {1, x, ex, xex}. This set of functions is linearly
independent and is hence an ordered basis for S = Span {1, x, ex, xex}. Let
D : S → S be the differentiation transformation D (f) = f ′.
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1. Using calculus, we obtain

D (1) =

D (x) =

D (ex) =

D (xex) = .

2. Find the matrix, A, of D with respect to the basis B.

3. Compute the 6th derivative of the function

f (x) = 5 + 4x+ 3ex − 2xex

using the matrix that you found in question 2.

Exercise 5.6.19. Use the matrix you found in Exercise 5.6.18 to evaluate
the indefinite integral ∫

(2− 2x+ 3ex + 2xex) dx.

Exercise 5.6.20. (perhaps best appreciated by students who have
had Calculus II, but only requires an understanding of the concept
of antiderivative) You may remember from Calculus II that integrals of the
form ∫

(aex sin (x) + bex cos (x)) dx

can be computed using integration by parts twice, which can be tedious.
Use the matrix you found in Exercise 5.6.17 to evaluate∫

ex sin (x) dx.

5.7 Isomorphism of Vector Spaces

In Section 5.6.3 we made heavy use of the coordinate mapping from a finite
dimensional vector space, S, of dimension k to the vector space Rk. The
coordinate mapping allowed us to work with vectors in Rk in order to draw
conclusions about several important properties of the vector space S. It also
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allowed us to solve equations involving vectors in S by solving the corre-
sponding equations in Rk. A rather informal description of what we learned
in looking at many examples is that no matter what the nature of the vectors
in S, the fact that S is k–dimensional means that S is “essentially the same”
as Rk as far as algebra is concerned. This formal term that corresponds
to the informal idea of “essentially the same” is isomorphic. This comes
from the Ancient Greek isos meaning “same” and morphe meaning “form”
or “shape”.

Definition 5.7.1. A vector space V is said to be isomorphic to a vector
space W if there exists an invertible linear transformation T : V → W . Any
invertible linear transformation T : V → W is said to be an isomorphism
from V onto W .

Remark 5.7.1. Some basic observations concerning Definition 5.7.1 are

1. Any vector space, V , is isomorphic to itself because the identity trans-
formation E : V → V is an isomorphism from V onto V .

2. If V is isomorphic to W , then W is isomorphic to V . This is because
if T : V → W is an isomorphism that T−1 : W → V is also an
isomorphism.

3. If V is isomorphic to W and W is isomorphic to X, then V is isomor-
phic to X.

Exercise 5.7.1. Prove part 3 of Remark 5.7.1.

Remark 5.7.2. By part 2 of Remark 5.7.1, a vector space V is isomorphic
to a vector space W if and only if W is isomorphic to V . Thus it makes
sense, when we know that V is isomorphic to W , to say that V and W are
isomorphic to each other.

As mentioned above, the type of isomorphism that we have studied thus
far is a coordinate mapping. If S is a finite dimensional vector space (which
might be a subspace of some larger finite or infinite dimensional vector space,
V ) and B = {u⃗1, u⃗2, . . . , u⃗k} is an ordered basis for S consisting of exactly
k ≥ 1 vectors, then dim (S) = k and the coordinate mapping

x⃗
[·]B7→ [x⃗]B
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is an isomorphism from S onto Rk. This is because [·]B is invertible. Of
course it is also true that the inverse coordinate mapping

[x⃗]B
[·]−1

B7→ x⃗

is an isomorphism from Rk onto S. Hence S and Rk are isomorphic to each
other.

The following theorem tells us that two finite dimensional vector spaces
are isomorphic to each other if and only if these vector spaces have the same
dimension.

Theorem 5.7.1. Suppose that V and W are finite–dimensional vector spaces.
Then V and W are isomorphic to each other if and only if dim (V ) =
dim (W ). Specifically, if V and W both have dimension k (where 1 ≤ k < ∞),
then V and W are both isomorphic to Rk.

Proof. We already know that if V is a finite dimensional vector space with
dim (V ) = k (where 1 ≤ k < ∞), then V is isomorphic to Rk. The reason
is that we can choose any ordered basis B = {u⃗1, u⃗2, . . . , u⃗k} for V and we
know that the coordinate mapping [·]B : V → Rk is an isomorphism from V
onto Rk.

Now suppose that V andW both have dimension k. Then V is isomorphic
to Rk and Rk is isomorphic to W . By part 3 of Remark 5.7.1, V is isomorphic
to W .

Conversely, suppose that V and W are both finite dimensional and that
V is isomorphic to W . This means that there exists an isomorphism T :
V → W . By the Fundamental Theorem of Linear Algebra,

dim (Range (T )) + dim (ker (T )) = dim (V ) .

Since T maps V ontoW then Range (T ) = W and hence dim (Range (T )) =
dim (W ).

Since T is one–to–one, then ker (T ) =
{
0⃗V

}
and hence dim (ker (T )) = 0.

We now see that
dim (W ) + 0 = dim (V ) .

This completes the proof.

Example 5.7.1. The vector space, M2×2, consisting of all 2 × 2, matrices
has dimension 4.
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The vector space, M1×4, consisting of all 1 × 4, matrices has dimension
4.

The vector space P3 = Span {1, x, x2, x3}, consisting of all polynomial
functions that have degree 3 or less, has dimension 4.

The vector space S = Span {1, x, x sin (x) , x cos (x)} has dimension 4.
All four of the above–mentioned vector spaces have the same dimension

(4) and hence all of these vector spaces are isomorphic to each other. Each
of them is isomorphic to R4.

Exercise 5.7.2. Which of the following pairs of vector spaces are isomorphic
to each other? (This is equivalent to asking whether or not the given pair of
vector spaces have the same dimension.)

1. R5 and R6

2. R5 and P4

3. Span {1, x, x2} and Span {1, ex, e2x}

4.
{
0⃗2

}
and

{
0⃗5

}
5. A line through the origin in R2 and a line through the origin in R3

5.8 Additional Exercises

(Jump to Solutions)

1. The identity transformation E : R2 → R2 is defined by

E (x⃗) = x⃗.

(a) Show that E satisfies both of the requirements of Definition 5.2.1
and is thus a linear transformation.

(b) Suppose that L is any line in R2. To what line does the identity
transformation map L? In other words, what is E(L)?

2. The zero transformation Z : R2 → R2 is defined by

Z (x⃗) = 0⃗2.
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(a) Show that Z satisfies both of the requirements of Definition 5.2.1
and is thus a linear transformation.

(b) Suppose that L is any line in R2. What is Z(L)?

3. We have stated that a function that satisfies the linearity properties of
Definition 5.2.1 is called a linear function and that a function that does
not satisfy those properties is called a nonlinear function. According
to this, a linear function f : R → R is a function that satisfies the
properties

1. If x and y are any two real numbers, then f (x+ y) = f (x)+f (y) .

2. If x is any real number and c is a scalar (a real number), then
f (cx) = cf (x).

This exercise points out a nuance in this terminology.

a) Show that the function f : R → R defined by f (x) = 5x is a
linear function.

b) Show that if a is any constant (real number), then the function
f : R → R defined by f (x) = ax is a linear function.

c) Explain why the function f : R → R defined by f (x) = 5x+ 3 is
not a linear function.

You may be surprised and disappointed to learn that f (x) = 5x + 3
is not a linear function, because its graph is a straight line and you
were probably taught throughout all of the math courses you have
taken (including calculus) that this kind of function is called a linear
function. It is actually called an affine function. In linear algebra, a
function f : R → R that has the form f (x) = ax + b, where a and b
are constants, is called a linear function only if b = 0. If b ̸= 0, then
f is called an affine function. When b ̸= 0, we don’t want to call the
function linear because it does not satisfy the linearity requirements of
Definition 5.2.1. In other courses, such as calculus, there is a different
interpretation of the word “linear”. It just means a function whose
graph is a straight line. It would be distracting in studying calculus
if we were to make a distinction between linear and affine functions.
so we don’t do it in calculus. However, it is essential to make this
distinction in linear algebra.
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4. For the following linear transformations T : Rn → Rm, determine the
range of T and the kernel of T . Also determine whether or not T is
invertible. If T is invertible, then find the formula for T−1.

(a) T : R2 → R2 defined by T (⟨x1, x2⟩) = ⟨−4x1 + 2x2,−4x1 − 6x2⟩
(b) T : R2 → R2 defined by T (⟨x1, x2⟩) = ⟨−4x1 + 2x2,−4x1 + 2x2⟩
(c) T : R2 → R4 defined by T (⟨x1, x2⟩) = ⟨x1, x1, x2, x1 + x2⟩
(d) T : R5 → R2 defined by T (⟨x1, x2, x3, x4, x5⟩) = ⟨5x1 − 3x2 − 3x3 − 5x4 − 2x5, x3⟩
(e) T : R3 → R3 defined by T (⟨x1, x2, x3⟩) = ⟨x1, 0, 0⟩

5. Find the linear transformation that reflects vectors in R2 through the
x1 axis. To do this

(a) Determine T (⟨1, 0⟩) and T (⟨0, 1⟩).
(b) Use what you found in part a to write down the matrix A such

that T (x⃗) = Ax⃗ for all x⃗ ∈ R2.

(c) Write the formula for T in the form T (⟨x1, x2⟩) = ⟨ , ⟩.

6. Find the linear transformation that reflects vectors in R2 through the
x2 axis. You can do this by following the same procedure as in Exercise
5.

7. Let L be the line, pictured in Figure 5.26, that makes an angle of θ
with the positive x1 axis.

The purpose of this exercise is to find the linear transformation that
reflects vectors through L. Call this linear transformation T . Thus

T (x⃗) = reflection of x⃗ through the line L.

Find the standard matrix, A, of T and also write T in the form

T (⟨x1, x2⟩) = ⟨ , ⟩ .

Here is the suggested strategy:

In Section 5.3.6, we determined the linear transformation, Rθ, that
rotates vectors by some angle θ.
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(x1, x2)

(y1, y2)

x  < x1, x2 >

T ( x) < y1, y2 >

L

θ

Figure 5.26: T (x⃗) = reflection of x⃗ throughL.

In Exercise 5 you found the linear transformation that reflects vectors
through the x1 axis. Give this linear transformation the name S.

Observe that reflecting a vector x⃗ through the line L can be accom-
plished in three steps:

(a) First apply R−θ, which is the same thing as R−1
θ , to x⃗. That will

rotate x⃗ through the angle −θ.

(b) Then reflect R−1
θ (x⃗) through the x1 axis by applying the linear

transformation S to it.

(c) Then rotate
(
S ◦R−1

θ

)
(x⃗) back through the angle θ by applying

Rθ to it.

At some point in doing this exercise you may find it helpful to remember
the trigonometric identities

cos2 (θ)− sin2 (θ) = cos (2θ)

2 sin (θ) cos (θ) = sin (2θ) .

8. Use the general result that you found in Exercise 7 to find the linear
transformation T : R2 → R2 that reflects vectors through the following
lines L:
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(a) L is the line that makes an angle of 60◦ with the positive x1 axis.

(b) L is the line x2 = 2x1.

9. Show that the reflection transformation that you found in Exercise 7
is its own inverse. Does this make sense?

10. Two n× n matrices, A and B, are similar to each other if there exists
an invertible n × n matrix C such that A = C−1BC. If we multiply
both sides of this equation on the left by C, we obtain

CA = C
(
C−1BC

)
which can write as

CA =
(
CC−1

)
(BC)

or as

CA = InBC

or as

CA = BC.

Thus A and B are similar to each other if there exists an invertible
n× n matrix C such that CA = BC.

Show that the two matrices

A =

[
3 0
1 3

]
and B =

[
7/2 −1/2
1/2 5/2

]
are similar to each other by finding an invertible 2 × 2 matrix C such
that CA = BC.

Hint to set this problem up: Let C =

[
x1 x2

x3 x4

]
, then plug this into

CA = BC and solve for C.

11. (for students who have studied infinite sequences in Calculus
II) In Section 4.7.3, it was pointed out that the set of all convergent
sequences of real numbers,

C = {a⃗ = ⟨a1, a2, a3, . . .⟩ ∈ R∞ | a⃗ converges}
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is a subspace of R∞. Recall that “a⃗ converges” means that there exists
a real number La⃗ such that

limn→∞ an = La⃗.

The number La⃗ is called the limit of the sequence a⃗ = ⟨a1, a2, a3, . . .⟩.
As a specific example, suppose that a⃗ is the sequence a⃗ =

〈
1, 1

2
, 1
3
, . . .

〉
,

meaning that an = 1
n
for each n = 1, 2, 3, . . .. Then a⃗ is in the subspace

C because a⃗ converges. The limit of a⃗ is

limn→∞
1

n
= 0 = La⃗.

Consider the function T : C → R defined by T (⃗a) = La⃗ where La⃗ is
the limit of the sequence a⃗.

(a) Verify that T satisfies both requirement of Definition 5.6.1 and is
thus a linear transformation.

(b) Describe Range (T ) and ker (T ).

(c) Does T map C onto R? Explain.

(d) Is T one–to–one? Explain.

(e) Is T invertible? Explain.

12. The linear transformation S : R2 → R2 defined by

S (⟨x1, x2⟩) = ⟨3x1, x2⟩

multiplies that x1 component of each vector by 3 and leaves the x2

component unchanged.

The linear transformation T : R2 → R2 defined by

T (⟨x1, x2⟩) =
〈
x1,

1

2
x2

〉
multiplies that x2 component of each vector by 1

2
and leaves the x1

component unchanged.

(a) Explain in words what T ◦ S does to vectors in R2.
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(b) Write down the matrices AS and AT and AT◦S.

(c) Write a formula for T ◦ S in the form (T ◦ S) (⟨x1, x2⟩) = .

(d) Show that S ◦ T = T ◦ S.
(e) For the rectangle pictured in Figure 10 , draw the image of the

rectangle under T ◦ S.

(-1,2) (1,2)

(1,-2)(-1,-2)

-1.0 -0.5 0.5 1.0
x1

-2

-1

1

2

x2

Figure 5.27: Rectangle for Question 12

13. Let B = {sin (x) , cos (x)}. Since B is linearly independent, it is a basis
for S = Span {sin (x) , cos (x)}. Let D : S → S be the differentiation
transformation D (f) = f ′.

(a) Find the matrix, A, of D with respect to the ordered basis B.
(b) Compute A2, A3, and A4.

(c) Use the matrices A, A2, A3, and A4 to compute the first four
derivatives of f (x) = sin (x).

14. Let B = {ex, e−x}. Since B is linearly independent, it is a basis for S =
Span {ex, e−x}. Let D : S → S be the differentiation transformation
D (f) = f ′.

(a) Find the matrix, A, of D with respect to the ordered basis B.
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(b) Use the matrix A to compute the 23rd derivative of the func-
tion f (x) = −ex + 2e−x.
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Chapter 6

Eigenstuff

In Chapter 5, we saw that a linear transformation that maps a vector in Rn to
a vector in Rm can always be characterized by a matrix-vector product, Ax⃗.
Specifically, a linear transformation T : Rn → Rm will satisfy T (x⃗) = Ax⃗,
where A is anm×nmatrix. In this chapter, we will continue to consider linear
transformations with our focus restricted to the case in which the vector x⃗
and T (x⃗) are in the same vector space Rn. Of course, this means that such
a transformation, T , maps Rn into Rn, and the corresponding matrix will be
a square matrix.

Consider the linear transformation T : R2 → R2 defined by

T (⟨x1, x2⟩) = ⟨5x1 − x2, 3x1 + x2⟩.

Let v⃗ = ⟨1, 3⟩ and u⃗ = ⟨−1, 1⟩. In Figure 6.1, we see the standard represen-
tations of the vectors v⃗ and u⃗ together with their images

T (v⃗) = ⟨2, 6⟩, and T (u⃗) = ⟨−6,−2⟩.

We see that the effect of the transformation T on the vector u⃗ has two
properties. It appears to rotate the vector u⃗ through a counterclockwise angle
(i.e., change its direction) and to increase the magnitude. When comparing
v⃗ and its image T (v⃗), we see a change in magnitude, but the direction is not
changed. In fact, we can say that T (v⃗) is an element of Span{v⃗}, making
T (v⃗) = λv⃗ for some real number λ. (It’s easy to see that λ = 2 in this case,
since ⟨2, 6⟩ = 2⟨1, 3⟩.) The vector v⃗ seems to have a special relationship with

this linear transformation T and its standard matrix, A =

[
5 −1
3 1

]
, since

361
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T (v⃗) = Av⃗. If we consider any vector x⃗ in Span{v⃗}, then x⃗ = cv⃗ for some
scalar c. By the algebraic properties of the matrix-vector product, we see
that

Ax⃗ = A(cv⃗) = cAv⃗ = c(2v⃗) = 2(cv⃗) = 2x⃗.

So the matrix A scales every vector in Span{v⃗} by this same factor of 2.
Given the complex nature of the matrix-vector product, this is an interesting
observation. A relationship such as Ax⃗ = 2x⃗ is different from equations we’ve
encountered in previous chapters. Most notably, the product on the left,
Ax⃗, is a matrix-vector product while the product on the right, 2x⃗, is scalar
multiplication of a vector. In general, these are not comparable products.
We can rephrase the scalar multiplication 2x⃗ in terms of a matrix-vector
product if we make use of the identity matrix I2. Given that I2x⃗ = x⃗, we
can write 2x⃗ = 2I2x⃗. Then for any vector x⃗ in Span{⟨1, 3⟩}, we have

Ax⃗ = 2I2x⃗,

which can be rearranged into a homogeneous matrix-vector equation(
A− 2I2

)
x⃗ = 0⃗2. (6.1)

Note that

A− 2I2 =

[
5 −1
3 1

]
−
[
2 0
0 2

]
=

[
3 −1
3 −1

]
.

With equivalent rows (making them linearly dependent), it’s immediately
apparent that this matrix is not invertible. In fact,

rref(A− 2I2) =

[
1 −1/3
0 0

]
̸= I2.

This is consistent with the fact that we already know that there are nontrivial
solutions to the homogeneous Equation (6.1). In fact, from this rref, we see
that solutions to Equation (6.1) will be of the form x⃗ = t ⟨1/3, 1⟩ for t ∈ R.
The vector v⃗ that we started with is of this form (with the choice t = 3).

You may be thinking that this example is contrived, and that’s a fair ob-
servation. Once we know that there is a nonzero vector v⃗ for which Av⃗ = 2v⃗,
we can use the tools we have developed to identify these vectors. But it’s not
clear where that equation came from (or why the scalar 2 features in it). The
example raises a number of questions. For example, are there other vectors,
not in Span{v⃗}, such that the product Ax⃗ reduces to scalar multiplication?
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Are there other scalars, besides 2, that hold a similar relationship to the ma-
trix A? We will answer questions of this sort in this chapter as well as explore
some of the advantages of such special linear transformation-matrix-vector
relationships.

Figure 6.1: Standard representations of vectors u⃗ = ⟨−1, 1⟩ and v⃗ = ⟨1, 3⟩
along with their images under T (⟨x1, x2⟩) = ⟨5x1 − x2, 3x1 + x2⟩.

Exercise 6.0.1. For the matrix A =

[
5 −1
3 1

]
,

1. Evaluate Ax⃗ where x⃗ = ⟨1, 1⟩.

2. Show that if x⃗ is any vector in Span{⟨1, 1⟩}, then Ax⃗ = 4x⃗.

3. Identify the matrix A−4I2, and show that this matrix is not invertible.

Exercise 6.0.2. Consider the matrix A =

[
4 7
2 −1

]
.

1. Find a nonzero vector v⃗ = ⟨v1, v2⟩ such that Av⃗ = 6v⃗.

2. Confirm that Ax⃗ = 6x⃗ for every vector in Span{v⃗}, where v⃗ is the
vector you found in part 1. above.

3. Compute the matrix A− (−3)I2.
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4. Find a basis for N (A− (−3)I2), i.e., the null space of the matrix that
you computed in part 3. above.

5. Show that if x⃗ is in N (A − (−3)I2), then Ax⃗ = −3x⃗. (Hint: start by
taking x⃗ to be the basis element you found in part 4. above.)

Exercise 6.0.3. Diagonal matrices are particularly easy to work with. Con-

sider the 3× 3 diagonal matrix A =

 a 0 0
0 b 0
0 0 c

 with a, b, and c some real

numbers. Show that there are three vectors, say v⃗1, v⃗2, and v⃗3, such that

Av⃗1 = av⃗1, Av⃗2 = bv⃗2, and Av⃗3 = cv⃗3.

6.1 The Determinant

A determinant is a function that assigns a scalar value to a square matrix—
i.e., the determinant function takes a square matrix as its input and produces
a real number as its output. While the determinant function can be asso-
ciated with various geometric and algebraic considerations, one of its most
useful properties is its association with invertibility. Specifically, the determi-
nant of a square matrix will be zero if and only if the matrix is not invertible1.
While the general formulation for the determinant of an n× n matrix is not
particularly intuitive, we can arrive at the determinant of a 2× 2 matrix by
focusing on the question of invertibility.

Definition 6.1.1. Let A =

[
a b
c d

]
. The determinant of A, denoted

det(A), is the number

det(A) = ad− bc.

Example 6.1.1. Evaluate the determinant of each of the matrices

1. A =

[
1 −3
2 5

]
1We rarely have need to consider 1 × 1 matrices which can be associated with scalars

for practical purposes. If A = [a11] is a 1× 1 matrix, we will define its determinant to be
the value a11.
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2. B =

[
1 −3

−3 9

]
3. I2.

We can apply our formula from Definition 6.1.1.

1. det(A) = 1(5)− (−3)(2) = 11

2. det(B) = 1(9)− (−3)(3) = 0

3. det(I2) = det

([
1 0
0 1

])
= 1(1)− 0(0) = 1

Exercise 6.1.1. Evaluate the determinant of each of the matrices

1. A =

[
2 −4
6 10

]

2. B =

[
0 −1
1 0

]

3. C =

[
cos θ − sin θ
sin θ cos θ

]
where θ is a real number.

Exercise 6.1.2. move to the next line

1. Show that for A =

[
a b
c d

]
, det(2A) = 4 det(A).

2. Show that for A =

[
a b
c d

]
, det(3A) = 9 det(A).

3. Can you make a conjecture about the relationship between det(kA) and
det(A) for a 2× 2 matrix A and a scalar k?
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Remark 6.1.1. Another common notation used to denote a determinant is
a pair of vertical bars (resembling absolute value bars), det(A) = |A|. This
makes it important to write delimiters clearly, especially when writing by

hand. The object

[
a b
c d

]
is a 2× 2 matrix, whereas the object

∣∣∣∣ a b
c d

∣∣∣∣ is a
scalar.

While the relationship between the invertibility of our matrixA =

[
a b
c d

]
and the number det(A) = ad− bc, may not be immediately apparent, we can
deduce the relationship by appealing to the fact that A is invertible if and
only if rref(A) = I2, and this requires both columns of A to be pivot columns.
In particular, if a = 0 and c = 0, then the first column of A is not a pivot
column, and A is not invertible. If a = c = 0, then the value ad − bc = 0.
Now, invertibility requires at least one of a or c to be nonzero. Let’s assume
that a ̸= 0 and set up the multiply augmented matrix

[
A | I2

]
. If we perform

a few operations with the goal of reducing A to its rref,[
a b 1 0
c d 0 1

]
aR2 → R2

[
a b 1 0
ac ad 0 a

]

−cR1 +R2 → R2

[
a b 1 0
0 ad− bc −c a

]
.

the number ad − bc appears in the second column. The second column will
be a pivot column (hence A will be invertible) if and only if this number is

nonzero. For the matrix A =

[
a b
c d

]
, we have found that

• if a = c = 0, then ad− bc = 0, and A is not invertible;

• if a ̸= 0, then A is invertible if and only if ad− bc ̸= 0.

Exercise 6.1.3. Let A =

[
a b
c d

]
, and suppose det(A) ̸= 0. Show that

A−1 =
1

det(A)

[
d −b

−c a

]
.
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Note that this provides a quick formula2 for the inverse of a 2× 2 matrix.

A common approach to computing the determinant for square matrices
with 3 or more columns is based on recursion. The determinant of a 3 × 3
matrix is computed as the weighted sum of determinants of 2 × 2 matrices.
The determinant of a 4 × 4 matrix is computed as the weighted sum of
determinants of 3 × 3 matrices, and so forth. This approach is called a
Laplace expansion; it is also referred to as a cofactor expansion.

Let us consider a 3× 3 matrix,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Let Aij denote the 2× 2 matrix obtained from A by eliminating the ith row
and the jth column. For example, the matrix A23 would be obtained from A
by eliminating the second row and the third columna11 a12 a13

a21 a22 a23
a31 a32 a33

 → A23 =

[
a11 a12
a31 a32

]
.

Similarly, the matrix A31 is the 2× 2 matrix obtained from A by eliminating
the third row and first columna11 a12 a13

a21 a22 a23
a31 a32 a33

 → A31 =

[
a12 a13
a22 a23

]

Since each Aij is a 2 × 2 matrix, we can use Defintion 6.1.1 to evaluate its
determinant det(Aij). We have the following definition of the determinant
of a 3× 3 matrix.

Definition 6.1.2. Let A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

. The determinant of A,

2There is an analogous formulation for the inverses of larger matrices, but it is com-
putationally intensive. For example, the corresponding formula for the inverse of a 3 × 3
requires computation of nine 2× 2 determinants plus the determinant of the 3× 3 matrix.
Our row reduction procedure on a multiply augmented matrix is still the practical choice.
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denoted det(A), is the number

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13)

= a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ .
Example 6.1.2. Compute the determinant of the matrix A =

 1 3 −2
4 0 1
2 2 5

.
We can simply apply the formula in Definition 6.1.2. Note that

A11 =

[
0 1
2 5

]
, so det(A11) = 0(5)− 2(1) = −2.

A12 =

[
4 1
2 5

]
, so det(A12) = 4(5)− 2(1) = 18.

A13 =

[
4 0
2 2

]
, so det(A13) = 4(2)− 2(0) = 8.

Then

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13)

= 1(−2)− 3(18) + (−2)(8)

= −72.

Exercise 6.1.4. Evaluate the determinant of each 3× 3 matrix.

1. A =

 1 2 −1
4 3 0

−2 1 5


2. A =

 −3 4 3
3 −4 −3
2 1 0


3. A =

 −5 −1 1
2 1 1
3 1 −1


Exercise 6.1.5. Suppose A =

 a11 a12 a13
0 a22 a23
0 0 a33

 . Show that det(A) = a11a22a33.
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6.1.1 Cofactors and the Determinant of an n×n Matrix

Now that we have a formulation for the determinant of a 3 × 3 matrix, we
can extend this to obtain a determinant formula for larger matrices. For
an n × n matrix, A, we will continue to use the notation Aij to denote the
(n − 1) × (n − 1) matrix obtained from A by removing the ith row and the
jth column. There is a special name for the determinant of such a submatrix
Aij; it is called a minor.

Definition 6.1.3. Let A be an n × n matrix, n ≥ 2. The ijth minor of A
is the determinant of the (n − 1) × (n − 1) matrix Aij. That is, det(Aij) is
the ijth minor of A.

For each of the n2 entries, aij, in a matrix A, we have a corresponding
minor det(Aij). In the determinant formula of Definition 6.1.2, these minors
appear with a factor of either 1 or −1. A minor with the appropriate factor
is called a cofactor.

Definition 6.1.4. Let A be an n× n matrix, n ≥ 2.

ijth cofactor of A = (−1)i+j det(Aij).

Note that the factor of +1 or −1 is determined by the position of aij in
the matrix, and these follow a predictable, alternating pattern starting with
+1 in the top left corner. That is, we can asign the correct sign according to
the pattern seen here: 

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

 .

Having defined cofactors, we see that the determinant of a 3 × 3 ma-
trix in Definition 6.1.2 obtained by multiplying each entry in the first row
with its corresponding cofactor and adding the results. We now define the
determinant of an n× n matrix.

Definition 6.1.5. Let A = [aij] be an n× n matrix. The determinant of A,
denoted det(A) is given by

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j). (6.2)
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The sum in equation (6.2) is called a cofactor expansion across the first
row of A.

Example 6.1.3. Evaluate the determinant of A =


1 2 −1 0
0 3 2 2
1 −1 0 4

−1 2 2 1

.
Solution: The cofactor expansion will require the determinants of the

following four 3× 3 matrices:

A11 =

 3 2 2
−1 0 4
2 2 1

 , A12 =

 0 2 2
1 0 4

−1 2 1

 ,

A13 =

 0 3 2
1 −1 4

−1 2 1

 , and A14 =

 0 3 2
1 −1 0

−1 2 2

 .

Applying the cofactor expansion for each, we obtain

det(A11) = −10, det(A12) = −6, det(A13) = −13, and det(A14) = −4.

Then

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13)− a14 det(A14)

= (1)(1)(−10) + (−1)(2)(−6) + (1)(−1)(−13) + (−1)(0)(−4)

= 15

6.1.2 Some Properties of Determinants

The determinant of a 4× 4 matrix requires computation of the determi-
nants of four 3× 3 matrices, each of which requires computing the determi-
nant of three 2× 2 matrices. Despite the existence of a few applications, the
computational expense associated with taking a determinant limits its use
for almost all but the smallest of matrices. Nevertheless, the determinant
will provide us with a useful tool for our main purpose of this chapter, and
that is finding eigenvalues and eigenvectors and performing certain matrix
decompositions. A number of properties of determinants can be used to our
advantage, including some that may simplify taking a determinant.
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The formulation of the determinant of an n × n matrix given in Defini-
tion 6.1.5 is stated in terms of a cofactor expansion across the first row of the
matrix. However, the determinant can be evaluated by a cofactor expansion
across any row or down any column of the matrix.
Property 6.1. For n×n matrix A, we can compute det(A) using a cofactor
expansion across the ith row

det(A) =
n∑

j=1

(−1)i+jaij det(Aij). (6.3)

Similarly, we can compute det(A) using a cofactor expansion down the jth

column

det(A) =
n∑

i=1

(−1)i+jaij det(Aij). (6.4)

Note that in the summation in equation (6.3), the value of i is fixed so
that the cofactor expansion is computed by multiplying each entry in the
ith row by its cofactor and summing. In the summation in equation (6.4),
the value of j is fixed. In this formulation, the expansion is computed by
multiplying each entry in the jth column by its cofactor and summing.

Example 6.1.4. In Example 6.1.3, the determinant of the matrix

A =


1 2 −1 0
0 3 2 2
1 −1 0 4

−1 2 2 1


was computed by cofactor expansion across the first row. Let’s compute the
determinant by a cofactor expansion down the third column. This means that
we will fix the j value as 3 and compute

det(A) = (−1)1+3a13 det(A13) + (−1)2+3a23 det(A23)+

+(−1)3+3a33 det(A33) + (−1)4+3a43 det(A43).

The 3× 3 submatrices for this computation are

A13 =

 0 3 2
1 −1 4

−1 2 1

 , A23 =

 1 2 0
1 −1 4

−1 2 1


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A33 =

 1 2 0
0 3 2

−1 2 1

 , and A43 =

 1 2 0
0 3 2
1 −1 4

 ,

with determinants

det(A13) = −13, det(A23) = −19, det(A33) = −5, and det(A43) = 18.

This gives

det(A) = (1)(−1)(−13) + (−1)(2)(−19) + (1)(0)(−5) + (−1)(2)(18) = 15.

Note that the intermediate computations are different, but the value of det(A)
matches that found in Example 6.1.3 (as it must!).

Exercise 6.1.6. Find the determinant of the matrix A =

 1 2 −1
3 4 0
2 −2 3


by computing a cofactor expansion

1. across the second row,

2. down the first column,

3. across the third row.

Since we can choose to use a cofactor expansion across any row or down
any column, we can take advantage of the presence of zeros. There’s no need
to compute a cofactor if we will multiply it by zero, so we may be able to
minimize the amount of work.

Exercise 6.1.7. Find the determinant of each matrix using a cofactor ex-
pansion that minimizes the computations.

1. A =


1 0 −1 2
2 0 4 −3
0 2 5 2
1 0 −1 0



2. B =

 3 −4 0
0 −6 0
1 1 0

.
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Exercise 6.1.8. Suppose A is an n×n matrix, and A has a row or a column
vector of all zeros. Explain why det(A) = 0.

There are a couple of immediate consequences of Property 6.1. One of
these is suggested in Exercise 6.1.8, and the other follows from the relation-
ship between the rows and columns of a matrix A and its transpose AT .

Property 6.2. Let A be an n× n matrix.

• If 0⃗n is a row vector or a column vector of A, then det(A) = 0.

• det(AT ) = det(A).

Since we can choose to take the determinant using a cofactor expansion
across any row or down any column, the structure of a matrix can provide a
simpler formulation. Triangular matrices are an example of a special struc-
ture. We say that the matrix A = [aij] is upper triangular if aij = 0 for
all i > j. As the name suggests, an upper triangular matrix has all of its
nonzero entries in the upper right triangular area of the matrix. Similarly,
the matrix A = [aij] is called lower triangular if aij = 0 for all i < j.
A lower triangular matrix is readily identified by the presence of all of its
nonzero entries in the lower left triangular area of the matrix. A matrix that
is both upper triangular and lower triangular is called a diagonal matrix.

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann




a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann




a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann


upper triangular lower triangular diagonal

To take the determinant of a triangular matrix, we can choose a row or
column with only one nonzero entry at each step in the iterative process.
This leads to a very simple formula for the determinant of such a matrix.

Property 6.3. If A = [aij] is a triangular matrix (upper, lower or diagonal),
then the determinant of A is the product of its diagonal entries,

det(A) = a11a22 · · · ann.

You may recognize the format of an upper triangular matrix from our
work with row echelon forms. Unfortunately, it is generally not the case that
a matrix A and an echelon form such as rref(A) have the same determinant.
However, we do know how each of the three elementary row operations affects
the determinant, and this provides a process by which we can deduce the
determinant of a matrix A by considering the determinant of a row equivalent
matrix having an advantageous structure.
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Property 6.4. Suppose A is an n× n matrix.

• If B is obtained from A by performing one row scaling, kRi → Ri, then
det(B) = k det(A).

• If B is obtained from A by performing one row swap, Ri ↔ Rj, then
det(B) = − det(A).

• If B is obtained from A by performing one row replacement, kRi+Rj →
Rj, then det(B) = det(A).

The power of Property 6.4 is that it allows us to use Gaussian elimina-
tion, a less computationally expensive process, to reduce a matrix to a row
equivalent echelon form (i.e., an upper triangular matrix). This requires that
the operations are recorded so that the determinant of the original matrix
can be deduced from the determinant of the resulting echelon matrix.

Exercise 6.1.9. Confirm each of the three statements in Property 6.4 for a

2× 2 matrix A =

[
a b
c d

]
.

Exercise 6.1.10. Suppose A is a 4× 4 matrix that is row equivalent to the
matrix

B =


3 −1 0 2
0 4 −2 1
0 0 −1 1
0 0 0 −2

 .

If the following row operations were performed on A to produce B, determine
det(A).

• −2R1 +R2 → R2

• R3 ↔ R4

• 3R2 +R3 → R3

• 1
2
R3 → R3

• −R2 +R4 → R4

Exercise 6.1.11. If A is an n×n matrix, explain why det(kA) = kn det(A)
for scalar k.
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There is a rather surprising property of the determinant that we will find
useful for our study of eigenvalues and associated matrix decompositions.
The determinant of a product, AB, of a pair of matrices is equal to the
product of their determinants.

Property 6.5. If A and B are n× n matrices, then

det(AB) = det(A) det(B).

Example 6.1.5. A proof of Property 6.5 is often done by induction on the
size of the matrix along with the use of simple matrices known as elementary
matrices (these are matrices obtained by performing one row operation on
the identity In). For 2× 2 matrices, we can establish this property by direct
computation. Let

A =

[
a b
c d

]
and B =

[
e f
g h

]
.

Then det(A) = ad− bc, det(B) = eh− gf , and

AB =

[
ae+ bg af + bh
ce+ dg cf + dh

]
.

Then note that

det(AB) = (ae+ bg)(cf + dh)− (ce+ dg)(af + bh)

= aecf + bgcf + aedh+ bgdh− ceaf − dgaf − cebh− dgbh

= bgcf + aedh− dgaf − cebh

= ad(eh− gf)− bc(eh− gf)

= (ad− bc)(eh− gf)

= det(A) det(B). (6.5)

Exercise 6.1.12. For each pair of matrices A and B, evaluate the prod-
ucts AB and BA. Compute the determinants det(A), det(B), det(AB), and
det(BA) and confirm that det(AB) = det(A) det(B) = det(BA).

1. A =

[
1 2

−4 3

]
and B =

[
3 1
2 5

]
.
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2. A =

 1 −1 2
0 3 1
2 −2 4

 and B =

 6 0 −1
2 2 2

−1 0 3

.
The most critical property of the determinant for our present purpose is

its relationship to the invertibility of a matrix.

Theorem 6.1.1. Let A be an n × n matrix. A is invertible if and only if
det(A) ̸= 0.

Proof. We recall from Theorem 3.9.3 that an n× n matrix A is invertible if
and only if rref(A) = In. The row reduction process consists of some sequence
of the three elementary row operations (scaling, swapping, replacement), and
from Property 6.4, each such operation scales the determinant by a nonzero
scalar. If rref(A) is obtained from A by performing a sequence of p elementary
row operations, then

det(rref(A)) = α1α2 · · ·αp det(A),

where each factor αi ̸= 0 (each factor is either 1, −1, or some nonzero scaling
factor). Hence

det(A) = α̂ det(rref(A)), where α̂ ̸= 0.

If A is invertible, then

det(A) = α̂ det(rref(A)) = α̂ det(In) = α̂ ̸= 0.

If A is not invertible, then rref(A) ̸= In, and rref(A) has at least one row of
all zero so that det(rref(A)) = 0. In this case,

det(A) = α̂ det(rref(A)) = α̂(0) = 0.

Example 6.1.6. Suppose A =

[
2− λ 3
1 −1− λ

]
, where λ is a real number.

Determine all values of λ, if any, such that A is not invertible.

We can use the fact that A is not invertible if its determinant is zero. We
obtain an equation that we can solve for λ.

det(A) = (2− λ)(−1− λ)− 1(3) = λ2 − λ− 5.
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Setting det(A) = 0, we get a quadratic equation

λ2 − λ− 5 = 0,

with two solutions

λ =
1 +

√
21

2
, or λ =

1−
√
21

2
.

These are the only two values of λ for which the matrix A is not invertible.

Exercise 6.1.13. For each matrix A, determine all values of λ, if any, such
that A is not invertible.

1. A =

[
2− λ 1
5 −2− λ

]

2. A =

[
1− λ 1
1 1− λ

]

3. A =

[
3− λ 0
2 3− λ

]

4. A =

[
2− λ 4
−1 3− λ

]

5. A =

 1− λ 2 −2
0 3− λ −1
0 −1 3− λ


6.2 Eigenvalues & Eigenvectors

In Chapter 5, we learned that one of the defining features of a linear transfor-
mation is that it maps a line to a line or to a point. For the various examples
of maps from R2 → R2, we can even plot lines and their images to better
understand the action of a given linear transformation. As a general rule,
we don’t expect a linear transformation to map a given line back to itself,
but it may happen, and we might consider such an action as a character-
istic of the transformation. We opened this chapter with an example of a

linear transformation, T (x⃗) =

[
5 −1
3 1

]
x⃗, and the observation that there
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was a special set of vectors, namely Span{⟨1, 3⟩}, for which the matrix-vector
product, Ax⃗, is equivalent to the scalar multiplication of the vector 2x⃗. In
Exercise 6.0.1, you might have deduced that there is another collection of
vectors, namely Span{⟨1, 1⟩}, for which this transformation scales, but does
not change direction. The scalar for those vectors is 4. For this particular
transformation, the vectors in Span{⟨1, 3⟩} with special scaling factor 2 and
the vectors in Span{⟨1, 1⟩} with special scaling factor 4 are the only vectors
in R2 with this special property. The prefix Eigen, from the German for own
or characteristic, is used to describe these special vectors and scaling factors.

Definition 6.2.1. Let A be an n×n matrix. An eigenvalue of A is a scalar
λ for which there exists a nonzero vector x⃗ such that

Ax⃗ = λx⃗. (6.6)

For a given eigenvalue λ, a nonzero vector x⃗ satisfying equation (6.6) is called
an eigenvector corresponding to the eigenvalue λ.

Remark 6.2.1. A perhaps subtle but critical feature of Definition 6.2.1 is
that eigenvectors are nonzero vectors. The equation Ax⃗ = λx⃗ is trivially
satisfied by x⃗ = 0⃗n no matter what the value of the scalar λ, but the zero
vector is not an eigenvector. We place no such restriction on eigenvalues.
That is, an eigenvalue λ can be any real number, including zero. (For certain
applications, we may be interested in allowing λ to be a complex number, say
λ = a+ ib where a and b are real numbers and i2 = −1.)

Example 6.2.1. Let A =

[
−4 1
7 2

]
.

1. Show that λ = −5 is an eigenvalue of A by finding a nonzero vector x⃗
such that Ax⃗ = −5x⃗.

2. Show that x⃗ = ⟨1, 7⟩ is an eigenvector of A by showing that there is a
scalar λ such that A⟨1, 7⟩ = λ⟨1, 7⟩.

For part 1., we can obtain a system of equations. Let x⃗ = ⟨x1, x2⟩, and
suppose Ax⃗ = −5x⃗. We have

Ax⃗ = ⟨−4x1 + x2, 7x1 + 2x2⟩ = −5⟨x1, x2⟩.
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Equating each of the entries in these vectors produces a system of equations

−4x1 + x2 = −5x1

7x1 + 2x2 = −5x2
.

Writing this in the more traditional format with x1 and x2 on the left side,
we see that this is actually a homogeneous system

x1 + x2 = 0
7x1 + 7x2 = 0

. (6.7)

It is worth noting at this step that we have a homogeneous system with a
coefficient matrix that is not our original matrix A. The coefficient matrix
is the matrix obtained from A by subtracting −5 from the diagonal entries,[
1 1
7 7

]
=

[
−4− (−5) 1

7 2− (−5)

]
=

[
−4 1
7 2

]
−
[
−5 0
0 −5

]
= A−(−5)I2.

We are only interested in nontrivial solutions to the system 6.7, and this will
only be possible if our coefficient matrix, A − (−5)I2, is not invertible. we
can solve system 6.7 using an augmented matrix and row reduction in the
traditional way. [

1 1 0
7 7 0

]
rref−→

[
1 1 0
0 0 0

]
.

The coefficient matrix has only one pivot column (so it is not invertible),
and solutions to system 6.7 are vectors of the form x⃗ = t⟨−1, 1⟩. We can
take any nonzero value3 of t to obtain an eigenvector of A corresponding to
the eigenvalue λ = −5. A simple examples is x⃗ = ⟨−1, 1⟩. Before moving
on to the second part of the example, let’s verify that our solution satisfies
Ax⃗ = −5x⃗. Note that

Ax⃗ = ⟨−4(−1) + 1(1), 7(−1) + 2(1)⟩ = ⟨5,−5⟩ = −5⟨−1, 1⟩ = −5x⃗,

as expected.
For part 2., we can perform the product A⟨1, 7⟩.

A⟨1, 7⟩ = ⟨−4(1) + 1(7), 7(1) + 2(7)⟩ = ⟨3, 21⟩ = 3⟨1, 7⟩.

We see that for x⃗ = ⟨1, 7⟩, Ax⃗ = λx⃗ where the value λ = 3.

3Taking t = 0 does produce a solution to the system of equations 6.7. However, this
choice produces the trivial solution which, by definition, is not an eigenvector.
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Exercise 6.2.1. Let A =

[
3 −1
5 −3

]
.

1. Show that λ = 2 is an eigenvalue of A by finding a nonzero vector x⃗
such that Ax⃗ = 2x⃗.

2. Show that x⃗ = ⟨1, 5⟩ is an eigenvector of A by finding a scalar λ such
that Ax⃗ = λx⃗.

3. Show that the number λ = 3 is not an eigenvalue of A. (Hint: Show
that Ax⃗ = 3x⃗ has no nontrivial solutions.)

Exercise 6.2.2. We’ve seen that if (λ, x⃗) is an eigenvalue-eigenvector pair
for a matrix A, then Ax⃗ is in Span{x⃗}. Consider the transformation R90◦(x⃗) =[
0 −1
1 0

]
x⃗ that rotates a vector in R2 by 90◦ counterclockwise. Explain why

there are no (real) numbers λ that are eigenvalue of the matrix

[
0 −1
1 0

]
.

6.2.1 The Characteristic Equation

As the examples and exercises suggest, given a possible eigenvalue, we can
use existing tools to find corresponding eigenvectors (and vice versa). We
still require some process by which to determine whether a given matrix has
any eigenvalues and if so, to determine what they are. For n× n matrix A,
we are interested in the equation

Ax⃗ = λx⃗. (6.8)

Here, we are equating the vector in Rn resulting from the matrix-vector prod-
uct Ax⃗ to the vector in Rn resulting from scaling the vector x⃗. Equation (6.8)
is different from matrix-vector equations we’ve previously encountered. Our
unknown vector x⃗ appears on both sides of the equation along with an un-
known scalar. Moreover, the two sides of equation (6.8) involve different
types of products. To use our existing tools to manipulate this equation,
it is advantageous to rephrase the right side of this equation as a matrix-
vector product. We need a matrix that will scale every vector by the (as
yet unknown) scalar λ. The matrix λIn does precisely that, so we can write
equation (6.8) as

Ax⃗ = λInx⃗,
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and rearrange to obtain the homogeneous equation

Ax⃗− λInx⃗ = 0⃗n.

Factoring the vector x⃗, we seek scalar(s) λ such that the homogeneous equa-
tion

(A− λIn)x⃗ = 0⃗n (6.9)

has nontrivial solutions. At this point, an option is to construct the aug-
mented matrix

[
A − λIn | 0⃗n

]
and commence with row reduction. If A

is a small matrix (say 2 × 2), and we exercise patience and caution, this
is a legitimate (if not somewhat unattractive) approach. We will take an-
other approach. A direct consequence of Theorem 3.9.3 is that the equation
(A − λIn)x⃗ = 0⃗n has nontrivial solutions if and only if the matrix A − λIn
is not invertible. By Theorem 6.1.1, we know that A− λIn is not invertible
if and only if its determinant is zero. Since the determinant is scalar valued,
this provides us with a scalar valued equation for the eigenvalues, λ.

In Exercise 6.1.13, you had the opportunity to take the determinant of
a few matrices that had “some number minus λ” in each of the diagonal
entries. You probably noted that this always resulted in a polynomial. The
degree of the resulting polynomial matched the number of diagonal entries,
which of course coincides with the size of the square matrix. Given the
cofactor expansion formulation of the determinant, it will necessarily be that
det(A− λIn) will be an nth degree polynomial in the variable λ.

Definition 6.2.2. Let A be an n× n matrix. The function

PA(λ) = det(A− λIn)

is called the characteristic polynomial of the matrix A. The equation

PA(λ) = 0, i.e., det(A− λIn) = 0

is called the characteristic equation of the matrix A.

As the name suggests, the characteristic polynomial of a matrix is a
polynomial. Its degree, as you’ve seen through examples (and as can be
proven by induction on the size of the matrix), is equal to the size of the
matrix. The characteristic polynomial provides a tool that we can use to
determine the eigenvalues of a matrix.
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Theorem 6.2.1. Let A be an n× n matrix, and let PA(λ) be the character-
istic polynomial of A. The number λ0 is an eigenvalue of A if and only if
PA(λ0) = 0. That is, λ0 is an eigenvalue of A if and only if it is a root of
the characteristic equation det(A− λIn) = 0.

Proof. Suppose λ0 is an eigenvalue of the matrix A. Then there exists a
nonzero vector x⃗ such that

Ax⃗ = λ0x⃗.

Hence x⃗ is a nonzero solution of the homogeneous matrix-vector equation

(A− λ0In)x⃗ = 0⃗n.

The existence of a nontrivial solution to this homogeneous equation implies
that the matrix A − λ0In is not invertible. By Theorem 6.1.1, this matrix
has determinant zero. That is,

det(A− λ0In) = 0, i.e., PA(λ0) = 0.

Conversely, suppose PA(λ0) = 0 for some number λ0. Since the determinant
of A− λ0In is zero, A− λ0In is not invertible. Hence there exists a nonzero
vector x⃗ such that

(A− λ0In)x⃗ = 0⃗n.

We can rearrange this equation to find that x⃗ is nonzero vector such that

Ax⃗ = λ0x⃗,

and conclude that λ0 is an eigenvalue of A.

Given an n×nmatrix A, Theorem 6.2.1 is applied to arrive at an equation
for the eigenvalues. Once any eigenvalue λ0 is identified, associated eigen-
vectors are obtained by characterizing the null space of the matrix A−λ0In.

Example 6.2.2. Identify all eigenvalues of the matrix A and find an asso-
ciated eigenvector for each eigenvalue.

A =

[
−2 3
6 1

]
.

First, we find the characteristic polynomial for A. Note that

A− λI2 =

[
−2 3
6 1

]
− λ

[
1 0
0 1

]
=

[
−2− λ 3

6 1− λ

]
.
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Taking the determinant,

det(A− λI2) = (−2− λ)(1− λ)− 6(3) = λ2 + λ− 20.

The quadratic factors readily as PA(λ) = (λ − 4)(λ + 5), and we have two
solutions to the characteristic equation (λ−4)(λ+5) = 0. We can label these

λ1 = 4, and λ2 = −5.

Next, for each eigenvalue, we set up the equation (A−λiI2)x⃗ = 0⃗2 and identify
solutions. For λ1 = 4, the coefficient matrix[

−2− 4 3
6 1− 4

]
=

[
−6 3
6 −3

]
.

Setting up the augmented matrix and performing the row reduction,[
−6 3 0
6 −3 0

]
rref−→

[
1 −1/2 0
0 0 0

]
.

The solutions, x⃗ = ⟨x1, x2⟩ are of the form x⃗ = t
〈
1
2
, 1
〉
, t ∈ R. Taking t = 2

gives a representative eigenvector x⃗1 = ⟨1, 2⟩. Repeating the procedure for
λ2 = −5, we find that solutions of the homogeneous equation (A−(−5)I2)x⃗ =
0⃗ are of the form x⃗ = s⟨−1, 1⟩. A representative eigenvector (selecting s = 1)
is x⃗2 = ⟨−1, 1⟩. To summarize, we found the eigenvalue-eigenvector pairs,

λ1 = 4, x⃗1 = ⟨1, 2⟩, and λ2 = −5, x⃗2 = ⟨−1, 1⟩.

Exercise 6.2.3. For each matrix, determine all eigenvalues and for each
eigenvalue, find a corresponding eigenvector.

1. A =

[
2 1
5 −2

]

2. A =

[
3 0
2 3

]

3. A =

 1 2 −2
0 3 −1
0 −1 3


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Determining the eigenvalues of an n × n matrix A requires us to solve
an nth degree polynomial equation PA(λ) = 0. This is a straightforward
task when n = 2 (we can always apply the quadratic formula), but can be
quite the challenge—perhaps impossible without the help of computational
software—for large n. The eigenvalues of select matrices, specifically trian-
gular matrices, are readily identified as is stated in the following Theorem
(the proof of which is left as an exercise).

Theorem 6.2.2. If A = [aij] is an n × n triangular matrix (upper, lower,
or diagonal), the eigenvalues of A are its diagonal entries. That is, the
eigenvalues, λi = aii for i = 1, . . . , n.

Before we proceed, we state one additional theorem on the connection
between the invertibility of a matrix and its eigenvalues.

Theorem 6.2.3. Let A be an n×n matrix. Then A is invertible if and only
if zero is not an eigenvalue of A.

Proof. Let A be an n×n matrix with characteristic polynomial PA. Suppose
A is invertible. Then by Theorem 6.1.1, det(A) ̸= 0. Then

PA(0) = det(A− 0In) = det(A) ̸= 0,

and λ = 0 is not a zero of the characteristic polynomial PA(λ) and hence
not an eigenvalue of A. Conversely, suppose A is not invertible. Then by
Theorem 3.9.3, rref(A) ̸= In and there exists a nontrivial solution to the
homogeneous equation Ax⃗ = 0⃗n. Let x⃗0 be such a nontrivial solution. Then

Ax⃗0 = 0x⃗0.

That is, zero is an eigenvalue of A.

6.2.2 Eigenspaces & Eigenbases

The process of identifying eigenvalue-eigenvector pairs starts with finding
eigenvalues by solving the characteristic equation. With an eigenvalue in
hand, the associated eigenvectors are nontrivial solutions to a specific ho-
mogeneous equation. For an n × n matrix, this tells us that eigenvectors
associated with a given eigenvector are all elements of a specific subspace of
Rn. We call this subspace an eigenspace.
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Definition 6.2.3. Let A be an n × n matrix and λ0 be an eigenvalue of A.
The eigenspace corresponding to the eigenvalue λ0 is the set

EA(λ0) = {x⃗ ∈ Rn | Ax⃗ = λ0x⃗} = N (A− λ0In).

As a null space, an eigenspace for an n×nmatrix is necessarily a subspace
of Rn. The eigenvectors associated with λ0 are all of the nonzero vectors in
this subspace, EA(λ0). In general, we can characterize a subspace of Rn by a
basis, and since EA(λ0) is the null space of a matrix, we can use our familiar
procedure to find a basis.

Example 6.2.3. It can be shown that the matrix A below has characteristic
polynomial PA(λ) = (2 − λ)2(9 − λ), so A has two eigenvalues λ1 = 2 and
λ2 = 9. Find a basis for the eigenspace of A corresponding to the eigenvalue
λ1 = 2, EA(2).

A =

 4 −1 6
2 1 6
2 −1 8

 .

We want to solve the homogeneous equation (A− 2I3)x⃗ = 0⃗3.

[
A− 2I3 | 0⃗3

]
=

 4− 2 −1 6 0
2 1− 2 6 0
2 −1 8− 2 0

 rref−→

 1 −1/2 3 0
0 0 0 0
0 0 0 0

 .

From the rref, we see that A − 2I3 has one pivot column and two non-pivot
columns. Any solution, x⃗ = ⟨x1, x2, x3⟩, of the homogeneous equation (A −
2I3)x⃗ = 0⃗3 will satisfy

x1 =
1

2
x2 − 3x3, with x2 and x3 free.

With two free variables, we can write such an eigenvector as the linear com-
bination of two, linearly independent vectors

x⃗ = s

〈
1

2
, 1, 0

〉
+ t ⟨−3, 0, 1⟩ .

A basis for EA(2) is {〈
1

2
, 1, 0

〉
, ⟨−3, 0, 1⟩

}
.
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Example 6.2.4. The matrix B below has the same characteristic polynomial,
PB(λ) = (2− λ)2(9− λ), as the matrix in Example 6.2.3.

B =

 −12 9 8
−70 32 15
42 −18 −7

 .

Find a basis for the eigenspace, EB(2), of B corresponding to the eigenvalue
λ1 = 2.

We proceed as we did in the last example by performing row reduction on
the matrix

[
B − 2I3|⃗03

]
. −12− 2 9 8 0

−70 32− 2 15 0
42 −18 −7− 2 0

 rref−→

 1 0 1/2 0
0 1 5/3 0
0 0 0 0


We see that there are two basic and one free variable. Solutions x⃗ = ⟨x1, x2, x3⟩
will satisfy

x1 = −1

2
x3, x2 = −5

3
x3, with x3 free.

A parametric form of the solution is x⃗ = t
〈
−1

2
,−5

3
, 1
〉
for t ∈ R. A basis for

EB(2) is {〈
−1

2
,−5

3
, 1

〉}
.

(Note that if we select t = −6, we can take our basis to be the, perhaps more
attractive, set {⟨3, 10,−6⟩}.)

The matrices A and B in Examples 6.2.3 and 6.2.4 have the same char-
acteristic polynomial and hence the same eigenvalues. As we saw in these
examples, however, the eigenspaces EA(2) and EB(2) are not the same. Most
notably, these subspaces have different dimensions as evidenced by the dif-
ferent number of basis elements we found. The dimension of an eigenspace
is a characteristic of an eigenvalue for a given matrix.

Definition 6.2.4. Let A be an n× n matrix and λ0 be an eigenvalue of A.
The dimension of the eigenspace, dim(EA(λ0)), corresponding to λ0 is called
the geometric multiplicity of λ0.
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For the matrix A in Examples 6.2.3, we found a basis for the eigenspace
corresponding to λ1 = 2 with two vectors making the geometric multiplicity
two. The geometric multiplicity of the eigenvalue λ1 = 2 for the matrix B
in Example 6.2.4 is one; the basis for the corresponding eigenspace contains
one vector. The geometric multiplicity of an eigenvalue tells us how many
linearly independent eigenvectors correspond to that eigenvalue.

As the root of an nth degree polynomial equation, there is a second type
of multiplicity associated with an eigenvalue for a matrix. In general, an nth

degree polynomial with real coefficients has at most n real zeros. It may have
fewer than n, including non-real complex zeros. This places a limit on the
number of eigenvalues that a matrix can have.

Definition 6.2.5. Let A be an n × n matrix and λ0 be an eigenvalue of
A. The algebraic multiplicity of λ0 is its multiplicity as the root of the
characteristic equation PA(λ) = 0. That is, if (λ− λ0)

k is a factor of PA(λ)
and (λ−λ0)

k+1 is not a factor of PA(λ), then the algebraic multiplicity of λ0

is k.

The matrices A and B in Examples 6.2.3 and 6.2.4 both have charac-
teristic polynomial (λ − 2)2(λ − 9). From this, we see that the eigenvalue
λ1 = 2 has algebraic multiplicity two, and the eigenvalue λ2 = 9 has alge-
braic multiplicity one. The algebraic multiplicity of an eigenvalue is a limit
on the number of linearly independent eigenvectors a matrix may have. In
particular, the algebraic multiplicity of an eigenvalue is greater than or equal
to its geometric multiplicity.

Exercise 6.2.4. Consider the pair of matrices

A =

 3 1 0
0 3 0
0 0 5

 , and B =

 3 0 0
0 3 1
0 0 5

 .

1. Find the characteristic polynomials PA and PB and show that they are
equal, PA(λ) = PB(λ).

2. Identify the eigenvalues of A and for each eigenvalue of A determine
its algebraic multiplicity and its geometric multiplicity.

3. Identify the eigenvalues of B and for each eigenvalue of B determine
its algebraic multiplicity and its geometric multiplicity.
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One of the uses of eigenvalues and eigenvectors is that they may allow
us to express a linear transformation—i.e., a matrix, using a basis in which
the matrix is diagonal. To do this, we need a basis for Rn, and such a
basis necessarily contains n linearly independent vectors. Hence the linear
dependence or independence of a set of eigenvectors for a matrix is of interest.

Example 6.2.5. Suppose an n×n matrix A has distinct eigenvalues λ1 and
λ2 with corresponding eigenvectors x⃗1 and x⃗2. Show that the set {x⃗1, x⃗2} is
linearly independent.

To show that {x⃗1, x⃗2} is linearly independent, let’s consider the homoge-
neous equation

c1x⃗1 + c2x⃗2 = 0⃗n. (6.10)

We want to show that the only solution is the trivial one, c1 = c2 = 0. We
can create a system of two new equations. To generate the first, let’s multiply
both sides of equation (6.10) by the matrix A and make use of the fact that
Ax⃗1 = λ1x⃗1 and Ax⃗2 = λ2x⃗2. We have

A (c1x⃗1 + c2x⃗2) = A0⃗n =⇒ c1Ax⃗1 + c2Ax⃗2 = 0⃗n,

which gives
c1λ1x⃗1 + c2λ2x⃗2 = 0⃗n. (6.11)

Since λ1 and λ2 are distinct, at least one of these is nonzero. We can assume
that λ1 ̸= 0. We will create another equation by multiplying equation (6.10)
through by λ1 to obtain

c1λ1x⃗1 + c2λ1x⃗2 = 0⃗n. (6.12)

(Note that equations (6.11) and (6.12) differ only in the coefficient of x⃗2.)
Now, we subtract equation (6.12) from equation (6.11) to obtain

c2 (λ2 − λ1) x⃗2 = 0⃗n.

Since x⃗2 is an eigenvectors, it is not the zero vector. So it must be that
c2 (λ2 − λ1) = 0, and since λ1 ̸= λ2, we see that c2 = 0 necessarily. This
means that equation (6.10) is

c1x⃗1 = 0⃗n.

But as x⃗1 is also an eigenvector and necessarily not the zero vector, we have
c1 = 0 as well. We have shown that the homogeneous equation (6.10) has
only the trivial solution which confirms that the set {x⃗1, x⃗2} is linearly inde-
pendent.
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Example 6.11 illustrates that two eigenvectors of a matrix corresponding
to different eigenvalues are necessarily linearly independent. More generally,
we have the following theorem.

Theorem 6.2.4. Let {x⃗1, x⃗2, . . . , x⃗k} be a set of eigenvectors of an n × n
matrix corresponding to distinct eigenvalues λ1, λ2, . . . , λk. Then the set
{x⃗1, x⃗2, . . . , x⃗k} is linearly independent.

One consequence of Theorem 6.2.4 is that an n×n matrix with n distinct
real eigenvalues is guaranteed to have n linearly independent eigenvectors. If
an n× n matrix has fewer than n distinct real eigenvalues, for example one
or more real eigenvalues has algebraic multiplicity two or greater, the matrix
may (e.g., the matrix A in Example 6.2.3) or may not (e.g., the matrix B in
Example 6.2.4) have n linearly independent eigenvectors. A set of n linearly
independent vectors is a basis for Rn. If we can construct a basis for Rn

consisting of eigenvectors for a specific matrix, we aptly call such a basis an
eigenbasis.

Definition 6.2.6. Let A be an n×n matrix. If A has n linearly independent
eigenvectors, x⃗1, x⃗2, . . . , x⃗n (combined across all eigenvalues), then the set
EA = {x⃗1, x⃗2, . . . , x⃗n} is a basis for Rn. The set EA is called an eigenbasis
for A.

Example 6.2.6. Find an eigenbasis for the matrix A from Example 6.2.3.
Recall

A =

 4 −1 6
2 1 6
2 −1 8

 .

We were given the characteristic polynomial PA(λ) = (2 − λ)2(9 − λ)
from which we see that A has two eigenvalues λ1 = 2 and λ2 = 9. In
Example 6.2.3, we found the basis

{〈
1
2
, 1, 0

〉
, ⟨−3, 0, 1⟩

}
for the eigenspace

EA(2). We need to find a basis for the eigenspace EA(9) corresponding to
the other eigenvalue, λ2 = 9. We can set up the homogeneous equation
(A− 9I3)x⃗ = 0⃗3. We have

[
A− 9I3 |⃗03

] rref−→

 1 0 −1 0
0 1 −1 0
0 0 0 0

 ,
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from which we see that solutions have the form x⃗ = t⟨1, 1, 1⟩, t ∈ R. We can
select {⟨1, 1, 1⟩} as a basis for EA(9). The union of the bases for these two
eigenspaces is an eigenbasis for A.

EA =

{〈
1

2
, 1, 0

〉
, ⟨−3, 0, 1⟩ , ⟨1, 1, 1⟩

}
Whether we can construct an eigenbasis for a particular matrix depends

on the geometric multiplicities of its eigenvalues.

Property 6.6. A matrix A has an eigenbasis if and only if the sum of the
geometric multiplicities of all of its eigenvalues is n.

Exercise 6.2.5. For each of the matrices

A =

 3 1 0
0 3 0
0 0 5

 , and B =

 3 0 0
0 3 1
0 0 5

 .

from Exercise 6.2.4, construct an eigenbasis or explain why one does not
exist.

6.3 Diagonalization

We’ve seen that diagonal matrices are particularly easy to work with. The
determinant is a simple product, the eigenvalues are the diagonal entries, and
as we saw in Section 5.5, computing powers of such a matrix (multiplying
it by itself any number of times) doesn’t require the numerous operations
generally associated with matrix multiplication. Given a matrix A that is
not diagonal, we can ask whether there is a diagonal matrix D that is similar
to A. Recall from Definition 5.5.1, that a matrix D is said to be similar to
A if there exists an invertible matrix C such that D = C−1AC.

Definition 6.3.1. Let A be an n × n matrix. We say that A is diago-
nalizable if there is a diagonal matrix that is similar to A. That is, A is
diagonalizable if there exists a diagonal matrix D and an invertible matrix
C such that D = C−1AC.

Exercise 6.3.1. Let B =

 3 0 0
0 3 1
0 0 5

 and C =

 1 0 0
0 1 1
0 0 2

. Show that B

is diagonalizable. To do this, find C−1 and compute the product C−1BC.
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As we will see, similar matrices share properties such as having the same
determinant, characteristic equation, and eigenvalues (though they generally
have different corresponding eigenvectors).

Theorem 6.3.1. If A and B are similar n × n matrices, then det(A) =
det(B).

Proof. Let’s suppose that A and B are n × n similar matrices. Then there
is an invertible matrix C such that B = C−1AC. Hence

det(B) = det(C−1AC) = det(C−1) det(A) det(C),

where we used Property 6.5 that says that the determinant of a product is
the product of the determinants. The determinant is scalar valued, so the
factors on the right side commute and we have

det(B) = det(C−1) det(C) det(A).

But note that

det(C−1) det(C) = det(C−1C) = det(In) = 1.

Hence
det(B) = 1 det(A) = det(A),

as required.

A consequence of Theorem 6.3.1 is that in addition to sharing a determi-
nant, similar matrices have the same characteristic equation and hence the
same eigenvalues.

Theorem 6.3.2. If A and B are similar n×n matrices, then A and B have
the same characteristic polynomial and the same eigenvalues with the same
algebraic multiplicities and geometric multiplicities.

Before we prove Theorem 6.3.2, we estabilish the following lemma that
tells us that an invertible linear transformation preserves the linear indepen-
dence of a set of vectors.

Lemma 6.3.1. Suppose {x⃗1, x⃗2, . . . , x⃗k} is a linearly independent set of vec-
tors in Rn. If A is an invertible n × n matrix, then {Ax⃗1, Ax⃗2, . . . , Ax⃗k} is
linearly independent.
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Proof. To prove Lemma 6.3.1, suppose the set {x⃗1, x⃗2, . . . , x⃗k} is linearly
independent but that {Ax⃗1, Ax⃗2, . . . , Ax⃗k} is linearly dependent. Then there
exists a linear dependence relation

c1Ax⃗1 + c2Ax⃗2 + · · ·+ ckAx⃗k = 0⃗n (6.13)

with at least one of the weights ci ̸= 0. Since A is invertible, there exists an
inverse matrix A−1 which is also invertible. Multiply equation (6.13) through
by A−1 to obtain

A−1
(
c1Ax⃗1 + c2Ax⃗2 + · · ·+ ckAx⃗k

)
= A−10⃗n

c1A
−1Ax⃗1 + c2A

−1Ax⃗2 + · · ·+ ckA
−1Ax⃗k = 0⃗n

c1Inx⃗1 + c2Inx⃗2 + · · ·+ ckInx⃗k = 0⃗n

c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k = 0⃗n. (6.14)

But equation (6.14) is a linear dependence relation for {x⃗1, x⃗2, . . . , x⃗k} con-
trary to it being a linearly independent set. Hence {Ax⃗1, Ax⃗2, . . . , Ax⃗k} must
be linearly independent.

Proof. (Of Theorem 6.3.2) Suppose A and B are similar n × n matrices,
and let C be an invertible matrix such that B = C−1AC. Then note that
B− λIn = C−1AC − λIn. We can write In = C−1InC and factor C−1 on the
left side and C on the right side to obtain

B − λIn = C−1AC − λC−1InC

= C−1(AC − λInC)

= C−1(A− λIn)C (6.15)

Equation 6.15 shows that B−λIn and A−λIn are similar matrices. Applying
Theorem 6.3.1, they have the same determinant. That is,

PB(λ) = det(B − λIn) = det(A− λIn) = PA(λ).

Since the eigenvalues and their algebraic multiplicities are completely deter-
mine by the characteristic polynomial, A and B have the same eigenvalues
with the same algebraic multiplicities. To demonstrate that the geometric
multiplicity of each eigenvalue is the same, suppose λ0 is an eigenvalue of A
and let {x⃗1, . . . , x⃗k} be a basis for EA(λ0), the eigenspace of A correspond-
ing to the eigenvalue λ0. From the similarity relationship B = C−1AC, we
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have BC−1 = C−1A. For each vector in our basis for the corresponding
eigenspace, we have

BC−1x⃗i = C−1Ax⃗i = C−1 (λ0x⃗i) = λ0C
−1x⃗i. (6.16)

Equation (6.16) shows that C−1x⃗i is an eigenvector of B corresponding to the
eigenvalue λ0. As a basis, the set {x⃗1, . . . , x⃗k} is linearly independent, and
as C−1 is invertible, Lemma 6.3.1 guarantees that {C−1x⃗1, . . . , C

−1x⃗k} is lin-
early independent. Note that since A is also similar to B, we can construct
an analogous argument to show that if y⃗i is any eigenvector for B corre-
sponding to the eigenvalue λ0, then Cy⃗i is an eigenvector of A corresponding
to λ0. Hence {C−1x⃗1, . . . , C

−1x⃗k} is a basis for the eigenspace EB(λ0) of B
corresponding to λ0 consisting of the same number of basis elements as the
basis for EA(λ0). We conclude that the geometric multiplicity of λ0 as an
eigenvalue of B is the same as its geometric multiplicity as an eigenvalue of
A.

Remark 6.3.1. Theorems 6.3.1 and 6.3.2 tell us that having the same deter-
minant, characteristic equation and eigenvalues is a necessary consequence
of being similar. However, none of these shared features is sufficient to con-
clude that two matrices are similar. That is, a pair of matrices may have
the same characteristic polynomial but not be similar matrices. (The pair of
matrices that feature in Exercises 6.2.4 and 6.2.5 are an example of matrices
with the same characteristic polynomial that are not similar matrices. This
is evidenced by the fact that the geometric multiplicity of the eignenvalue 3
is not the same for both matrices.)

We are particularly interested in whether a given matrix A is similar
to a diagonal matrix D. If this is the case, then Theorem 6.3.2 indicates
that this diagonal matrix would have to have the eigenvalues of A as its
diagonal entries (since the eigenvalues of any diagonal matrix are its diagonal
entries, and A and D would have to have the same eigenvalues). Suppose
our matrix A has n not necessarily distinct real eigenvalues λ1, . . . λn, whose
geometric multiplies sum to n. Then our matrix A gives rise to an eigenbasis,
EA = {x⃗1, x⃗2, . . . , x⃗n}, for Rn. With this set of n linearly independent vectors,
we can construct an invertible matrix C having the eigenbasis elements as its
column vectors, Coli(C) = x⃗i. Now we consider the product AC. Focusing
on the ith column of this product, note that

Coli(AC) = AColi(C) = Ax⃗i = λix⃗i = λi Coli(C). (6.17)
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Let D = [dij] be the diagonal matrix defined by

dii = λi, and dij = 0 for i ̸= j.

That is, Coli(D) = λie⃗i, where as usual, e⃗i is the standard unit vector in Rn

having a 1 in the ith entry and zero everywhere else. Then the product CD
will satisfy

Coli(CD) = C Coli(D) = Cλie⃗i = λiCe⃗i = λi Coli(C). (6.18)

(Here we’ve used the useful fact in equation (3.13) from Section 3.6.) Equa-
tions (6.17) and (6.18) show that each column of AC is equal to the corre-
sponding column of CD. It follows that

CD = AC, i.e., D = C−1AC.

This wonderful observation provides a condition on diagonalizability as well
as a formulation for the necessary invertible matrix.

Theorem 6.3.3. Let A be an n×n matrix. Then A is diagonalizable if and
only if A has n linearly independent eigenvectors. Moreover, if A is diago-
nalizable, then there exists a diagonal matrix D such that D = C−1AC where
the columns of the invertible matrix C are the vectors in an eigenbasis, EA,
for the matrix A, and the diagonal entries of the matrix D are the eigenvalues
of A.

Proof. Half of the proof of Theorem 6.3.3 is given in the construction pre-
ceding the theorem statement. There, we showed that if A has n linearly
independent eigenvectors, then A is diagonalizable. Now, suppose that A is
diagonalizable so that there exists a diagonal matrix D = [dij] and invertible
matrix C such that D = C−1AC. Then as before, we have CD = AC. Note
that making use of the fact that Coli(D) = diie⃗i, the ith column of CD is

Coli(CD) = C Coli(D) = Cdiie⃗i = diiCe⃗i = dii Coli(C). (6.19)

The ith column of the product AC

Coli(AC) = AColi(C). (6.20)

Comparing equations (6.19) and (6.20), we see that

AColi(C) = dii Coli(C).
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Since C is invertible, each column vector of C is nonzero. Hence each diagonal
entry dii is an eigenvalue of A with corresponding eigenvector Coli(C). The
column vectors of the invertible matrix C are linearly independent, so we
conclude that A has n linearly independent eigenvectors.

Example 6.3.1. Show that the matrix A is diagonalizable by finding a diag-
onal matrix D and invertible matrix C such that D = C−1AC.

A =

 4 7 1
1 −2 1
0 0 1


First, we find the characteristic polynomial det(A − λI3). Taking a co-

factor expansion across the third row (to take advantage of the zeros there)

det

 4− λ 7 1
1 −2− λ 1
0 0 1− λ

 = (1− λ)
(
(4− λ)(−2− λ)− 1(7)

)
= (1− λ)(λ2 − 2λ− 15)

= (1− λ)(λ− 5)(λ+ 3)

So A has three eigenvalues λ1 = 1, λ2 = 5 and λ3 = −3. Next, we find
a basis for each eigenspace. Since we have three distinct eigenvalues, we’re
guaranteed to find an eigenbasis with three linearly independent eigenvectors.
For λ1 = 1, [

A− 1I3|⃗03
] rref−→

 1 0 5
8

0
0 1 −1

8
0

0 0 0 0

 .

Eigenvectors will have the form x⃗1 = t
〈
−5

8
, 1
8
, 1
〉
, t ∈ R. For λ2 = 5,

[
A− 5I3|⃗03

] rref−→

 1 −7 0 0
0 0 1 0
0 0 0 0

 .

Eigenvectors will have the form x⃗2 = t ⟨7, 1, 0⟩, t ∈ R. And for λ3 = −3,

[
A− (−3)I3 |⃗03

] rref−→

 1 1 0 0
0 0 1 0
0 0 0 0

 .
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Eigenvectors will have the form x⃗3 = t ⟨−1, 1, 0⟩, t ∈ R. We need one of
each for the matrix C, let’s call these vectors v⃗1, v⃗2 and v⃗3. For the first
eigenvalue, let’s choose t = 8 to get v⃗1 = ⟨−5, 1, 8⟩. We can choose t = 1 for
the other two to get v⃗2 = ⟨7, 1, 0⟩ and v⃗3 = ⟨−1, 1, 0⟩. Letting these be the
columns of C in this order,

C =

 −5 7 −1
1 1 1
8 0 0

 with inverse C−1 =
1

16

 0 0 2
2 2 1

−2 14 −3

 .

Then the diagonal matrix

D = C−1AC =

 1 0 0
0 5 0
0 0 −3

 .

We might note that the matrix C constructed in Example 6.3.1 is not
unique. In addition to selecting which eigenvectors would be used as the
columns of C, we selected the order in which the columns would appear. We
could have made other choices. Given the construction in the proof of Theo-
rem 6.3.3, it should be clear that the order in which the eigenvalues appear on
the diagonal of D corresponds to the order in which the eigenvectors appear
as columns in C. So for the preceding example, selecting the eigenvectors for
1, 5 and −3 in this order resulted in the eigenvalues appearing in D in this
order. We could agree to a specific order, such as numerically increasing, but
there is no universal convention for this sort of matrix decomposition.

Exercise 6.3.2. For each matrix, either diagonalize the matrix (i.e., identify
the diagonal matrix D and invertible matrix C) or show that the matrix is
not diagonalizable.

1. A =

[
−4 7
−2 5

]

2. L =

[
2 1
0 2

]

3. H =

[
2 3

−1 5

]
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4. B =

 −2 1 0
0 −2 0
0 0 6



5. G =

 1 2 3
0 2 3
0 0 −1


Exercise 6.3.3. put text on next line.

1. Find a 3× 3 matrix A having eigenvalues L = {1,−4, 5} and for which
EA = {⟨1, 1, 3⟩ , ⟨1, 1,−3⟩ , ⟨0,−1,−2⟩} is an eigenbasis.

2. Is your answer A in part 1. above unique? That is, can you find
another 3× 3 matrix having eigenvalues L = {1,−4, 5} and eigenbasis
EA = {⟨1, 1, 3⟩ , ⟨1, 1,−3⟩ , ⟨0,−1,−2⟩}?

Because the algebraic multiplicity of an eigenvalues is greater than or
equal to its geometric multiplicity, we have the following result.

Theorem 6.3.4. If A is an n × n matrix with n distinct eigenvalues, then
A is diagonalizable.

Theorem 6.3.4 provides a sufficient condition for diagonalizability. As
you’ve seen in Exercise 6.3.1 it is not necessary that a matrix has n distinct
eigenvalues. A matrix with fewer than n eigenvalues may or may not be
diagonalizable and must be considered on a case by case basis.

An advantage of diagonal matrices is the ease with which successive ma-
trix multiplication, including computing successive powers, can be done.
Suppose we have an n × n matrix A that we wish to evaluate powers of,
say A2, A3, A4, and so forth. Even a 2 × 2 inspires the use of technology.
Consider the relatively simple matrix

A =

[
−4 3
−6 5

]
.

Note that

A2 =

[
−4 3
−6 5

] [
−4 3
−6 5

]
=

[
−2 3
−6 7

]
A3 = A2A =

[
−2 3
−6 7

] [
−4 3
−6 5

]
=

[
−10 9
−18 17

]
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A4 = A3A =

[
−10 9
−18 17

] [
−4 3
−6 5

]
=

[
−14 15
−30 31

]
Such computations readily become tiresome, especially if we desire much
larger powers, A5, A10, A25. Compare to the ease with which we can compute
power of the matrix

D =

[
2 0
0 −1

]
.

In fact,

D10 =

[
210 0
0 (−1)10

]
=

[
1024 0

0 1

]
.

It isn’t even necessary to pass through each of the powers 2 through 9. If
our matrix A is diagonalizable, we can take advantage of the similar diagonal
matrix. First, note that if A and B are similar matrices, then A2 and B2

are also similar. To confirm this, suppose B = C−1AC, for some invertible
matrix C. Then note that

B2 = (C−1AC)2 = (C−1AC)(C−1AC) = C−1A(CC−1)AC =

= C−1AInAC = C−1AAC = C−1A2C.

Not only are A2 and B2 similar, they share the same transformation as A
and B. More generally, we have the following theorem that can be proven
by induction.

Theorem 6.3.5. If A and B are similar matrices and C is an invertible
matrix such that B = C−1AC, then for each integer n ≥ 1, An and Bn are
similar and Bn = C−1AnC.

Example 6.3.2. Evaluate A10 where A =

[
−4 3
−6 5

]
.

If A is diagonalizable, we can compute this with two matrix multiplications
and one matrix inversion as opposed to nine matrix multiplications. The
eigenvalues of A are found to be λ1 = 2 and λ2 = −1. With two distinct
eigenvalues, we are assured that A is diagonalizable. Associated eigenvectors
are x⃗1 = ⟨1, 2⟩ and x⃗2 = ⟨1, 1⟩, so D = C−1AC where

D =

[
2 0
0 −1

]
, and C =

[
1 1
2 1

]
.
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The inverse matrix

C−1 =

[
−1 1
2 −1

]
.

Now, An = CDnC−1, so

A10 =

[
1 1
2 1

] [
210 0
0 (−1)10

] [
−1 1
2 −1

]
=

[
1 1
2 1

] [
−1(210) 1(210)
2(−1)10 −1(−1)10

]
=

[
−210 + 2(−1)10 210 − (−1)10

−2(210) + 2(−1)10 2(210)− (−1)10

]
=

[
−1022 1023
−2046 2047

]

6.4 Linear Transformations and Change of Ba-

sis

Theorem 5.2.1 provides a construction for the n × n standard matrix A
associated with a linear transformation T : Rn → Rn. We recall that the
column vectors for the matrix are the images of the standard basis vectors
under T , Colj(A) = T (e⃗j). There is a subtle, yet critical, bias built into that
construction, namely that the vectors x⃗ in the domain as well as their images
T (x⃗) are to be represented by their coordinates relative to the standard basis
E = {e⃗1, . . . , e⃗n}. What if we desire some other basis, for example one in
which the corresponding matrix is diagonal?

In Section 4.3.1, we defined coordinate vectors for subspaces of Rn (which
can include all of Rn). Here, let’s consider an alternative basis for Rn, say
C = {c⃗1, c⃗2, . . . , c⃗n}. Given a vector x⃗ in Rn, we can consider its coordinate
vector relative to this new basis

[x⃗]C = ⟨α1, α2, . . . , αn⟩,

where the entries are the unique coefficients of x⃗ in terms of the basis C,

x⃗ = α1c⃗1 + α2c⃗2 + · · ·+ αnc⃗n. (6.21)

As a linear combination of vectors, we can rephrase equation (6.21) as a
matrix-vector product

x⃗ = C[x⃗]C,
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where C is the n×nmatrix whose columns are the basis vectors, Coli(C) = c⃗i.
Given that the columns of C form a basis for Rn, the matrix C is invertible.
This provides us with a way to translate back and forth between the standard
basis and the new basis,

x⃗ = C[x⃗]C, and [x⃗]C = C−1x⃗. (6.22)

We can call the matrix C a change of basis matrix for the basis C.

Example 6.4.1. Consider the ordered basis C = {⟨1, 2⟩, ⟨1, 1⟩} of R2.

1. Identify the change of basis matrix C and its inverse C−1.

2. Find the coordinate vectors relative to the basis C for the following
vectors.

(a) x⃗ = ⟨1, 0⟩
(b) y⃗ = ⟨3,−2⟩
(c) z⃗ = ⟨5, 1⟩

3. Find the representation relative to the standard basis for the vectors
having the given coordinate vectors relative to the basis C.

(a) [u⃗]C = ⟨1, 0⟩
(b) [v⃗]C = ⟨3,−2⟩
(c) [w⃗]C = ⟨5, 1⟩

Solutions

1. The change of basis matrix C =

[
1 1
2 1

]
. Its inverse is C−1 =[

−1 1
2 −1

]
.

2. To find the coordinate vectors relative to the basis C, we use the rela-
tionship [x⃗]C = C−1x⃗.

(a) [x⃗]C =

[
−1 1
2 −1

]
⟨1, 0⟩ = ⟨−1, 2⟩

(b) [y⃗]C =

[
−1 1
2 −1

]
⟨3,−2⟩ = ⟨−5, 8⟩
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(c) [z⃗]C =

[
−1 1
2 −1

]
⟨5, 1⟩ = ⟨−4, 9⟩

3. To find the vectors in terms of the standard basis having the given
coordinate vectors relative to C, we use the relationship x⃗ = C[x⃗]C.

(a) u⃗ =

[
1 1
2 1

]
⟨1, 0⟩ = ⟨1, 2⟩

(b) v⃗ =

[
1 1
2 1

]
⟨3,−2⟩ = ⟨1, 4⟩

(c) w⃗ =

[
1 1
2 1

]
⟨5, 1⟩ = ⟨6, 11⟩

Exercise 6.4.1. Consider the ordered basis C = {⟨1, 1⟩, ⟨−1, 5⟩} of R2.

1. Identify the change of basis matrix C and its inverse C−1.

2. Find the coordinate vectors relative to the basis C for the following
vectors.

(a) x⃗ = ⟨1, 1⟩
(b) y⃗ = ⟨−1, 5⟩
(c) z⃗ = ⟨0, 1⟩

3. Find the representation relative to the standard basis for the vectors
having the given coordinate vectors relative to the basis C.

(a) [u⃗]C = ⟨1, 1⟩
(b) [v⃗]C = ⟨−1, 5⟩
(c) [w⃗]C = ⟨0, 1⟩

If T : Rn → Rn is a linear transformation and C = {c⃗1, . . . , c⃗n} is a basis of
Rn, we can express a vector x⃗ as well as T (x⃗), its image under T , in terms of
their coordinate vectors relative to the basis C. The transformation that maps
a vector x⃗ in Rn to a coordinate vector [x⃗]C in Rn is a linear transformation4.

4This is rather obvious in Rn since mapping a vector to a coordinate vector is matrix-
vector multiplication, but Lemma 4.8.1 in Section 4.8 ensures that the mapping to coor-
dinate vectors is linear in general vector spaces as well.
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So the composition of a linear transformation T with a coordinate mapping
will be a linear transformation. This suggests that there is some matrix B
associated with the transformation in the alternative coordinate system,[

T (x⃗)
]
C = B[x⃗]C.

We could call this new matrix the C-matrix for the linear transformation T .
How is the C-matrix, B, related to the standard matrix A, where T (x⃗) = Ax⃗?

The relationship between the C-matrix, B, and the standard matrix, A,
can be deduced by applying the linear transformation T as well as the change
of basis transformation from equation (6.22). For some vector x⃗ in Rn, we
can express its image T (x⃗) under T in terms of its coordinate vector relative
to the basis C. If C is the change of basis matrix, then for each vector y⃗ in
Rn, we have [y⃗]C = C−1y⃗. So the coordinate vector for T (x⃗) relative to C is[

T (x⃗)
]
C = C−1T (x⃗). (6.23)

Now, since T (x⃗) = Ax⃗ with A the standard matrix for T , we have[
T (x⃗)

]
C = C−1 (Ax⃗) = C−1Ax⃗. (6.24)

Finally, from equation (6.22) we can replace x⃗ with C[x⃗]C to arrive at[
T (x⃗)

]
C = C−1A (C[x⃗]C) =

(
C−1AC

)
[x⃗]C. (6.25)

We see that the C-matrix that we called B above is similar to the standard
matrix A. Specifically,

B = C−1AC

where C is the change of basis matrix for our alternative basis C. If A is di-
agonalizable, we can use an eigenbasis to formulate the linear transformation
in terms of a diagonal matrix. But we should note that the above derivation
is not restricted to diagonal matrices. That is, we didn’t insist that the basis
C has to be an eigenbasis or that the matrix B must be diagonal. We can
use this to express a linear transformation from Rn into Rn in terms of any
basis for Rn.

Example 6.4.2. Let T : R2 → R2 be the linear transformation defined by

T (x⃗) = Ax⃗ where A =

[
−4 3
−6 5

]
. This is the diagonalizable matrix from

Example 6.3.2 where we found that D = C−1AC with

D =

[
2 0
0 −1

]
, C =

[
1 1
2 1

]
, and C−1 =

[
−1 1
2 −1

]
.
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This tells us that for the basis C = {⟨1, 2⟩, ⟨1, 1⟩} of R2, the C-matrix for T
is the diagonal matrix D. Let’s confirm that[

T (x⃗)
]
C = B[x⃗]C

for the vectors e⃗1 and e⃗2.
First, let’s find the coordinate vectors for e⃗1 and e⃗2 relative to the basis

C. These are

[e⃗1]C = C−1e⃗1 = ⟨−1, 2⟩, and [e⃗2]C = C−1e⃗2 = ⟨1,−1⟩.

The images of e⃗1 and e⃗2 under T are

T (e⃗1) = Ae⃗1 = ⟨−4,−6⟩, and T (e⃗2) = Ae⃗2 = ⟨3, 5⟩.

Equation (6.25) indicates that we should be able to compute
[
T (e⃗i)

]
C using

the diagonal C-matrix. This gives[
T (e⃗1)

]
C = D[e⃗1]C =

[
2 0
0 −1

]
⟨−1, 2⟩ = ⟨−2,−2⟩, and

[
T (e⃗2)

]
C = D[e⃗2]C =

[
2 0
0 −1

]
⟨1,−1⟩ = ⟨2, 1⟩.

Alternatively, we can find the coordinate vectors
[
T (e⃗i)

]
C by applying the

inverse of the change of basis matrix to the images T (e⃗i) we already found.
Using this approach gives[

T (e⃗1)
]
C = C−1T (e⃗1) =

[
−1 1
2 −1

]
⟨−4,−6⟩ = ⟨−2,−2⟩, and

[
T (e⃗2)

]
C = C−1T (e⃗2) =

[
−1 1
2 −1

]
⟨3, 5⟩ = ⟨2, 1⟩.

The two approaches to computing the coordinate vectors,
[
T (e⃗i)

]
C, for the

images yields the same results, as they should. (Granted, this was a rather
tedious, perhaps a less than practical, exercise. The example is just intended
to illustrate equation (6.25).)

Exercise 6.4.2. Let T : R2 → R2 be the linear transformation defined by

T (x⃗) = Ax⃗ where A =

[
−2 6
−2 5

]
. Find a basis C of R2 such that the C-

matrix of T is diagonal. Find the C-matrix.
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Exercise 6.4.3. A matrix A is called symmetric if A = AT . It is known
that symmetric matrices are always diagonalizable. Moreover, the eigenvec-
tors for distinct eigenvalues are orthogonal. That is, a symmetric matrix has
an eigenbasis of mutually orthogonal vectors. Let T : R3 → R3 be the linear
transformation defined by T (x⃗) = Ax⃗ for the matrix A given below. Find a
basis C of R3 such that the C-matrix of T is diagonal, and confirm that the
basis elements are orthogonal. Find the C-matrix.

A =

 6 1 0
1 6 0
0 0 −2


Exercise 6.4.4. Let T : R2 → R2 be the shear transformation such that
T (e⃗1) = e⃗1 − 2e⃗2 and T (e⃗2) = e⃗2 (so T leaves e⃗2 fixed). Determine whether
there is a basis C of R2 such that the C-matrix of T is diagonal. If so, find
the diagonal matrix.

6.5 Additional Exercises

(Jump to Solutions)

1. If A = [a11] is a 1× 1 matrix, we define its determinant to be det(A) =
a11. Use this definition to show that the determinant of a 2× 2 matrix
from Definition 6.1.1 is the same as a cofactor expansion

det(A) =
2∑

j=1

(−1)1+ja1j det(A1j).

(The point of this exercises is to show that the determinant of a 2× 2
really is computed using the same cofactor expansion used for larger
matrices.)

2. Let A =

[
a b
c d

]
. Suppose A has two (not necessarily distinct) eigen-

values λ1 and λ2. Show that

a+ d = λ1 + λ2 and det(A) = λ1λ2.

(Hint: The characteristic polynomial must factor as PA(λ) = (λ1 −
λ)(λ2 − λ). Compare this to PA obtained in the usual way.)
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3. Give a coherent argument that if A = [aij] is an n×n triangular matrix,
the eigenvalues of A are its diagonal entries, aii.

4. Suppose A is an invertible matrix. Show that det (A−1) = (det(A))−1.
That is, show that the determinant of A−1 is the reciprocal of the
determinant of A.

5. For the matrix A, evaluate det(A). Find all of the eigenvalues of A and
show that det(A) is equal to the product of the eigenvalues of A.

A =

 −2 1 3
0 4 −1
0 6 −1

 .

6. Suppose the n × n matrix A has n not necessarily distinct real eigen-
values λ1, λ2, . . . , λn. Show that det(A) = λ1λ2 · · ·λn, that is, the de-
terminant of A is the product of its eigenvalues.
(Hint: The characteristic polynomial can be written as a product of
linear factors PA(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ). How are det(A)
and PA(0) related?)

7. Suppose A is an n×n invertible matrix and λ0 is a non-zero eigenvalue

of A. Show that
1

λ0

is an eigenvalue of A−1.

8. Suppose A is a 5× 5 matrix with characteristic polynomial

PA(λ) = (2− λ)2(4− λ)(−1− λ)(6− λ).

For each question, either provide a short answer or explain why it is
not possible to answer.

(a) Is A invertible?

(b) Evaluate det(A− 2I5)

(c) Is A diagonalizable?

(d) Is there a nonzero vector x⃗ in R5 such that Ax⃗ = −x⃗?

(e) What is det(A)?

(f) Is det(A− 5I5) = 0?

(g) Is there an eigenbasis of R5 for A?
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9. Suppose A is a 5× 5 matrix with characteristic polynomial

PA(λ) = −λ(1− λ)(−1− λ)(2− λ)(7− λ).

For each question, either provide a short answer or explain why it is
not possible to answer.

(a) Is A invertible?

(b) Is A− I5 invertible?

(c) Is A diagonalizable?

(d) Is there a nonzero vector x⃗ in R5 such that Ax⃗ = x⃗?

(e) What is det(A)?

(f) Is A− 5I5 invertible?

(g) Is there an eigenbasis of R5 for A?

10. Find a 3×3 matrix A having eigenvalues L = {2,−1, 3} and eigenbasis
EA = {⟨1, 0, 1⟩, ⟨−2, 1, 0⟩, ⟨3, 1, 2⟩}.

11. Prove Theorem 6.3.5. That is, show that if A and B are similar, then for
positive integer n, An and Bn are also similar. (Hint: using induction.)

12. Suppose A and B are similar, invertible matrices. Show that A−1 and
B−1 are similar and that AT and BT are similar.

13. (Involves calculus) An interesting use of diagonalization arises in the
solution of linear systems of differential equations. We know, for exam-
ple, that the simple differential equation dy

dt
= ay, with a a constant,

has family of solutions y(t) = eaty0 where y0 is a scalar (it is the value
of y(t) when t = 0). We can formulate a vector version of this simple
equation with y⃗(t) = ⟨x(t), y(t)⟩, a vector valued function of t. The
derivative is taken entry-wise, dy⃗

dt
=
〈
dx
dt
, dy
dt

〉
. If A is a 2× 2 matrix, we

can consider the vector differential equation

dy⃗

dt
= Ay⃗,

and propose a solution analogous to the scalar version, y⃗(t) = eAty⃗0.
This requires giving meaning to an exponential eAt when A is a matrix.
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We can turn to a series representation. Recall that the exponential ex

can be expressed in terms of the series

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
.

This suggests a way to give meaning to a matrix exponential. We can
define

eAt = In + tA+
t2

2!
A2 +

t3

3!
A3 + · · · =

∞∑
n=0

tn

n!
An.

If D is a diagonal matrix, D =

[
d11 0
0 d22

]
, then we can get a nice

form for the exponential of the matrix,

eDt =

[
ed11t 0

0 ed22t

]
.

Glossing over some technical issues, we can show that if D = C−1AC,
then eAt = CeDtC−1. Determine the matrix exponential eAt if A =[
−2 6
−2 5

]
. (Note this is the matrix from Exercise 6.4.2.) Show that

eA(0) = I2, that is, when t = 0, the matrix exponential is the identity
(this is analogous to the fact that e0 = 1).
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Chapter 7

Orthogonality & Projections

Consider a W pound truck parked on ramp that makes an angle θ with
respect to the horizontal as shown in Figure 7.1, and suppose we are inter-
ested in the force required by the brakes to maintain its position without
rolling down the ramp. We can represent the weight of the truck as a vector
w⃗ = −We⃗2 in R2 based on a simple, local model of the Earth’s gravitational
field. The force exerted by the brakes will be parallel to the incline, so it is
desirable to express the weight using a coordinate system with axes parallel
and perpendicular to the ramp. The braking force is then the component of
w⃗ that is parallel to the ramp.

The point of this scenario is not to solve this simple physics problem but
rather to motivate the orthogonal projection of a vector onto some subspace;
in this case, a line in R2. In general, suppose H is a subspace of Rn and y⃗ is
a vector that is not in H. We can ask whether there is a vector y⃗

H
that is an

element of H that is closest to y⃗ as illustrated in Figure 7.2. Like the truck’s
weight and the ramp, we can consider such a vector y⃗

H
as a projection onto

the subspace H such that the difference y⃗ − y⃗
H
is perpendicular to H.

409
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Figure 7.1: The weight of an object, a vertical vector, on an incline can
be decomposed as the sum of a vector parallel to the incline and a vector
orthogonal to the incline.

Figure 7.2:
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7.1 Orthogonal Sets & Bases

In Chapter 1, we defined orthogonality of a pair of vectors in terms of the
dot product, and we saw that for nonzero vectors in Rn, orthogonality has
a geometric interpretation; nonzero orthogonal vectors are perpendicular.
Now, we wish to consider sets of vectors that are mutually orthogonal.

Definition 7.1.1. Let k ≥ 2 and let S = {v⃗1, v⃗2, . . . , v⃗k} be a set of nonzero
vectors in Rn. We will call S and orthogonal set if for each i, j = 1, . . . , k

v⃗i · v⃗j = 0, whenever i ̸= j.

A simple and familiar example of an orthogonal set is the standard basis
{e⃗1, . . . , e⃗n} in Rn. This corresponds to our geometric sense of a set of mu-
tually perpendicular coordinate axes. The standard unit vectors are often
desirable because of the ease with which we can express vectors as a linear
combination of them. We will find that orthogonal sets generally provide for
a computationally simple approach to linear combinations. This is true even
when the vectors in an orthogonal set are more exotic than standard unit
vectors.

Example 7.1.1. Consider the vectors v⃗1 = ⟨3, 0,−3, 1⟩, v⃗2 = ⟨2, 1, 1,−3⟩
and v⃗3 = ⟨1, 5, 2, 3⟩ in R4. Determine whether the set S = {v⃗1, v⃗2, v⃗3} is an
orthogonal set.

Solution: To determine whether the set is orthogonal, we must consider
three dot products v⃗1 · v⃗2, v⃗1 · v⃗3, and v⃗2 · v⃗3. S is orthogonal if each of these
is zero.

v⃗1 · v⃗2 = 3(2) + 0(1) + (−3)(1) + 1(−3) = 0

v⃗1 · v⃗3 = 3(1) + 0(5) + (−3)(2) + 1(3) = 0

v⃗2 · v⃗3 = 2(1) + 1(5) + 2(1) + (−3)(3) = 0

Each pair of distinct vectors in S is orthogonal, and we conclude that S is
an orthogonal set.

Example 7.1.2. Consider the vectors v⃗1 = ⟨1,−1, 3⟩, v⃗2 = ⟨−1, 2, 1⟩ and
v⃗3 = ⟨6, 3,−1⟩ in R3. Determine whether the set S = {v⃗1, v⃗2, v⃗3} is an or-
thogonal set.
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Solution: As in the last example, we must consider three dot products
v⃗1 · v⃗2, v⃗1 · v⃗3, and v⃗2 · v⃗3. S is orthogonal if each of these is zero.

v⃗1 · v⃗2 = 1(−1) + (−1)(2) + 3(1) = 0

v⃗1 · v⃗3 = 1(6) + (−1)(3) + 3(−1) = 0

v⃗2 · v⃗3 = −1(6) + 2(3) + 1(−1) = −1

While v⃗1 is orthogonal to both v⃗2 and v⃗3, v⃗2 and v⃗3 are not orthogonal. So
our conclusion is that S is not an orthogonal set.

Exercise 7.1.1. Let S = {⟨1,−1, 3⟩, ⟨−1, 2, 1⟩, ⟨7, 4,−1⟩}. Show that S is
an orthogonal set.

One immediate consequence of a set of vectors being orthogonal is that
such a set is necessarily linearly independent. While the zero vector 0⃗n is
orthogonal to every vector in Rn, Definition 7.1.1 specifies that 0⃗n is not an
element of an orthogonal set.

Theorem 7.1.1. Let S = {v⃗1, v⃗2, . . . , v⃗k}, where k ≥ 2, be an orthogonal set
of vectors in Rn. Then S is linearly independent.

Proof. Consider the homogeneous vector equation

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k = 0⃗n. (7.1)

To demonstrate that S is linearly independent, we must show that ci = 0 for
each i = 1, . . . , k. To show that c1 = 0, we can take the dot product of each
side of equation (7.1) with v⃗1. Making use of the algebraic properties of the
dot product, we have

v⃗1 · (c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k) = v⃗1 · 0⃗n
c1v⃗1 · v⃗1 + c2v⃗1 · v⃗2 + · · ·+ ckv⃗1 · v⃗k = 0

Now, each of v⃗1 · v⃗i = 0 for i = 2, . . . , k, and v⃗1 · v⃗1 = ∥v⃗1∥2. So this reduces
to

c1∥v⃗1∥2 = 0.

Since v⃗1 is a nonzero vector, ∥v⃗1∥2 is some positive number, and we see that
c1 = 0, necessarily. We can take this same approach to isolate each of the



7.1. ORTHOGONAL SETS & BASES 413

weights, ci. If we take the dot product of each side of equation (7.1) with
v⃗i, we obtain an equation ci∥v⃗i∥2 = 0 from which we conclude that ci = 0.
Equation 7.1 has only the trivial solution, c1 = c2 = · · · = ck = 0, and S is
linearly independent.

An immediate consequence of Theorem 7.1.1 is the following.

Corollary 7.1.1. If S is an orthogonal set of vectors in Rn, then S is a basis
for the subspace Span(S) of Rn.

As one might expect, we will call such a basis, an orthogonal basis.

Definition 7.1.2. Let H be a subspace of Rn. An orthogonal basis for H
is a basis that is an orthogonal set.

As noted, the standard unit vectors, {e⃗1, . . . , e⃗n}, form an orthogonal
basis of Rn. This example of an orthogonal basis has the additional property
that each vector is a unit vector. The term orthonormal captures these two
properties.

Definition 7.1.3. An orthonormal set is a set S = {u⃗1, u⃗2, . . . , u⃗k} of
unit vectors that is an orthogonal set. An orthonormal basis of a subspace
of Rn is a basis that is an orthonormal set.

In the proof of Theorem 7.1.1, we saw that the mutual orthogonality of
the vectors can be exploited to isolate a single term in a linear combina-
tion. In that proof, we were focused on a homogeneous equation, but this
same approach can be used to determine the weights for any linear combi-
nation. Take for example the set S = {⟨1,−1, 3⟩, ⟨−1, 2, 1⟩, ⟨7, 4,−1⟩}. In
Exercise 7.1.1, you confirmed that this is an orthogonal set. Given that S
contains three linearly independent vectors, dim(Span(S)) = 3, and as R3 is
the only 3-dimensional subspace of R3, we can say that S is an orthogonal
basis for R3. Hence every vector in R3 can be expressed as a linear combi-
nation of the vectors in the set S. Suppose we wish to express the vector
x⃗ = ⟨1, 2, 3⟩ in terms of the basis S,

x⃗ = ⟨1, 2, 3⟩ = c1⟨1,−1, 3⟩+ c2⟨−1, 2, 1⟩+ c3⟨7, 4,−1⟩. (7.2)

There are various approaches to this task. For example, we can treat it as
a system of linear equations and perform row reduction on the augmented
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matrix

 1 −1 7 1
−1 2 4 2
3 1 −1 3

. Alternatively, we can introduce a change of

basis matrix to find the coordinate vector for x⃗ relative to the basis S:

⟨c1, c2, c3⟩ = [x⃗]S =

 1 −1 7
−1 2 4
3 1 −1

−1

x⃗.

The orthogonality of S provides a far less computationally intensive approach
to obtaining these weights. Note that if we take the dot product of each side
of equation 7.2 with ⟨1,−1, 3⟩ and use the orthogonality, we quickly isolate
the coefficient c1 of ⟨1,−1, 3⟩.

⟨1,−1, 3⟩ · ⟨1, 2, 3⟩ = c1∥⟨1,−1, 3⟩∥2 + c2(0) + c3(0).

Hence

c1 =
⟨1,−1, 3⟩ · ⟨1, 2, 3⟩

∥⟨1,−1, 3⟩∥2
=

8

11
.

Similar calculations give

c2 =
⟨−1, 2, 1⟩ · ⟨1, 2, 3⟩

∥⟨−1, 2, 1⟩∥2
=

6

6
= 1,

and

c3 =
⟨7, 4,−1⟩ · ⟨1, 2, 3⟩

∥⟨7, 4,−1⟩∥2
=

12

66
=

2

11
.

We find that

⟨1, 2, 3⟩ = 8

11
⟨1,−1, 3⟩+ ⟨−1, 2, 1⟩+ 2

11
⟨7, 4,−1⟩.

Theorem 7.1.2 generalizes this observation.

Theorem 7.1.2. Let H be a subspace of Rn and S = {v⃗1, v⃗2, . . . , v⃗k} be an
orthogonal basis of H. Then each vector x⃗ in H can be expressed as

x⃗ = c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k, where ci =
v⃗i · x⃗
∥v⃗i∥2

.



7.2. ORTHOGONAL PROJECTIONS 415

Exercise 7.1.2. Let S = {v⃗1, v⃗2, v⃗3} where

v⃗1 = ⟨3, 0,−3, 1⟩, v⃗2 = ⟨2, 1, 1,−3⟩, and v⃗3 = ⟨1, 5, 2, 3⟩.

In Example 7.1.1, we determined that S is an orthogonal basis for Span(S).
Use the formula for the weights from Theorem 7.1.2 to express x⃗ = ⟨3, 3,−2, 4⟩
as a linear combination of the elements of S and confirm that your solution
is correct.

We can restate the result of Theorem 7.1.2 in the case of an orthonormal
basis. Specifically, if S = {u⃗1, u⃗2, . . . , u⃗k} is an orthonormal basis for a
subspace H of Rn and x⃗ is any element of H, we have

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k, where ci = u⃗i · x⃗.

The coefficient formulation is simplified because ∥u⃗i∥2 = 1. We recall from
Chapter 1 that given a nonzero vector x⃗ in Rn, the direction vector, x⃗U =
1

∥x⃗∥ x⃗, is a unit vector in the direction of x⃗. Given an orthogonal set {v⃗1, . . . , v⃗k},
we can readily construct an orthonormal set {u⃗1, . . . , u⃗k} by setting

u⃗i =
1

∥v⃗i∥
v⃗i.

This process of scaling vectors to obtain unit vectors is often called normal-
izing, hence the term “orthonormal.”

Exercise 7.1.3. Show that the set {⟨2, 2, 1⟩, ⟨−2, 1, 2⟩, ⟨1,−2, 2⟩} is an or-
thogonal basis for R3 and find an associated orthonormal basis by normalizing
the vectors.

7.2 Orthogonal Projections

Returning to the question suggested at the beginning of this chapter, given
a subspace H of Rn and a vector y⃗ that is not necessarily in H, we can seek
a vector y⃗

H
in H such that y⃗ = y⃗

H
+ z⃗ where the vector z⃗ is orthogonal to

every vector in H. The vector y⃗
H
can be thought of as the part of the vector

y⃗ that is in the subspace H, and we refer to this as a projection.
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Figure 7.3: Left: A subspace Span{v⃗} of R2, and a point (x1, x2) not on H.
Right: The standard representation of x⃗ = ⟨x1, x2⟩.

7.2.1 Projection Onto a Vector

We begin by considering the projection of one vector onto another vector or,
equivalently, onto a one-dimensional subspace of Rn—i.e., a line through the
origin. R2 is a convenient setting since we can visualize things graphically,
however, our construction extends readily to Rn (even if we don’t have nice
pictures). If v⃗ is a nonzero vector in R2, then the subspace H = Span{v⃗} can
be associated with a line that is parallel to v⃗ and passes through the origin.
Consider a point (x1, x2) in R2 that is not necessarily on the line H as shown
on the left in Figure 7.3. What point on the line H is closest to the point
(x1, x2), and what is the distance between this point and the line?

If x⃗ = ⟨x1, x2⟩, then the standard representation of x⃗ will terminate at the
point (x1, x2) as shown on the right in Figure 7.3. Now, we want to express
x⃗ as the sum

x⃗ = x⃗
H
+ z⃗,

where x⃗
H
is in H and z⃗ is orthogonal to H. As an element of H, we know

that x⃗
H
= kv⃗ for some scalar k. Hence

x⃗ = kv⃗ + z⃗, (7.3)

and since z⃗ should be perpendicular1 to H, z⃗ · v⃗ = 0. To determine the scalar

1More precisely, z⃗ is orthogonal to v⃗ which includes the case that z⃗ = 0⃗2 as would be
the case when x⃗ is already in H.
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k, we take the dot product of each side of equation (7.3) with v⃗. Making use
of the orthogonality, we have

x⃗ · v⃗ = (kv⃗ + z⃗) · v⃗ = kv⃗ · v⃗ + z⃗ · v⃗ = k∥v⃗∥2 + 0.

We see that the scalar

k =
x⃗ · v⃗
∥v⃗∥2

, (7.4)

and the vector

x⃗
H
=

x⃗ · v⃗
∥v⃗∥2

v⃗. (7.5)

We recognize the expression in equation (7.4) from the formulas for the
weights appearing in Theorem 7.1.2. The remaining vector, what we la-
beled z⃗ in equation (7.3), is z⃗ = x⃗− x⃗

H
. We can confirm that this vector is in

fact orthogonal to every vector in H = Span{v⃗}. Each vector in H has the
form cv⃗ for some scalar c. Using equation (7.5) and the algebraic properties
of the dot product,

(cv⃗) · z⃗ = c (v⃗ · z⃗) = c (v⃗ · (x⃗− x⃗
H
)) = c

(
v⃗ · x⃗− v⃗ ·

(
x⃗ · v⃗
∥v⃗∥2

v⃗

))
= c

(
v⃗ · x⃗−

(
x⃗ · y⃗
∥x⃗∥2

)
v⃗ · v⃗

)
= c

(
v⃗ · x⃗−

(
x⃗ · v⃗
���∥v⃗∥2

)
���∥v⃗∥2

)
= c (v⃗ · x⃗− x⃗ · v⃗)
= c (0)

= 0.

Hence x⃗− x⃗
H
is orthogonal to H. The vector x⃗

H
derived in equation (7.5) is

called a vector projection.

Definition 7.2.1. Let v⃗ be a nonzero vector in Rn and let x⃗ be a vector in
Rn. The vector projection of x⃗ onto v⃗ is denoted projv⃗ x⃗ and defined by

projv⃗ x⃗ =
x⃗ · v⃗
∥v⃗∥2

v⃗. (7.6)
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Remark 7.2.1. There are two key vectors in a vector projection; the vector
being projected (here x⃗) and the nonzero vector being projected onto (here v⃗).
The vector projv⃗ x⃗ is a scalar multiple of the vector v⃗, hence it is an element
of Span{v⃗}. In the notation presented in Definition 7.6, the nonzero vector
being projected onto is written as a subscript of “proj” where as the vector
being projected is written as an argument of “proj”.

Remark 7.2.2. The vector projection given in Definition 7.6 can also be
called the vector projection of x⃗ onto the subspace Span{v⃗}. If H =
Span{v⃗}, then the notation projv⃗ x⃗, can be replaced with projSpan{v⃗} x⃗ or
projH x⃗.

Back to our example in R2, if projv⃗ x⃗ = ⟨a, b⟩, then (a, b) is the point on
the line Span{v⃗} that is closest to the point (x1, x2). The distance between
the point (x1, x2) and this line is the magnitude, ∥z⃗∥, of the orthogonal
difference, x⃗− x⃗

H
, as shown on the right side of Figure 7.4.

Figure 7.4: Left: The terminal point of the standard representation of x⃗
H
is

the point on Span{v⃗} closest to (x1, x2). Right: The distance between the
point (x1, x2) and the line Span{v⃗} is ∥x⃗− projv⃗ x⃗∥, the magnitude of vector
x⃗− projv⃗ x⃗.

Example 7.2.1. Let L be the line 3x + 2y = 0, and consider the point
P = (−5, 2). What is the point on L that is closest to P? What is the dis-
tance between L and P?
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Solution: Note that the point B = (−2, 3) is on L, so the vector v⃗ =
−−→
OB = ⟨−2, 3⟩ is parallel to L. Let x⃗ =

−→
OP = ⟨−5, 2⟩. To find the point on

L closest to P , we compute the projection projv⃗ x⃗. Using the formula from
Definition 7.2.1

projv⃗ x⃗ =
x⃗ · v⃗
∥v⃗∥2

v⃗ =
16

13
⟨−2, 3⟩.

So the point on L closest to P is
(
−32

13
, 48
13

)
. To determine the distance between

P and L, we need the difference,

x⃗− projv⃗ x⃗ = ⟨−5, 2⟩ − 16

13
⟨−2, 3⟩ =

〈
97

13
,−22

13

〉
.

The distance is the magnitude of this vector,

Distance from P to L =

∥∥∥∥〈97

13
,−22

13

〉∥∥∥∥ =

√
761

13
≈ 7.65.

You might wonder where the choice of the vector v⃗ = ⟨−2, 3⟩ came from
in Example 7.2.1. In general, we can select any two points, say A = (a1, a2)

and B = (b1, b2), on the line L to identify a vector v⃗ =
−→
AB parallel to L. Does

the resulting projection change if we choose a different vector to represent
the direction of the line L? (If it did, that would certainly call our solution
into question!) Note that for any nonzero vector v⃗ and any vector x⃗

x⃗ · v⃗
∥v⃗∥2

v⃗ =

(
x⃗ · v⃗
∥v⃗∥

)
v⃗

∥v⃗∥
=

(
x⃗ · v⃗

∥v⃗∥

)
v⃗

∥v⃗∥
= (x⃗ · v⃗U) v⃗U , (7.7)

where as was defined in Section 1.3, v⃗U =
v⃗

∥v⃗∥
is the direction vector of the

vector v⃗. So the projection formula presented in Definition 7.2.1 depends
on the direction of the vector v⃗ being projected onto, but it is independent
of the magnitude of v⃗. We have been considering examples in R2, but the
construction in equation (7.7) places no restriction on the number of entries
in the vectors x⃗ and v⃗ which can be elements of Rn for any n ≥ 2.

The scalar
x⃗ · v⃗
∥v⃗∥

is typically called the scalar component of the vector

x⃗ in the direction of the vector v⃗. Its value is indicative of the relation-
ship between the vectors x⃗ and v⃗. In particular, if the vectors x⃗ and v⃗ are
perpendicular, then they are orthogonal and

projv⃗ x⃗ =
x⃗ · v⃗
∥v⃗∥2

v⃗ =
0

∥v⃗∥2
v⃗ = 0⃗n.
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Figure 7.5: Graphical representation of the projection of a vector x⃗ onto a
vector v⃗, equivalently the subspace Span{v⃗}. When x⃗ · v⃗ > 0 (top), projv⃗ x⃗
is in the direction of v⃗. When x⃗ · v⃗ = 0 (middle), projv⃗ x⃗ = 0⃗n. And when
x⃗ · v⃗ < 0 (bottom), projv⃗ x⃗ is parallel to, but in the opposite direction from
v⃗.

If x⃗ is a nonzero vector that is parallel to v⃗, then the projection of x⃗ onto
v⃗ is simply x⃗ (see Exercise 7.2.3). If x⃗ is nonzero and is neither parallel nor

perpendicular to v⃗, then the sign of
x⃗ · v⃗
∥v⃗∥

tells us about the nature of the

angle between2 the vectors x⃗ and v⃗. Since ∥v⃗∥ > 0, the sign of the scalar
component is determined by the sign of x⃗ · v⃗. If x⃗ · v⃗ > 0, then the angle
formed by x⃗ and v⃗ is acute, and if x⃗ · v⃗ < 0, the angle is obtuse. These cases
are illustrated in Figure 7.5.

Exercise 7.2.1. Consider the parallel vectors v⃗1 = ⟨−2, 3⟩ and v⃗2 = ⟨4,−6⟩,

2In Rn for n ≥ 3, two nonzero and nonparallel vectors determine a plane, and the angle
being referenced is the angle between the vectors in this plane.
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and let x⃗ = ⟨−5, 2⟩. Show that

projv⃗1 x⃗ = projv⃗2 x⃗.

Exercise 7.2.2. Find the point on the line L defined by 4x − y = 0 closest
to the point P = (6, 1). What is the distance between the point P and the
line L?

Exercise 7.2.3. move to the next line.

1. Let v⃗ = ⟨1,−1, 2,−3⟩ and x⃗ = ⟨3,−3, 6,−9⟩. Verify that x⃗ is parallel
to v⃗ and that projv⃗ x⃗ = x⃗.

2. Let v⃗ be any nonzero vector in Rn. Show that if x⃗ is any vector in Rn

that is parallel to v⃗, then projv⃗ x⃗ = x⃗.

7.2.2 Projection Onto a Subspace

7.3 Additional Exercises

(Jump to Solutions)
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Appendix A

Answers and Solutions to
Selected Exercises

A.1 Chapter 1 Exercises:

Exercise 1.1.1: Draw a picture of the standard representative of the vector
x⃗ = ⟨−3, 4⟩. Then draw a picture of the representative of x⃗ that is based at
the point P = (1, 2). (To do this you will need to find the point Q such that
−→
PQ is a representative of x⃗.)

Solution:

-1-2-3-4 1
x1

1

2

3

4

5

6

x2

(-3,4)

(1,2)

(-2,6)

x


x


423
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Exercise 1.1.3: In parts 1–5 below, four points (P,Q,R, and S) are

given. Draw the directed line segments
−→
PQ and

−→
RS and determine whether

or not
−→
PQ and

−→
RS represent the same vector. If they do not represent the

same vector, then state whether this is because they don’t have the same
length or don’t point in the same direction (or both).

Solution to number 4: The points given are P = (−8, 0), Q =

(5, 6) , R = (3, 3) , S = (−10,−3) and we see that
−→
PQ = ⟨13, 6⟩ and

−→
RS =

⟨−13,−6⟩. These vectors are not equal. They do have the same length but
they do not point in the same direction. (They point in opposite directions.)

3 5-8-10
x1

-3

3

6

x2

(-8,0)

(3,3)

(-10,-3)

(5,6)

RS

PQ

Exercise 1.1.4: For each pair of vectors, x⃗ and y⃗, given in parts 1–
7, compute x⃗ + y⃗ and then draw a picture to illustrate the Parallelogram
Method of Vector Addition for x⃗+ y⃗.

Solution to number 1: We are given x⃗ = ⟨3,−4⟩ and y⃗ = ⟨4,−2⟩.
Thus x⃗+ y⃗ = ⟨7,−6⟩.
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2 4 6 8
x1

-6

-4

-2

2
x2

(0,0)

(3,-4)

(7,-6)

(4,-2)

x


x


y


y


Exercise 1.1.7:
Solution to number 2: Since x⃗ = ⟨2, 4⟩, then −2x⃗ = ⟨−4,−8⟩ Both

of these vectors are pictured below. Note that −2x⃗ has double the length of
x⃗ and points in the opposite direction.

-4 -2 2 4
x1

-4

4

-8

x2

(0,0)

(2,4)

(-4,-8)

Exercise 1.1.9:
Solution to number 1: Since x⃗ = ⟨−4,−4⟩, y⃗ = ⟨−3,−2⟩, c = 1, d = 4,

we have
cx⃗ = (1)x⃗ = ⟨−4,−4⟩



426APPENDIX A. ANSWERS AND SOLUTIONS TO SELECTED EXERCISES

and

dy⃗ = (4)y⃗ = ⟨−12,−8⟩ .

Thus

cx⃗+ dy⃗ = ⟨−16,−12⟩ .

cx⃗, dy⃗, and cx⃗+ dy⃗ are pictured below.

-4-8-12-16
x1

-4

-8

-12

x2

(-4,-4)

(-16,-12)

cx


dy


cx

+dy



Exercise 1.1.11:

Solution to number 3:

The length of x⃗ = ⟨−6, 4⟩ is

∥x⃗∥ =
√

(−6)2 + (4)2 =
√
52.

Exercise 1.1.13:

Solution to number 3. Let us show that if x⃗ is any vector in R2 and c
is any scalar, then the length of cx⃗ is equal to the absolute value of c times
the length of x⃗. In other words, let us show that

∥cx⃗∥ = |c| ∥x⃗∥ .

To see this, let x⃗ = ⟨x1, x2⟩. Then ∥x⃗∥ =
√

x2
1 + x2

2 and cx⃗ = ⟨cx1, cx2⟩.
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By computation, we see that

∥cx⃗∥ =

√
(cx1)

2 + (cx2)
2

=
√
c2x2

1 + c2x2
2

=
√

c2 (x2
1 + x2

2)

=
√
c2
√
x2
1 + x2

2

= |c| ∥x⃗∥

Exercise 1.1.15:

Solutions for numbers 3 and 4:

3) For x⃗ = ⟨−4, 6⟩ and y⃗ =
〈
−1,−2

3

〉
, we have x⃗ · y⃗ = (−4) (−1) +

(6)
(
−2

3

)
= 0 and this tells us that x⃗ and y⃗ are orthogonal to each other. x⃗

and y⃗ are pictured below.

-6 -4 -2 2 4 6
x1

-6

-4

-2

2

4

6

x2

(-4,6)

(-1,-2/3)

x


y


4) For x⃗ = ⟨−4, 6⟩ and y⃗ = ⟨−5,−2⟩, we have

x⃗ · y⃗ = (−4) (−5) + (6) (−2) = 8 ̸= 0.

This tells us that x⃗ and y⃗ are not orthogonal to each other. x⃗ and y⃗ are
pictured below.
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-6 -4 -2 2 4 6
x1

-6

-4

-2

2

4

6

x2

(-4,6)

(-5,-2)

x


y


Exercise 1.1.17:
Solution for Number 2:
We will prove that if x⃗, y⃗ and z⃗ are any three vectors in R2, then

x⃗ · (y⃗ + z⃗) = x⃗ · y⃗ + x⃗ · z⃗.

To do this, we write out x⃗, y⃗ and z⃗ in terms of their components

x⃗ = ⟨x1, x2⟩
y⃗ = ⟨y1, y2⟩
z⃗ = ⟨z1, z2⟩ ,

and note that

x⃗ · (y⃗ + z⃗) = ⟨x1, x2⟩ · ⟨y1 + z1, y2 + z2⟩
= x1 (y1 + z1) + x2 (y2 + z2)

= x1y1 + x1z1 + x2y2 + x2z2

= (x1y1 + x2y2) + (x1z1 + x2z2)

= x⃗ · y⃗ + x⃗ · z⃗.

Exercise 1.1.19:
Solution for Number 1: Note that

x⃗U = ⟨cos (45◦) , cos (45◦)⟩ =

〈√
2

2
,

√
2

2

〉
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and thus

x⃗ = ∥x⃗∥ x⃗U = 4

〈√
2

2
,

√
2

2

〉
=
〈
2
√
2, 2

√
2
〉
.

See picture below.

2 2
x1

2 2

x2

(2 2 ,2 2 )

θ1  45
◦

θ2  45
◦

2 2

4

2 2

Solution for Number 3:

Note that

x⃗U = ⟨cos (30◦) , cos (120◦)⟩ =

〈√
3

2
,−1

2

〉

and thus

x⃗ = ∥x⃗∥ x⃗U = 1

〈√
3

2
,−1

2

〉
=

〈√
3

2
,−1

2

〉
.

See picture below.
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3

2

x1

-
1

2

x2

θ1  30
◦

θ2  120
◦

1

Exercise 1.1.21:

The magnitude of x⃗ is

∥x⃗∥ =
√
32 + 62 =

√
45 = 3

√
5

and the direction cosines of x⃗ are

x1

∥x⃗∥
=

3

3
√
5
=

1√
5

x2

∥x⃗∥
=

6

3
√
5
=

2√
5
.

Thus the direction vector of x⃗ is

x⃗U =

〈
1√
5
,
2√
5

〉
.

Since y⃗ has magnitude 5 and points in the same direction as x⃗, then

y⃗ = 5x⃗U = 5

〈
1√
5
,
2√
5

〉
=
〈√

5, 2
√
5
〉
.

Exercise 1.1.22 Show that dist(y⃗, x⃗) is equal to dist(x⃗, y⃗) for any pair of
vectors x⃗ and y⃗.



A.1. CHAPTER 1 EXERCISES: 431

Answer: Letting x⃗ = ⟨x1, x2⟩ and y⃗ = ⟨y1, y2⟩,

dist(x⃗, y⃗) = ∥x⃗− y⃗∥
= ∥⟨x1 − y1, x2 − y2⟩∥
=
√

(x1 − y1)2 + (x2 − y2)2

=
√

(y1 − x1)2 + (y2 − x2)2

= ∥⟨y1 − x1, y2 − x2⟩∥
= ∥y⃗ − x⃗∥
= dist(y⃗, x⃗).

Exercise 1.1.23 Find the distance between each set of vectors.

1. x⃗ = ⟨1, 1⟩, y⃗ = ⟨−2, 1⟩ Answer: dist(x⃗, y⃗) = 3

2. x⃗ = ⟨2, 3⟩, y⃗ = ⟨0, 0⟩ Answer: dist(x⃗, y⃗) =
√
13 ≈ 3.61

3. x⃗ =
〈
2,−1

2

〉
, y⃗ = ⟨0, 8⟩ Answer: dist(x⃗, y⃗) =

√
305
2

≈ 8.73

4. x⃗ = ⟨1,−1⟩, y⃗ = ⟨−2, 2⟩ Answer: dist(x⃗, y⃗) = 3
√
2 ≈ 4.24

Exercise 1.2.1:
Solution to Number 1: For the vectors x⃗ = ⟨1, 1,−1⟩ and y⃗ =

⟨−2, 1, 4⟩, we have

2x⃗ = ⟨2 (1) , 2 (1) , 2 (−1)⟩ = ⟨2, 2,−2⟩

and

x⃗+ y⃗ = ⟨1, 1,−1⟩+ ⟨−2, 1, 4⟩ = ⟨1− 2, 1 + 1,−1 + 4⟩ = ⟨−1, 2, 3⟩

and

x⃗− 3y⃗ = ⟨1, 1,−1⟩ − 3 ⟨−2, 1, 4⟩
= ⟨1, 1,−1⟩+ ⟨(−3) (−2) , (−3) (1) , (−3) (4)⟩
= ⟨1, 1,−1⟩+ ⟨6,−3,−12⟩
= ⟨7,−2,−13⟩ .
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Exercise 1.2.3: We want to prove that if

x⃗ = ⟨x1, x2, x3⟩ and y⃗ = ⟨y1, y2, y3⟩

are two vectors in R3, then

∥x⃗+ y⃗∥2 = ∥x⃗− y⃗∥2 if and only if x⃗ · y⃗ = 0.

To prove this we first compute

∥x⃗+ y⃗∥2 = ∥⟨x1 + y1, x2 + y2, x3 + y3⟩∥2

= (x1 + y1)
2 + (x2 + y2)

2 + (x3 + y3)
2

= x2
1 + 2x1y1 + y21 + x2

2 + 2x2y2 + y22 + x2
3 + 2x3y3 + y23

= x2
1 + y21 + x2

2 + y22 + x2
3 + y23 + 2x1y1 + 2x2y2 + 2x3y3

= x2
1 + y21 + x2

2 + y22 + x2
3 + y23 + 2 (x1y1 + x2y2 + x3y3) .

A similar computation shows that

∥x⃗− y⃗∥2 = x2
1 + y21 + x2

2 + y22 + x2
3 + y23 − 2 (x1y1 + x2y2 + x3y3) .

As can be seen from the above two computations ∥x⃗+ y⃗∥2 = ∥x⃗− y⃗∥2 is true
if an only

2 (x1y1 + x2y2 + x3y3) = −2 (x1y1 + x2y2 + x3y3)

and this is true if and only if

4 (x1y1 + x2y2 + x3y3) = 0

which is true if and only if

x1y1 + x2y2 + x3y3 = 0.

Exercise 1.2.5:

x⃗ = ∥x⃗∥ x⃗U

=
√
2 ⟨cos (90◦) , cos (45◦) , cos (45◦)⟩

=
√
2

〈
0,

√
2

2
,

√
2

2

〉
= ⟨0, 1, 1⟩
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Exercise 1.2.7:
The magnitude of x⃗ is

∥x⃗∥ =

√
(−3)2 + 02 + 42 = 5

and the direction cosines of x⃗ are

x1

∥x⃗∥
=

−3

5
x2

∥x⃗∥
= 0

x3

∥x⃗∥
=

4

5

Thus the direction vector of x⃗ is

x⃗U =

〈
−3

5
, 0,

4

5

〉
.

Since y⃗ has magnitude 3 and points in the opposite direction of x⃗, then

y⃗ = −3x⃗U = −3

〈
−3

5
, 0,

4

5

〉
=

〈
9

5
, 0,−12

5

〉
.

Exercise 1.2.8 Find the distance between each pair of vectors.

1. x⃗ = ⟨−3, 4,−5⟩, y⃗ = ⟨0, 0, 0⟩ Answer: dist(x⃗, y⃗) = 5
√
2 ≈ 7.07

2. x⃗ = ⟨1, 0, 1⟩, y⃗ = ⟨3,−2, 1⟩ Answer: dist(x⃗, y⃗) = 2
√
2 ≈ 2.83

3. x⃗ = ⟨1, 0, 0⟩, y⃗ = ⟨0, 0, 1⟩ Answer: dist(x⃗, y⃗) =
√
2 ≈ 1.41

4. x⃗ = ⟨2,−4, 5⟩, y⃗ = ⟨0, 3, 3⟩ Answer: dist(x⃗, y⃗) =
√
57 ≈ 7.55

Exercise 1.2.9 Let x⃗ = ⟨1, 0, 1⟩ and y⃗ = ⟨y1, 3,−2⟩. Find all values of y1
such that dist(x⃗, y⃗) = 8.
Answer: We can square both sides of the equation dist(x⃗, y⃗) = 8 to avoid
working with the radical.

(dist(x⃗, y⃗))2 = (1− y1)
2 + (0− 3)2 + (1− (−2))2 = 82.
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(1− y1)
2 = 64− 9− 9 = 46.

Taking the square roots, 1− y1 = ±
√
46, gives two solutions

y1 = 1 +
√
46 ≈ 7.78, or y1 = 1−

√
46 ≈ −5.78

Exercise 1.3.1:
Solution for Number 3:
The vectors x⃗ = ⟨−3, 0, 4, 1, 2⟩ and y⃗ = ⟨4, 2, 2, 0, 2⟩ are vectors in R5.
Also

x⃗+ y⃗ = ⟨−3 + 4, 0 + 2, 4 + 2, 1 + 0, 2 + 2⟩ = ⟨1, 2, 6, 1, 4⟩

x⃗− y⃗ = ⟨−3− 4, 0− 2, 4− 2, 1− 0, 2− 2⟩ = ⟨−7,−2, 2, 1, 0⟩

and
x⃗ · y⃗ = (−3) (4) + (0) (2) + (4) (2) + (1) (0) + (2) (2) = 0.

The fact that x⃗ · y⃗ = 0 tells us that x⃗ and y⃗ are orthogonal to each other.
Let us verify that ∥x⃗+ y⃗∥2 = ∥x⃗− y⃗∥2 (as must be the case since x⃗ and y⃗
have been found to be orthogonal to each other). We have

∥x⃗+ y⃗∥2 = 12 + 22 + 62 + 12 + 42 = 58

and
∥x⃗− y⃗∥2 = (−7)2 + (−2)2 + 22 + 11 + 02 = 58.

From this last result, dist(x⃗, y⃗) =
√
58.

Exercise 1.3.3:
1) If u⃗ is a single vector in Rn, then Span {u⃗} just means the set of all

vectors in Rn that are scalar multiples of u⃗.
So if u⃗ is the vector u⃗ = ⟨1, 0, 1⟩ in R3, then Span {u⃗} is the set of all

vectors in R3 that are scalar multiples of u⃗. A scalar multiple of u⃗ is a vector
of the form

cu⃗ = c ⟨1, 0, 1⟩ = ⟨c, 0, c⟩ .

The vector v⃗ = ⟨2, 0, 2⟩ has the form ⟨c, 0, c⟩ (with c = 2) and thus v⃗ is
in Span {u⃗}.

The vector y⃗ = ⟨1, 0, 2⟩ does not have the form ⟨c, 0, c⟩ so y⃗ is not in
Span {u⃗}.
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The vector 0⃗3 = ⟨0, 0, 0⟩ has the form ⟨c, 0, c⟩ (with c = 0) and thus 0⃗3 is
in Span {u⃗}.

2) If x⃗1 and x⃗2 are any two vectors in Rn, then Span {x⃗1, x⃗2} denotes
the set of all possible linear combinations of x⃗1 and x⃗2. Thus Span {x⃗1, x⃗2}
consists of all vectors in Rn that have the form

c1x⃗1 + c2x⃗2

(where c1 and c2 are scalars).
Since 0⃗n can be written as 0⃗n = 0x⃗1 + 0x⃗2, then 0⃗n is in Span {x⃗1, x⃗2}.

Chapter 1 Additional Exercises

1. For x⃗ in Rn and scalar c in R, use the definition of the magnitude to
show that ∥cx⃗∥ = |c|∥x⃗∥.
Proof: Let c be a scalar and let x⃗ = ⟨x1, x2, . . . , xn⟩ be a vector in Rn.
Then

∥cx⃗∥ = ∥ ⟨cx1, cx2, . . . , cxn⟩ ∥

=

√
(cx1)

2 + (cx2)
2 + · · ·+ (cxn)

2

=
√

c2x2
1 + c2x2

2 + · · ·+ c2x2
n

=
√

c2 (x2
1 + x2

2 + · · ·+ x2
n)

=
√
c2
√

x2
1 + x2

2 + · · ·+ x2
n

= |c| ∥x⃗∥

2. Consider the vector x⃗ = ⟨1,−1, 0, 3⟩ in R4. Determine the value(s) of
p such that the vector y⃗ = ⟨p, 1, 2, p⟩ is orthogonal to x⃗.

Answer: p = 1
4

3. Let x⃗ = ⟨−2, 0, 2, 4, 5⟩, and z⃗ = ⟨4, 6,−3, 2, 2⟩. Find a vector y⃗ in R5

such that
x⃗+ y⃗ = z⃗

Answer: y⃗ = ⟨6, 6,−5,−2,−3⟩
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4. For each pair of vectors, determine whether they are parallel, orthogo-
nal, or neither parallel nor orthogonal.

(a) x⃗ = ⟨1,−1, 3⟩, y⃗ = ⟨−2, 2,−6⟩
Answer: parallel

(b) x⃗ = ⟨0, 4, 0,−2⟩, y⃗ = ⟨1, 2, 3, 4⟩
Answer: orthogonal

(c) x⃗ = ⟨1, 1, 0, 1, 1⟩, y⃗ = ⟨−2, 2,−2, 2, 2⟩
Answer: neither

(d) x⃗ = ⟨2,−2, 8, 6, 12, 0⟩, y⃗ = ⟨−1, 1,−4,−3,−6, 0⟩
Answer: parallel

(e) x⃗ = ⟨2, 0,−2, 1⟩, y⃗ = ⟨0, 1, 0, 0⟩
Answer: orthogonal

5. Let x⃗ = ⟨1, 1, 2, 1⟩. Find all possible scalars, c such that ∥cx⃗∥ = 1.

Answer: c = ±1/
√
7 which can also be written as c = ±

√
7/7

6. Suppose that the vector u⃗ in Rn is orthogonal to every other vector in
Rn. Explain why it must be that u⃗ = ⟨0, 0, . . . , 0⟩. That is, u⃗ = 0⃗n,
the zero vector in Rn.

Solution: Suppose u⃗ ̸= 0⃗. Then at least one entry, say ui ̸= 0. Let e⃗i
be the vector in Rn having ith entry 1 and all other entries zero. Then
the dot product u⃗ · e⃗i = ui ̸= 0. But this contradicts our hypothesis
that u⃗ is orthogonal to every other vector in Rn.

7. Let u⃗ = ⟨−3, 5, 2⟩ and x⃗ = ⟨1,−1,−4⟩. Determine whether y⃗ =
⟨0, 1,−5⟩ is a linear combination of u⃗ and x⃗.

Solution: y⃗ is a linear combination of u⃗ and x⃗ if and only if there exist
scalars c and d such that cu⃗+ dx⃗ = y⃗. Thus let us look at the equation

c⟨−3, 5, 2⟩+ d⟨1,−1,−4⟩ = ⟨0, 1,−5⟩

which can be written as

⟨−3c+ d, 5c− d, 2c− 4d⟩ = ⟨0, 1,−5⟩.
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In order for the above equation to be satisfied, c and d must satisfy all
three of the equations

−3c+ d = 0 (A.1)

5c− d = 1 (A.2)

2c− 4d = −5. (A.3)

Equation (A.1) requires that d = 3c and when we substitute that into
equation (A.2) we obtain

5c− 3c = 1

which gives c = 1/2. Since d = 3c, then we must have d = 3/2. We still
need to make sure that equation (A.3) is satisfied by (c, d) = (1/2, 3/2).
It is, because

2

(
1

2

)
− 4

(
3

2

)
= −5.

We now see that y⃗ is a linear combination of u⃗ and x⃗ because

y⃗ =
1

2
u⃗+

3

2
x⃗.

8. Let z⃗1 = ⟨1, 2⟩ and z⃗2 = ⟨2, 1⟩. Show that if x⃗ = ⟨x1, x2⟩ is any vector
in R2, then x⃗ is in Span{z⃗1, z⃗2}. (Hint: find coefficients c1 and c2 such
that x⃗ = c1z⃗1 + c2z⃗2.)

9. For each statement, indicate whether the statement is true or false.
Give a brief explanation or reason for each conclusion.

(a) If x⃗ is a vector in R4 such that ∥x⃗∥ = 1, then ∥2x⃗∥ = 24.

Answer: This statement is false. If ∥x⃗∥ = 1, then

∥2x⃗∥ = |2| ∥x⃗∥ = 2∥x⃗∥ = (2) (1) = 2.

(b) For a vector x⃗ in Rn, the vector −x⃗ is equal to the vector (−1) x⃗.

(c) For any pair of vectors x⃗and y⃗ in R3, ∥x⃗+ y⃗∥ = ∥x⃗∥+ ∥y⃗∥.
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Answer: This statement is false. For example, suppose that
x⃗ = ⟨1, 0, 0⟩ and y⃗ = ⟨0, 1, 0⟩. Then ∥x⃗∥ = 1 and ∥y⃗∥ = 1 which
means that ∥x⃗∥+ ∥y⃗∥ = 1 + 1 = 2. However

∥x⃗+ y⃗∥ = ∥ ⟨1, 0, 0⟩+ ⟨0, 1, 0⟩ ∥
= ∥⟨1, 1, 0⟩∥
=

√
11 + 12 + 02

=
√
2.

(d) If a vector x⃗ in Rnis orthogonal to itself, it must be the zero vector.

(e) If {u⃗1, u⃗2, . . . , u⃗k}is any set of vectors in Rn, then 0⃗n is an element
of {u⃗1, u⃗2, . . . , u⃗k}.
Answer: This statement is false. For example, consider the set
of vectors {u⃗1, u⃗2} = ⟨⟨1, 2⟩ , ⟨3, 7⟩⟩ in R2. Clearly, 0⃗2 is not an
element of this set.

(f) If {u⃗1, u⃗2, . . . , u⃗k}is any set of vectors in Rn, then 0⃗nis an element
of Span{u⃗1, u⃗2, . . . , u⃗k}.

10. Let x⃗ be any nonzero element of R5. Explain the difference between
the set {x⃗} and the set Span{x⃗}.

11. Use the dot product and the fact that ∥x⃗∥2 = x⃗ · x⃗ to prove the
Pythagorean Theorem. The Pythagorean Theorem states

if x⃗ and y⃗ are orthogonal, then ∥x⃗+ y⃗∥2 = ∥x⃗∥2 + ∥y⃗∥2.
Proof : Suppose that x⃗ and y⃗ are orthogonal to each other. Then
x⃗ · y⃗ = 0. This gives

∥x⃗+ y⃗∥2 = (x⃗+ y⃗) · (x⃗+ y⃗)

= x⃗ · (x⃗+ y⃗) + y⃗ · (x⃗+ y⃗)

= x⃗ · x⃗+ x⃗ · y⃗ + y⃗ · x⃗+ y⃗ · y⃗
= x⃗ · x⃗+ y⃗ · y⃗ + 2 (x⃗ · y⃗)
= ∥x⃗∥2 + ∥y⃗∥2 + 2 (0)

= ∥x⃗∥2 + ∥y⃗∥2 .
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A.2 Chapter 2 Exercises:

Exercise 2.1.1 move to next line

1. The solution set of the system

2x1 + 4x2 + 2x3 + 2x4 = −4
x1 + 2x2 + 2x3 + 6x4 = −5

has parametric description

x1 = 1− 2s+ 4t
x2 = s,
x3 = −3− 5t
x4 = t,

s, t ∈ R

Convert this to vector parametric form.
Answer: x⃗ = ⟨1, 0,−3, 0⟩+ s⟨−2, 1, 0, 0⟩+ t⟨4, 0,−5, 1⟩, s, t ∈ R

2. The solution set of the system

3x1 + x2 − 2x3 + 4x4 + 2x5 = −2
x1 + x2 + 2x3 − 2x4 + x5 = −4
2x1 − x2 − 8x3 + 11x4 + 2x5 = −2

is the set of all five-tuples (x1, x2, x3, x4, x5) such that

x1 = 4 + 2x3 − 3x4, x2 = −2− 4x3 + 5x4, x5 = −6

and x3 and x4 can be any real number. Give a parametric description
and a vector parametric description of the solution set.
Answer: A parametric description is

x1 = 4 + 2s− 3t

x2 = −2− 4s+ 5t

x3 = s

x4 = t

x5 = −6, s, t ∈ R

A vector parametric description is

x⃗ = ⟨4,−2, 0, 0,−6⟩+ s⟨2,−4, 1, 0, 0⟩+ t⟨−3, 5, 0, 1, 0⟩, s, t ∈ R
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Exercise 2.1.2 For each system, plot the lines determined by the equations
together on the same set of axes and determine whether the system is in-
consistent or consistent. If the system is consistent, state whether there is a
unique solution or infinitely many solutions.

1.
3x1 + x2 = 0
x1 − 3x2 = −1
Answer:

Figure A.1: Solid: 3x1 + x2 = 0, Dash-dot x1 − 3x2 = −1

This system is consistent with a unique solution. The solution is the
intersection (x1, x2) =

(
− 1

10
, 3
10

)
.

3.
4x1 + 6x2 = 3
6x1 + 9x2 = 0
Answer:

Figure A.2: Solid: 4x1 + 6x2 = 3, Dash-dot 6x1 + 9x2 = 0

This system is inconsistent. The lines are parallel.
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4.
6x1 + 9x2 = 0
4x1 + 6x2 = 0
Answer:

Figure A.3: Concurrent Lines 6x1 + 9x2 = 0 and 4x1 + 6x3 = 0

The system is consistent with infinitely many solutions. The solutions
are all points on the common line,

{
(x1, x2) |x1 = −3

2
x2, x2 ∈ R

}
.

Exercise 2.1.3 Consider the system of two equations,

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

. (A.4)

Explain why the system is guaranteed to be consistent with a unique solution
whenever a11a22 ̸= a21a12.(Hint: A pair of lines in the plane are guaranteed
to intersect exactly once if they have different slopes.)

Answer: The simplest case is if a12a22 ̸= 0 (meaning neither of the
coefficients of x2 is zero. In this case, the slopes are m1 = −a11

a12
and m2 =

−a21
a22

. Distinct slopes, m1 ̸= m2, is equivalent to a11a22 ̸= a21a12. Suppose
a12 = 0. Since a11a22 ̸= a21a12, we know that neither a11 nor a22 is zero. The
first line is vertical, and the second line is not vertical. Hence the lines have
different slopes and intersect exactly once. The case a22 = 0 is analogous
with the second line being vertical.

Exercise 2.2.1 Perform the Gaussian elimination process on each system of
equations. At each step, use the operation notation (Ei ↔ Ej, kEi → Ei,
kEi + Ej → Ej) to clearly indicate the operation you have selected. If the
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system is consistent, state the solution in either parametric form or in vector
parametric form.

Solution for problem 2.

2.
x1 + 2x2 + 2x3 = 1
3x1 + x2 − x3 = −2
x1 + x2 − 2x3 = 0

Answer:

−3E1 + E2 → E2

x1 + 2x2 + 2x3 = 1
− 5x2 − 7x3 = −5

x1 + x2 − 2x3 = 0

−E1 + E3 → E3

x1 + 2x2 + 2x3 = 1
− 5x2 − 7x3 = −5
− x2 − 4x3 = −1

E2 ↔ E3

x1 + 2x2 + 2x3 = 1
− x2 − 4x3 = −1
− 5x2 − 7x3 = −5

−E2 → E2

x1 + 2x2 + 2x3 = 1
x2 + 4x3 = 1

− 5x2 − 7x3 = −5

5E2 + E3 → E3

x1 + 2x2 + 2x3 = 1
x2 + 4x3 = 1

13x3 = 0

1
13
E3 → E3

x1 + 2x2 + 2x3 = 1
x2 + 4x3 = 1

x3 = 0

The system is consistent. Performing the back substitution starting with
x3 = 0,

x2 = 1− 4x3 = 1, and x1 = 1− 2x2 − 2x3 = −1.
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In parametric form, we can write
x1 = −1
x2 = 1
x3 = 0

. In vector parametric form,

the solution x⃗ = ⟨−1, 1, 0⟩.

Exercise 2.3.2 For each matrix A, write a homogeneous system of equations
having A as its coefficient matrix.

1. A =

 1 0 −1 2
2 −3 2 −1
0 2 4 2


Answer:

x1 − x3 + 2x4 = 0
2x1 − 3x2 + 2x3 − 1x4 = 0

2x2 + 4x3 + 2x4 = 0

Exercise 2.3.3 For each augmented matrix A, write the corresponding
system of equations.

2. A =

 1 3 5
7 9 1
2 4 6


Answer:

x1 + 3x2 = 5
7x1 + 9x2 = 1
2x1 + 4x2 = 6

Exercise 2.3.4 Classify each matrix as a row echelon form (ref), a reduced
row echelon form (rref), or not an echelon form. Identify which property (or
properties) is not satisfied if a matrix is not an echelon form (or is an ref but
not an rref).

1.

[
1 −1
0 3

]
Answer: This is an ref but not an rref. The leading entry

in row 2 is not 1, and it is not the only nonzero entry in its column.

3.

 1 0 0
1 1 0
1 2 3

 Answer: This is not an ref. The first nonzero entry in

each row is in the first column.
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4.

 1 2 0 3 0
0 0 1 2 0
0 0 0 0 1

 Answer: This is an rref.

Exercise 2.3.5 Use the notation from Example 2.3.2 where appropriate.

1. Write out all possible 2× 2 reduced row echelon forms.
Answer:[

0 0
0 0

]
,

[
1 □
0 0

]
,

[
0 1
0 0

]
or

[
1 0
0 1

]
.

3. Write out all of the possible 2× 3 reduced row echelon forms.
Answer: [

0 0 0
0 0 0

]
,

[
1 □ □
0 0 0

]
,

[
1 0 □
0 1 □

]
,

[
1 □ 0
0 0 1

]
,

[
0 1 □
0 0 0

]
,

[
0 1 0
0 0 1

]
,

[
0 0 1
0 0 0

]

5. Write out all possible 3× 3 reduced row echelon forms.
Answer: 0 0 0

0 0 0
0 0 0

 ,

 1 □ □
0 0 0
0 0 0

 ,

 0 1 □
0 0 0
0 0 0

 ,

 0 0 1
0 0 0
0 0 0


 1 0 □

0 1 □
0 0 0

 ,

 1 □ 0
0 0 1
0 0 0

 ,

 0 1 0
0 0 1
0 0 0

 ,

 1 0 0
0 1 0
0 0 1



Exercise 2.3.6 For each matrix A, follow the process outlined in the row
reduction example to find rref(A).
Answer: (Detailed steps are given for problems 1. and 3.)
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1. A =

[
−1 3 2
2 −2 5

]
, rref(A) =

[
1 0 19/4
0 1 9/4

]
Details (possible steps)

−R1 → R1

[
1 −3 −2
2 −2 5

]

−2R1 +R2 → R2

[
1 −3 −2
0 4 9

]
1
4
R2 → R2

[
1 −3 −2
0 1 9/4

]

3R2 +R1 → R1

[
1 0 19/4
0 1 9/4

]

2. A =

[
4 4 0 −2

−1 3 −5 1

]
, rref(A) =

[
1 0 5/4 −5/8
0 1 −5/4 1/8

]

3. A =

 2 4 6 8
4 6 8 10
6 8 10 4

 , rref(A) =

 1 0 −1 0
0 1 2 0
0 0 0 1


See Details on Next Page

4. A =

 1 2 3
2 3 4
3 4 5

 , rref(A) =

 1 0 −1
0 1 2
0 0 0



5. A =


1 0 −3 0 0
1 8 −5 −2 0
1 6 −6 0 −1
3 7 −7 −1 −2

 , rref(A) =


1 0 0 0 −1
0 1 0 0 −1/3
0 0 1 0 −1/3
0 0 0 1 −1


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Detailed Solution for 3. (possible steps)

1
2
R1 → R1

1
2
R2 → R2

1
2
R3 → R3

 1 2 3 4
2 3 4 5
3 4 5 2


−2R1 +R2 → R2

−3R1 +R3 → R3

 1 2 3 4
0 −1 −2 −3
0 −2 −4 −10


−R2 → R2

−R3 → R3

 1 2 3 4
0 1 2 3
0 2 4 10



−2R2 +R3 → R3

 1 2 3 4
0 1 2 3
0 0 0 4


1
4
R3 → R3

 1 2 3 4
0 1 2 3
0 0 0 1


−3R3 +R2 → R2

−4R3 +R1 → R1

 1 2 3 0
0 1 2 0
0 0 0 1



−2R2 +R1 → R1

 1 0 −1 0
0 1 2 0
0 0 0 1


Exercise 2.3.8 Suppose A is a 5× 7 matrix.

1. If A is the coefficient matrix of a linear system of equations, how many
variables does the system have?
Answer: Seven. Each column holds the coefficients for one variable.

2. If A is the augmented matrix of a linear system of equations, how many
variables does the system have?
Answer: Six, the seventh column would be the constant terms.
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3. Could A have 7 pivot columns? (Explain your answer.)
Answer: No. Each pivot position occupies a row as well as a col-
umn. With only five rows, it is not possible for there to be seven pivot
positions (hence pivot columns).

Exercise 2.3.9 If A is an m × n matrix, what is the maximum number of
pivot columns A can have? (Hint: consider the possible cases, m < n and
m ≥ n. Explain your answer.)
Answer: Each pivot position occupies a row and column. The maximum
number of pivot columns is the smaller of m and n, i.e., min{m,n}.

Exercise 2.4.1 For each system of equations, use an augmented matrix and
row reduction to either find the solutions set or determine that the system
is inconsistent.

1.
x1 + x3 = 20

x2 − x3 − x4 = 0
x1 + x2 = 80

Answer:

x1 = 20− t
x2 = 60 + t
x3 = t
x4 = 60

, −∞ < t < ∞

2.
x1 + 2x2 + 4x3 = 0
2x1 + 3x2 + 5x3 = 0
3x1 + 4x2 + 2x3 = 0

Answer:
x1 = 0
x2 = 0
x3 = 0

3.
2x1 − 2x2 + x3 = 6
x1 + x2 − x3 = −2

x2 + 3x3 = 5
Answer:

x1 = 1
x2 = −1
x3 = 2

Exercise 2.4.3 For each of the consistent systems in Exercise 2.4.2, write
the solution set in parametric form. Either assign parameters to any free
variables, or be sure to clearly indicate which variables (if any) are free.(Note:
you may need to perform additional row operations.)

1.
x1 = 1− 2t
x2 = t
x3 = 2

, t ∈ R
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2.

x1 = 1 + t
x2 = 2− 3t
x3 = t
x4 = −4

, t ∈ R

3. This system is inconsistent.

4.
x1 = −11/3
x2 = 10/3
x3 = −2/3

5.

x1 = 4− 2t+ 2s
x2 = t
x3 = 2− 4s
x4 = −2 + 5s
x5 = −s
x6 = s

, s, t ∈ R

6.

x1 = 2− 2t+ 2s− 2u
x2 = t
x3 = s
x4 = −3 + 5u
x5 = u

, s, t, u ∈ R

7. This system is inconsistent.

8.
x1 = −8
x2 = 5
x3 = t

, t ∈ R

Chapter 2 Additional Exercises

1. Solve each linear system by using row reduction on the associated aug-
mented matrix.
Note: Solutions are presented here in various forms: as an ordered
n-tuple, in vector parametric, or in parametric form.

a.
x1 + 2x2 + x3 = 1
3x1 + 5x2 + 3x3 = 4
2x1 + x2 + x3 = 4

Answer: (2,−1, 1)
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b.
x1 − x3 = 2
2x1 + x2 + 2x3 = −6
3x1 + 2x2 + 2x3 = −5

Answer: x⃗ = ⟨−1, 2,−3⟩

c.
−2x1 + 2x2 − 3x3 − 2x4 = −8
3x1 − 3x2 + 3x3 + x4 = 10
2x1 − 2x2 + 2x3 = 4

Answer:

x1 = 6 + t
x2 = t
x3 = −4
x4 = 4

, t ∈ R

d.
−2x1 − 6x2 + 4x3 − 8x4 + 32x5 = 18
3x1 + 9x2 + x3 − 2x4 − 6x5 = 8

Answer:

x⃗ = ⟨1, 0, 5, 0, 0, ⟩+ s⟨−3, 1, 0, 0, 0⟩+ t⟨0, 0, 2, 1, 0⟩+ ⟨4, 0,−6, 0, 1⟩

2. Determine all values of b, if any, such that the system of equations
having the given augmented matrix is consistent.

a.

[
2 b 3

−1 3 4

]
Answer b ̸= −6

b.

[
4 3 −2
6 1 b

]
Answer b is any real number

c.

[
4 6 b
6 9 12

]
Answer b = 8

3. For each system of equations, determine all value(s) of b and c, if any,
such that the system of equations has (i) no solution, (ii) a unique
solution, and (iii) infinitely many solutions.

a.
x1 + 3x2 = 2
3x1 + bx2 = c
Answer

(i) b = 9 and c ̸= 6,

(ii) b ̸= 9,
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(iii) b = 9 and c = 6

b.
bx1 − 2x2 = 5
4x1 + 7x2 = c
Answer

(i) b = −8/7 and c ̸= −35/2,

(ii) b ̸= −8/7,

(iii) b = −8/7 and c = −35/2

c.
3x1 + bx2 = 0
cx1 + 4x2 = 0
Answer

(i) the system consistent for all b and c,

(ii) all b and c such that bc ̸= 12,

(iii) all b and c such that bc = 12

4. Create your own specific example of

a. a system of linear equations with three equations and two variables
that has a unique solution.
Answer: Answers will vary.

b. a system of linear equations with three equations and two variables
that is inconsistent.
Answer: Answers will vary.

c. a system of linear equations with three equations and two variables
that has infinitely many solutions.
Answer: Answers will vary.

d. a linear equation with one variable that has a unique solution.
Answer: Answers will be some version of ax1 = b with a ̸= 0.

e. a linear equation with one variable that is inconsistent.
Answer: Answers will be some version of the equation 0x1 = b
with b ̸= 0.

f. a linear equation with one variable that has infinitely many solu-
tions.
Answer: 0x1 = 0

5. Corollary 2.4.1 tells us that a system of linear equations that has more
variables than equations either has no solution or has infinitely many
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solutions. (Such a system cannot have a unique solution.) Create your
own specific example of

a. a linear equation with two variables that has no solution.
Answer: Answers will be some version of 0x1 + 0x2 = b with
b ̸= 0

b. a linear equation with two variables that has infinitely many so-
lutions.
Answer: Answers will vary.

c. a system of two linear equations with three variables that has no
solution.
Answer: Answers will vary.

d. a system of two linear equations with three variables that has
infinitely many solutions.
Answer: Answers will vary.

6. Find the solution set of the homogeneous system of linear equations
having the given coefficient matrix.

a.

 1 2 3
4 5 6
7 8 9

 Answer
x1 = x3

x2 = −2x3

x3 is free

b.

[
2 −1 7
3 1 3

]
Answer

x1 = −2t
x2 = 3t
x3 = t

, t ∈ R

c.

 1 2 1
3 5 3
2 1 1

 Answer (0, 0, 0)

d.

[
3 9 1 −2
1 3 −2 4

]
Answer

x1 = −3t
x2 = t
x3 = 2s
x4 = s

, t, s ∈ R

e.


1 3 4

−1 −5 −7
2 4 5
3 3 3

 Answer
x1 = 1

2
x3

x2 = −3
2
x3

x3 is free
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7. Find an equation satisfied by g, h, and k such that the given matrix is
the augmented matrix of a consistent linear system 1 −4 7 g

0 3 −5 h
−2 5 −9 k


Answer Row reduction to an ref results in a row of the form[

0 0 0 | 2g + h+ k
]
.

For the system to be consistent, the entry in the augment column must
be zero. So an equation in the parameters g, h and k is 2g+h+ k = 0.

8. Propane combines with oxygen to form carbon dioxide and water ac-
cording to the chemical equation

x1 C3H8 + x2 O2 −→ x3 CO2 + x4 H2O.

Balancing the number of atoms of carbon (C), hydrogen (H), and oxy-
gen (O) leads to the homogeneous system of equations

3x1 = x3

8x1 = 2x4

2x2 = 2x3 + x4

.

Show that this system is homogeneous. Find the smallest positive
integers x1, x2, x3, x4 that balance the chemical equation.
Answer If we write the system in the standard format, having all

variables on one side, the system is

3x1 − x3 = 0
8x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0
.

Every constant term is zero making the system homogeneous. The
solution is given parametrically by

x1 = 1
4
t

x2 = 5
4
t

x3 = 3
4
t

x4 = t

, t ∈ R.
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To obtain positive integers, we see that t must be a multiple of 4.
The smallest set of coefficients is obtained by taking t = 4. Then
x⃗ = ⟨1, 5, 3, 4⟩. The balanced equation is

C3H8 + 5 O2 −→ 3 CO2 + 4 H2O.

9. Boron sulfide and water react to produce boric acid and hydrogen sul-
fide gas according to the chemical equation

x1 B2S3 + x2 H2O −→ x3 H3BO3 + x4 H2S.

Balancing the number of atoms of boron (B), sulfer (S), hydrogen (H)
and oxygen (O) leads to the homogeneous system of equations

2x1 = x3

3x1 = x4

2x2 = 3x3 + 2x4

x2 = 3x3

.

Show that this system is homogeneous. Find the smallest positive
integers x1, x2, x3, x4 that balance the chemical equation.

Answer If we arrange the equations with all variables on the left, we
see that all constant terms are zero making the system homogeneous.

2x1 − x3 = 0
3x1 − x4 = 0

2x2 − 3x3 − 2x4 = 0
x2 − 3x3 = 0

.

The solution of this system is given parametrically by

x1 = 1
3
t

x2 = 2t
x3 = 2

3
t

x4 = t

, t ∈ R.

The smallest positive integer solution requires t = 3 giving x⃗ = ⟨1, 6, 2, 3⟩.
The balanced chemical equation is

B2S3 + 6 H2O −→ 2 H3BO3 + 3 H2S.
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x1 = 1
x2 = 6
x3 = 2
x4 = 3

10. Suppose A is an m × n matrix whose ith column is all zeros. Explain
why the ith column of rref(A) is all zeros.

Answer Any row operation performed on the matrix will result in some
linear combination of zeros replacing each entry in column i. Since
every linear combination of zeros is zero, the entries in that column
will remain zero.

11. Let

a⃗1 = ⟨1, 0, 1, 0⟩, a⃗2 = ⟨−1, 2, 1, 1⟩, a⃗3 = ⟨0, 0, 2, 2⟩, and a⃗4 = ⟨1, 1, 0,−1⟩.

Show that the vector y⃗ = ⟨2,−1, 3, 3⟩ in R4 is a linear combination
of the vectors a⃗1, a⃗2, a⃗3 and a⃗4, and identify the weights. (Hint: the
equation x1a⃗1 + x1a⃗1 + x1a⃗1 + x1a⃗1 = y⃗ can be translated into a linear
system of equations for the weights x1, . . . , x4.)

Answer We use the algebra defined for vectors in R4 in Chapter 1.
Note that

x1a⃗1 + x1a⃗1 + x1a⃗1 + x1a⃗1 =

x1⟨1, 0, 1, 0⟩+ x2⟨−1, 2, 1, 1⟩+ x3⟨0, 0, 2, 2⟩+ x4⟨1, 1, 0,−1⟩ =

⟨x1 − x2 + x4, 2x2 + x4, x1 + x2 + 2x3, x2 + 2x3 − x4⟩.

Now, we set this linear combination equal to the vector y⃗ and create
an equation for each of the four entries.

⟨x1 − x2 + x4, 2x2 + x4, x1 + x2 + 2x3, x2 + 2x3 − x4⟩ = ⟨2,−1, 3, 3⟩

which implies

x1 − x2 + x4 = 2
+ 2x2 + x4 = −1

x1 + x2 + 2x3 = 3
+ x2 + 2x3 − x4 = 3
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We can use an augmented matrix with row reduction to show that the
system is consistent and to find a solution.

1 −1 0 1 2
0 2 0 1 −1
1 1 2 0 3
0 1 2 −1 3

 rref−→


1 0 0 0 −3
0 1 0 0 −2
0 0 1 0 4
0 0 0 1 3


Hence the system is consistent, meaning y⃗ can be written as a linear
combination of a⃗1, a⃗2, a⃗3 and a⃗4 with weights x1 = −3 x2 = −2, x3 = 4
and x4 = 3. That is

−3a⃗1 − 2a⃗2 + 4a⃗3 + 3a⃗4 = y⃗.

12. Determine whether the vector x⃗ = ⟨−1, 3, 1⟩ in R3 is a linear combina-
tion of the vectors u⃗ and v⃗, where

u⃗ = ⟨1, 1,−2⟩, and v⃗ = ⟨3, 2, 2⟩.

Answer: It is not. If we set up the equation

x⃗ = c1u⃗+ c2v⃗,

we get a system of three equations,

c1 + 3c2 = −1
c1 + 2c2 = 3

−2c1 + 2c2 = 1
.

Setting up and reducing the augmented matrix, 1 3 −1
1 2 3

−2 2 1

 rref−→

 1 0 0
0 1 0
0 0 1

 .

The system is inconsistent, so x⃗ is not a linear combination of u⃗ and v⃗.
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A.3 Chapter 3 Exercises:

Exercise 3.1.1

For the 5× 4 matrix

A =


1 −2 −2 1
−6 −5 7 3
−4 −6 6 7
3 −5 −2 −6
−1 0 −5 −5

 ,

the entry in row 3 and column 3 of A is 6. We can express this fact by writing
either

a33 = 6 or A(3,3) = 6.

Likewise, we can write either

a24 = 3 or A(2,4) = 3.

Exercise 3.1.2:

1) The row vectors of the matrix

A =


8 4
−5 −5
3 −5
8 5


are vectors in R2. The column vectors of A are vectors in R4.

Exercise 3.2.1

Solutions for numbers 3 and 4:

For the matrices that A and B are the matrices

A =

 −2 3 −3
3 5 3
3 5 −5

 and B =

 2 0 1
1 1 −3
3 −5 5





A.3. CHAPTER 3 EXERCISES: 457

and the scalars c = −2 and d = 2, we have

B − A =

 2 0 1
1 1 −3
3 −5 5

−

 −2 3 −3
3 5 3
3 5 −5


=

 2− (−2) 0− 3 1− (−3)
1− 3 1− 5 −3− 3
3− 3 −5− 5 5− (−5)


=

 4 −3 4
−2 −4 −6
0 −10 10


and

cA = −2A

= −2

 −2 3 −3
3 5 3
3 5 −5


=

 (−2) (−2) (−2) (3) (−2) (−3)
(−2) (3) (−2) (5) (−2) (3)
(−2) (3) (−2) (5) (−2) (−5)


=

 4 −6 6
−6 −10 −6
−6 −10 10

 .

Exercise 3.2.3:
Solution for number 1: For c = −5 and

A =

[
1 0
−2 −3

]
and B =

[
1 1
−3 −3

]
,

we have

c (A+B) = −5

([
1 0
−2 −3

]
+

[
1 1
−3 −3

])
= −5

[
2 1
−5 −6

]
=

[
−10 −5
25 30

]
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and

cA+ cB = −5

[
1 0
−2 −3

]
+ (−5)

[
1 1
−3 −3

]
=

[
−5 0
10 15

]
+

[
−5 −5
15 15

]
=

[
−10 −5
25 30

]
.

We have verified that

c (A+B) = cA+ cB =

[
−10 −5
25 30

]
.

Exercise 3.3.1
Solutions for numbers 3 and 6:
3) For

A =

[
2 5
0 7

]
and B =

[
2 −4 −7
−7 0 −1

]
we have

AB =

[
2 5
0 7

] [
2 −4 −7
−7 0 −1

]
=

[
−31 −8 −19
−49 0 −7

]
and BA is not defined (because B has 3 columns and A has 2 rows).

6) For

A =

[
2 3
−4 2

]
and B =

[
0 3
−4 0

]
,

we have

AB =

[
2 3
−4 2

] [
0 3
−4 0

]
=

[
−12 6
−8 −12

]
and

BA =

[
0 3
−4 0

] [
2 3
−4 2

]
=

[
−12 6
−8 −12

]
.

We see that AB = BA.
Exercise 3.3.3
Solution for number 1: For the matrices

A =

[
3 0
1 3

]
, B =

[
1 5
2 0

]
, C =

[
−1 1
0 −2

]
,
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we have

A (B + C) =

[
3 0
1 3

]([
1 5
2 0

]
+

[
−1 1
0 −2

])
=

[
3 0
1 3

] [
0 6
2 −2

]
=

[
0 18
6 0

]
and

AB + AC =

[
3 0
1 3

] [
1 5
2 0

]
+

[
3 0
1 3

] [
−1 1
0 −2

]
=

[
3 15
7 5

]
+

[
−3 3
−1 −5

]
=

[
0 18
6 0

]
.

We have verified that

A (B + C) = AB + AC =

[
0 18
6 0

]
.

Exercise 3.3.4 We can verify that a given entry in (A+B)C is the same
as the corresponding entry in AC + BC. If we consider the entry in row i
and column j of (A+B)C, we have(

(A+B)C
)
(i,j)

= Rowi(A+B) · Colj(C).

But Rowi(A+B) = Rowi(A) +Rowi(B) from the definition of matrix addi-
tion. Using the given distributive property of the dot product,(

(A+B)C
)
(i,j)

= Rowi(A+B) · Colj(C)

=
(
Rowi(A) + Rowi(B)

)
· Colj(C)

= Rowi(A) · Colj(C) + Rowi(B) · Colj(C)

The first term in the sum is the entry
(
AC
)
(i,j)

in the product AC, and the

second term is the entry
(
BC
)
(i,j)

in the product BC. So their sum is the

entry in row i and column j of the sum AC +BC. That is(
(A+B)C

)
(i,j)

=
(
AC +BC

)
(i,j)

.
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This holds for all i = 1, . . . ,m and j = 1, . . . , n, so we can conclude that
(A+B)C = AC +BC.

Exercise 3.3.5 For the matrices

A =

[
3 0
1 3

]
, B =

[
1 5
2 0

]
, C =

[
−1 1
0 −2

]
,

we have

(A+B)C =

([
3 0
1 3

]
+

[
1 5
2 0

])[
−1 1
0 −2

]
=

[
4 5
3 3

] [
−1 1
0 −2

]
=

[
−4 −6
−3 −3

]
.

Also,

AC +BC =

[
3 0
1 3

] [
−1 1
0 −2

]
+

[
1 5
2 0

] [
−1 1
0 −2

]
=

[
−3 3
−1 −5

]
+

[
−1 −9
−2 2

]
=

[
−4 −6
−3 −3

]
.

This shows that

(A+B)C = AC +BC =

[
−4 −6
−3 −3

]
.

Exercise 3.4.1:
If A has size 5× 7 and B has size 7× 3, then AT has size 7× 5, BT has

size 3× 7, and (AB)T has size 3× 5.
Exercise 3.4.3:
Solution for number 1:
For

A =

 −4 0
1 2
−3 1

 and c = 3,
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we have

(cA)T =

3

 −4 0
1 2
−3 1

T

=

 −12 0
3 6
−9 3

T

=

[
−12 3 −9
0 6 3

]
and

c
(
AT
)
= 3


 −4 0

1 2
−3 1

T


= 3

[
−4 1 −3
0 2 1

]
=

[
−12 3 −9
0 6 3

]
.

We have shown that

(cA)T = c
(
AT
)
=

[
−12 3 −9
0 6 3

]
.

Exercise 3.4.5
Answer to the First Question: Only the first row of the matrix

A =

 1 2 −6
 ,

is given. Is it possible to fill in the remaining two rows of A in such a way
that the statement AT = A is true? If so, then do it. If not, then explain
why not.

Answer: It can be done. One way to do it is to let

A =

 1 2 −6
2 4 8
−6 8 53


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and we have AT = A.
Exercise 3.5.1:
Solutions for numbers 3, 7, and 9:
3) For

A =

 −2 2 5 −1
4 0 2 −1
1 −1 2 1

 , x⃗ = ⟨2,−3,−3, 5⟩ ,

we can compute Ax⃗ by computing

Row1 (A) · x⃗ = ⟨−2, 2, 5,−1⟩ · ⟨2,−3,−3, 5⟩ = −30

Row2 (A) · x⃗ = ⟨4, 0, 2,−1⟩ · ⟨2,−3,−3, 5⟩ = −3

Row3 (A) · x⃗ = ⟨1,−1, 2, 1⟩ · ⟨2,−3,−3, 5⟩ = 4

to obtain

Ax⃗ = ⟨Row1 (A) · x⃗,Row2 (A) · x⃗,Row3 (A) · x⃗⟩ = ⟨−30,−3, 4⟩ .

We can also compute Ax⃗ by computing

2Col1 (A) = ⟨−4, 8, 2⟩
−3Col2 (A) = ⟨−6, 0, 3⟩
−3Col3 (A) = ⟨−15,−6,−6⟩
5Col4 (A) = ⟨−5,−5, 5⟩

to obtain

Ax⃗ = x1Col1 (A) + x2Col2 (A) + x3Col3 (A) + x4Col4 (A) + x5Col5 (A)

= ⟨−4, 8, 2⟩+ ⟨−6, 0, 3⟩+ ⟨−15,−6,−6⟩+ ⟨−5,−5, 5⟩
= ⟨−30,−3, 4⟩

7 and 9) A matrix A and the vector x⃗ such that Ax⃗ =

⟨⟨6,−3,−2⟩ · ⟨1,−3, 1⟩ , ⟨5,−2, 2⟩ · ⟨1,−3, 1⟩ , ⟨−3,−3,−1⟩ · ⟨1,−3, 1⟩⟩

are

A =

 6 −3 −2
5 −2 2
−3 −3 −1

 and x⃗ = ⟨1,−3, 1⟩ .
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Here is how we write Ax⃗ as a linear combination of the column vectors of A:

Ax⃗ = (1) ⟨6, 5,−3⟩+ (−3) ⟨−3,−2,−3⟩+ (1) ⟨−2, 2,−1⟩ .

Exercise 3.5.3:
Suppose that A is a 4× 5 matrix and that B is a 5× 3 matrix and that

the second column of B consists entirely of entries of 0.

1. What size is the matrix AB?

Answer: AB has size 4× 3.

2. What can you say about the second column of AB?

Answer: The second column of AB is

Col2 (AB) = ACol2 (B) .

Since we are given that Col2 (B) = 0⃗5, then

Col2 (AB) = A0⃗5 = 0⃗4.

Exercise 3.5.4
We will give solutions for numbers 6, 8, and 10.
6) For

A =

[
a11 a12 a13 a14
a21 a22 a23 a24

]
, x⃗ = ⟨x1, x2⟩ ,

we can compute AT x⃗ by computing

Col1 (A) · x⃗ = ⟨a11, a21⟩ · ⟨x1, x2⟩ = a11x1 + a21x2

Col2 (A) · x⃗ = ⟨a12, a22⟩ · ⟨x1, x2⟩ = a12x1 + a22x2

Col3 (A) · x⃗ = ⟨a13, a23⟩ · ⟨x1, x2⟩ = a13x1 + a23x2

Col4 (A) · x⃗ = ⟨a14, a24⟩ · ⟨x1, x2⟩ = a14x1 + a24x2

to obtain

AT x⃗ = ⟨Col1 (A) · x⃗,Col2 (A) · x⃗,Col3 (A) · x⃗,Col4 (A) · x⃗⟩
= ⟨a11x1 + a21x2, a12x1 + a22x2, a13x1 + a23x2, a14x1 + a24x2⟩ .
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We can also compute AT x⃗ by computing

x1Row1 (A) = x1 ⟨a11, a12, a13, a14⟩ = ⟨a11x1, a12x1, a13x1, a14x1⟩
x2Row2 (A) = x2 ⟨a21, a22, a23, a24⟩ = ⟨a21x2, a22x2, a23x2, a24x2⟩

to obtain

AT x⃗ = x1Row1 (A) + x2Row2 (A)

= ⟨a11x1, a12x1, a13x1, a14x1⟩+ ⟨a21x2, a22x2, a23x2, a24x2⟩
= ⟨a11x1 + a21x2, a12x1 + a22x2, a13x1 + a23x2, a14x1 + a24x2⟩ .

8 and 10) A matrix A and the vector x⃗ such that

AT x⃗ = (−3) ⟨−4,−1⟩+ (−7) ⟨1, 0⟩+ (2) ⟨2,−2⟩

are

A =

 −4 −1
1 0
2 −2

 and x⃗ = ⟨−3,−7, 2⟩ .

We can also write AT x⃗ as follows:

AT x⃗ = ⟨⟨−4, 1, 2⟩ · ⟨−3,−7, 2⟩ , ⟨−1, 0,−2⟩ · ⟨−3,−7, 2⟩⟩

Exercise 3.5.5
For the matrices

A =

[
1 −4
1 4

]
and B =

[
−4 2
−2 −4

]
,

we want to verify by computation that

Row1 (AB) = BT Row1 (A)

and
Row2 (AB) = BT Row2 (A) .

So let us do the computations.
We have

AB =

[
1 −4
1 4

] [
−4 2
−2 −4

]
=

[
4 18

−12 −14

]
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from which we see that

Row1 (AB) = ⟨4, 18⟩
Row2 (AB) = ⟨−12,−14⟩ .

Also

BT Row1 (A) =

[
−4 −2
2 −4

]
⟨1,−4⟩

= (1) ⟨−4, 2⟩+ (−4) ⟨−2,−4⟩
= ⟨−4, 2⟩+ ⟨8, 16⟩
= ⟨4, 18⟩

and

BT Row2 (A) =

[
−4 −2
2 −4

]
⟨1, 4⟩

= (1) ⟨−4, 2⟩+ (4) ⟨−2,−4⟩
= ⟨−4, 2⟩+ ⟨−8,−16⟩
= ⟨−12,−14⟩

Exercise 3.6.1:

1) Write down the four standard unit vectors in R4.

Answer: The four standard unit vectors in R4 are

e⃗1 = ⟨1, 0, 0, 0⟩
e⃗2 = ⟨0, 1, 0, 0⟩
e⃗3 = ⟨0, 0, 1, 0⟩
e⃗4 = ⟨0, 0, 0, 1⟩ .

3) Let {e⃗1, e⃗2, e⃗3} be the set of standard unit vectors in R3 and let A be
the matrix

A =


3 0 1
3 1 −1
2 0 −1
1 0 −2

 .
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Compute Ae⃗1, Ae⃗2,and Ae⃗3. Write out the computations in detail. You
should observe that Ae⃗i = Coli (A) for all i = 1, 2, 3.

Solution:

Ae⃗1 = (1)Col1 (A) + (0)Col2 (A) + (0)Col3 (A) = Col1 (A) = ⟨3, 3, 2, 1⟩
Ae⃗2 = (0)Col1 (A) + (1)Col2 (A) + (0)Col3 (A) = Col2 (A) = ⟨0, 1, 0, 0⟩
Ae⃗3 = (0)Col1 (A) + (0)Col2 (A) + (1)Col3 (A) = Col3 (A) = ⟨1,−1,−1,−2⟩ .

5) Let A be the matrix given in problem 3 and let I3 be the 3× 3 identity
matrix and let I4 be the 4× 4 identity matrix. Verify by computation
that AI3 = A and I4A = A.

Solution:

Col1 (AI3) = ACol1 (I3) = Ae⃗1 = Col1 (A) = ⟨3, 3, 2, 1⟩
Col2 (AI3) = ACol2 (I3) = Ae⃗2 = Col2 (A) = ⟨0, 1, 0, 0⟩
Col3 (AI3) = ACol3 (I3) = Ae⃗3 = Col3 (A) = ⟨1,−1,−1,−2⟩ .

Since all three columns of AI3 are equal to the corresponding columns
of A, then AI3 = A.

Row1 (I4A) = AT Row1 (I4) = AT e⃗1 = Col1
(
AT
)
= Row1 (A)

Row2 (I4A) = AT Row2 (I4) = AT e⃗2 = Col2
(
AT
)
= Row2 (A)

Row3 (I4A) = AT Row3 (I4) = AT e⃗3 = Col3
(
AT
)
= Row3 (A)

Row4 (I4A) = AT Row4 (I4) = AT e⃗4 = Col4
(
AT
)
= Row4 (A) .

Since all three rows of I4A are equal to the corresponding rows of A,
then I4A = A.

7) Let {e⃗1, e⃗2, . . . , e⃗n} be the set of standard unit vectors in Rn. Then

e⃗i · e⃗i = for all i = 1, 2, . . . , n

and
e⃗i · e⃗j = for all i and j with i ̸= j.

Answer:
e⃗i · e⃗i = 1 for all i = 1, 2, . . . , n

and
e⃗i · e⃗j = 0 for all i and j with i ̸= j.
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9) Suppose that A is a 3× 3 matrix and suppose that B is a 3× 3 matrix
such that

ACol1 (B) = e⃗1

ACol2 (B) = e⃗2

ACol3 (B) = e⃗3

where e⃗1, e⃗2, and e⃗3 are the standard unit vectors in R3.

Then AB = .

Answer:

Col1 (AB) = ACol1 (B) = e⃗1

Col2 (AB) = ACol2 (B) = e⃗2

Col3 (AB) = ACol3 (B) = e⃗3

and thus AB = I3.

Exercise 3.7.1
Solution for number 1:
For the matrices

A =

[
3 −1
−1 −3

]
, B =

[
2 3
−1 −2

]
, C =

[
1 −3
2 3

]
,

we have

(AB)C =

([
3 −1
−1 −3

] [
2 3
−1 −2

])[
1 −3
2 3

]
=

[
7 11
1 3

] [
1 −3
2 3

]
=

[
29 12
7 6

]
and

A (BC) =

[
3 −1
−1 −3

]([
2 3
−1 −2

] [
1 −3
2 3

])
=

[
3 −1
−1 −3

] [
8 3
−5 −3

]
=

[
29 12
7 6

]
.
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This verifies that

(AB)C = A (BC) =

[
29 12
7 6

]
.

Exercise 3.8.1 Here are the solutions to numbers 3, 4, and 5.
3) For

A =


0 2 3
3 −1 2
2 2 3
3 −2 3

 and y⃗ = ⟨−1, 1,−3, 4⟩ ,

we perform row reduction on the augmented matrix of the equation Ax⃗ = y⃗
to obtain 

0 2 3
3 −1 2
2 2 3
3 −2 3

∣∣∣∣∣∣∣∣
−1
1
−3
4

→


1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
−1
−2
1
0

 .

We see that Ax⃗ = y⃗ is consistent because the rightmost column of the aug-
mented matrix is not a pivot column. In addition, every column of A is
a pivot column so Ax⃗ = y⃗ has a unique solution. The unique solution is
x⃗ = ⟨−1,−2, 1⟩.

4) For

A =


0 2 3
3 −1 2
2 2 3
3 −2 3

 and y⃗ = ⟨1,−1,−3, 4⟩ ,

we perform row reduction on the augmented matrix of the equation Ax⃗ = y⃗
to obtain 

0 2 3
3 −1 2
2 2 3
3 −2 3

∣∣∣∣∣∣∣∣
1
−1
−3
4

→


1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
0
0
0
1

 .

We see that Ax⃗ = y⃗ is inconsistent because the rightmost column of the
augmented matrix is a pivot column. The equation Ax⃗ = y⃗ has no solutions.

5) For

A =

 −4 2 −2 −4
4 0 0 2
3 −4 2 −3

 and y⃗ = ⟨−6, 4, 3⟩
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we perform row reduction on the augmented matrix of the equation Ax⃗ =
y⃗ to obtain −4 2 −2 −4

4 0 0 2
3 −4 2 −3

∣∣∣∣∣∣
−6
4
3

→

 1 0 0 1
2

0 1 0 13
4

0 0 1 17
4

∣∣∣∣∣∣
1
1
2

 .

We see that Ax⃗ = y⃗ is consistent because the rightmost column of the aug-
mented matrix is not a pivot column. Writing it out in system form, we see
that Ax⃗ = y⃗ is equivalent to the system

x1 + 1
2
x4 = 1

x2 + 13
4
x4 = 1

x3 + 17
4
x4 = 2

.

We see that x4 is a free variable (which we can call t) and that the above
system has the solution set

x1 = 1− 1

2
t

x2 = 1− 13

4
t

x3 = 2− 17

4
t

x4 = t.

Thus Ax⃗ = y⃗ has infinitely many solutions and these solutions all have the
form

x⃗ =

〈
1− 1

2
t, 1− 13

4
t, 2− 17

4
t, t

〉
where t can be any real number. We can also write the solution set as

x⃗ = ⟨1, 1, 2, 0⟩+ t

〈
1

2
,−13

4
,−17

4
, 1

〉
.

As a remark, since t is allowed to be any real number, then we can write
t = 4s where s is allowed to be any real number. Then we can write the
solution set as

x⃗ = ⟨1, 1, 2, 0⟩+ (4s)

〈
1

2
,−13

4
,−17

4
, 1

〉
= ⟨1, 1, 2, 0⟩+ s ⟨2,−13,−17, 4⟩
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where s can be any real number. Many people would rather use as few
fractions as possible and the above way of writing the solution set makes it
look “nicer” since fractions are not involved.

Exercise 3.8.2
We will answer numbers 2, 4, and 6.
2) Since

A =

[
−3 −1
9 3

]
→
[
1 1

3

0 0

]
,

we see that A does not have a pivot in every row. This means that there
exist some vectors y⃗ in R2 such that Ax⃗ = y⃗ is consistent and there exist
other vectors y⃗ in R2 for which Ax⃗ = y⃗ is inconsistent. Not every column of
A is a pivot column and this tell us that if y⃗ is a vector such that Ax⃗ = y⃗ is
consistent, then Ax⃗ = y⃗ has infinitely many solutions.

4) Since

A =

 0 5
1 5
−2 3

→

 1 0
0 1
0 0

 ,

we see that A does not have a pivot in every row. This means that there
exist some vectors y⃗ in R3 such that Ax⃗ = y⃗ is consistent and there exist
other vectors y⃗ in R3 for which Ax⃗ = y⃗ is inconsistent. Every column of A
is a pivot column and this tell us that if y⃗ is a vector such that Ax⃗ = y⃗ is
consistent, then Ax⃗ = y⃗ has a unique solution.

6) Since
A =

[
4 1 2

]
→
[
1 1

4
1
2

]
,

we see that A has a pivot in every row. This tells us that Ax⃗ = y⃗ is consistent
for any choice of vector y⃗ in R1. However, not every column of A is a pivot
column and this tell us that if y⃗ is a vector (really a scalar, since R1 is the set
of real numbers) such that Ax⃗ = y⃗ is consistent, then Ax⃗ = y⃗ has infinitely
many solutions.

Exercise 3.8.3
We will answer numbers 1 and 3.
1) For the matrix

A =

[
3 0
1 3

]
,

we have

rref (A) =

[
1 0
0 1

]
= I2.
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This tells us that the equation Ax⃗ = y⃗ has a unique solution for any choice
of vector y⃗ in R2.

3) For the matrix

A =

 −1 1 −2
1 −1 2
−2 1 0

 ,

we have

rref (A) =

 1 0 −2
0 1 −4
0 0 0

 ̸= I3.

This tells us that there are some vectors y⃗ in R3 such that Ax⃗ = y⃗ is in-
consistent and that there are also some vectors y⃗ in R3 such that Ax⃗ = y⃗
is consistent. Furthermore, if y⃗ is a vector such that Ax⃗ = y⃗ is consistent,
then Ax⃗ = y⃗ has infinitely many solutions.

Exercise 3.8.4:
To solve the equation AX = I2 where

A =

[
−1 −2
0 1

]
,

we form the augmented matrix

Â =

[
−1 −2
0 1

∣∣∣∣ 1 0
0 1

]
and perform row reduction to obtain

rref
(
Â
)
=

[
1 0
0 1

∣∣∣∣ −1 −2
0 1

]
.

Since rref (A) = I2, then rref
(
Â
)

=
[
I2
∣∣ X

]
where X is the unique

solution of AX = I2. Thus the unique solution of AX = I2 is

X =

[
−1 −2
0 1

]
.

It is a coincidence that the solution of AX = I2 happens to be X = A.
Exercise 3.9.3:
This is shown in the solution of Exercise 3.8.4.
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Exercise 3.9.4:

We will do number 3.

For the matrix

A =

 1
2

−1 −6
0 0 1
0 1

2
2

 ,

to find A−1 we form the augmented matrix

Â =
[
A In

]
=

 1
2

−1 −6
0 0 1
0 1

2
2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


and then do row reduction on Â to obtain

rref
(
Â
)
=

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
2 4 4
0 −4 2
0 1 0

 .

Thus

A−1 =

 2 4 4
0 −4 2
0 1 0

 .

Let us check that we got the right answer by computing AA−1 (using the
A−1 we found). We get

AA−1 =

 1
2

−1 −6
0 0 1
0 1

2
2

 2 4 4
0 −4 2
0 1 0

 =

 1 0 0
0 1 0
0 0 1

 = I3,

which shows that we have correctly found A−1.

Exercise 3.9.5

We will do number 3.

For the matrix and vector

A =

 −2 −2 0
0 0 −3
−1 2 1

 and y⃗ = ⟨4, 3,−8⟩ ,
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we can solve Ax⃗ = y⃗ by row–reducing the augmented matrix

Â =
[
A
∣∣ y⃗

]
=

 −2 −2 0
0 0 −3
−1 2 1

∣∣∣∣∣∣
4
3
−8


to obtain

rref
(
Â
)
=

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1
−3
−1

 .

This tells us that the unique solution of Ax⃗ = y⃗ is x⃗ = ⟨1,−3,−1⟩.
The other way to do this is to first compute

A−1 =

 −1
3

−1
9

−1
3

−1
6

1
9

1
3

0 −1
3

0


and then observe that the solution of Ax⃗ = y⃗ is

x⃗ = A−1y⃗

=
〈
Row1

(
A−1

)
· y⃗,Row2

(
A−1

)
· y⃗,Row3

(
A−1

)
· y⃗
〉

= ⟨1,−3,−1⟩ .

Exercise 3.9.7
Suppose that A and B, are n×n matrices and suppose that A is invertible

and B is not invertible. Explain why AB cannot be invertible.
Explanation: Suppose that A is invertible and AB is also invertible.

Then since A−1 is also invertible and the product of two invertible matrices
is invertible, it must be the case that A−1 (AB) is invertible. But by the
associative law of matrix multiplication,

A−1 (AB) =
(
AA−1

)
B = InB = B,

and thus B must be invertible.
We have shown that if A is invertible, then the only possible way to have

AB be invertible is to have B be invertible.
Another way to state the conclusion we have arrived it is that if A is

invertible and B is not invertible, then AB cannot be invertible.
Exercise 3.9.9
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We will do number 1: For the matrix

A =

[
−1 −2
5 1

]
,

we find by computation that

A−1 =

[
1
9

2
9

−5
9

−1
9

]
and that

AT =

[
−1 5
−2 1

]
and that (

A−1
)T

=

[
1
9

−5
9

2
9

−1
9

]
.

Next we observe that(
AT
) (

A−1
)T

=

[
−1 5
−2 1

] [
1
9

−5
9

2
9

−1
9

]
=

[
1 0
0 1

]
= I2

and this shows that
(
AT
)−1

= (A−1)
T
.

Chapter 3 Additional Exercises

1) Complete the following sentences by filling in one of the words “scalar”,
“vector”, or “matrix”.

(a) The sum of two vectors is a vector.

(b) The sum of two matrices is a .

(c) A scalar multiple of a vector is a vector.

(d) A scalar multiple of a matrix is a .

(e) The product of two matrices is a matrix.

(f) The dot product of two vectors is a .

(g) A linear combination of vectors is a vector.

(h) The product of a matrix and a vector is a .

(i) The transpose of a matrix is a .
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(j) The inverse of a matrix is matrix.

3) Suppose that the matrix B has row vectors

Row1 (B) = ⟨−6, 4, 4,−2⟩
Row2 (B) = ⟨5,−2, 5, 5⟩
Row3 (B) = ⟨3, 6, 2,−5⟩ .

Write down B and write down the column vectors of B.

Answer:

B =

 −6 4 4 −2
5 −2 5 5
3 6 2 −5


Col1 (B) = ⟨−6, 5, 3⟩
Col2 (B) = ⟨4,−2, 6⟩
Col3 (B) = ⟨4, 5, 2⟩
Col4 (B) = ⟨−2, 5,−5⟩ .

5) The m × n zero matrix is the m × n matrix that has all entries of 0.
This matrix is denoted by Om×n. Thus, for example,

O3×4 =

 0 0 0 0
0 0 0 0
0 0 0 0

 .

Explain why it makes sense to refer to Om×n as the additive identity
element for the set of all m× n matrices.

Answer: It makes sense to call Om×n as the additive identity element
for the set of all m×n matrices because if A is any m×n matrix, then
A+Om×n = A (and also Om×n + A = A).

7) For the matrices

A =

[
−2 −2 4 0
−2 −3 −1 2

]
and B =


1 2
0 2
3 3
−1 2

 ,
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compute AB and BA.

Solution:

AB =

[
Row1 (A) · Col1 (B) Row1 (A) · Col2 (B)
Row2 (A) · Col1 (B) Row2 (A) · Col2 (B)

]
=

[
10 4
−7 −9

]
and

BA =
Row1 (B) · Col1 (A) Row1 (B) · Col2 (A) Row1 (B) · Col3 (A) Row1 (B) · Col4 (A)
Row2 (B) · Col1 (A) Row2 (B) · Col2 (A) Row2 (B) · Col3 (A) Row2 (B) · Col4 (A)
Row3 (B) · Col1 (A) Row3 (B) · Col2 (A) Row3 (B) · Col3 (A) Row3 (B) · Col4 (A)
Row4 (B) · Col1 (A) Row4 (B) · Col2 (A) Row4 (B) · Col3 (A) Row4 (B) · Col4 (A)



=


−6 −8 2 4
−4 −6 −2 4
−12 −15 9 6
−2 −4 −6 4

 .

9) Suppose that A is an n × n matrix and let On×n be the n × n zero
matrix. (Refer to problem 5 above.) Explain why AOn×n = On×n.

Explanation: Since every column vector of On×n is equal to 0⃗n, then
for any i and j we have

Rowi (A) · Colj (On×n) = Rowi (A) · 0⃗n = 0.

Thus every entry of AOn×n is 0. This means that AOn×n = On×n.

11) Another property of real numbers that you are probably familiar with
is the “cancellation law” which says that if a, b, and c are real numbers
with a ̸= 0 and ab = ac, then b = c. A similar property does not, in
general, hold for matrices. Come up with an example of 2× 2 matrices
A, B, and C such that A ̸= O2×2 and AB = AC but B ̸= C.

Example: Let

A =

[
1 0
0 0

]
, B =

[
1 2
4 −8

]
, and C =

[
1 2
3 −8

]
.

Then A ̸= O2×2 and

AB =

[
1 0
0 0

] [
1 2
4 −8

]
=

[
1 2
0 0

]
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and

AC =

[
1 0
0 0

] [
1 2
3 −8

]
=

[
1 2
0 0

]
so AB = AC. However, B ̸= C.

13) Suppose that A is an m× n matrix. Explain why the matrix product
AAT is defined (is possible to carry out). What size is AAT ?

Explanation: If A has sizem×n, then AT has size n×m. The number
of columns of A and the number of rows of AT are the same. (Both
are n.) Thus AAT is defined and as size m ×m. Also, the number of
columns of AT and the number of rows of A are the same. (Both are
m.) Thus ATA is defined and as size n× n.

15) For the matrix and vector

A =

 −2 −1 1 1
−2 2 −2 −1
−2 2 2 −2

 and x⃗ = ⟨x1, x2, x3, x4⟩ ,

Compute Ax⃗ in two different ways: a) by using (3.6) and b) by using
(3.7).

Solution: First we will use (3.6).

Row1 (A) = ⟨−2,−1, 1, 1⟩
Row2 (A) = ⟨−2, 2,−2,−1⟩
Row3 (A) = ⟨−2, 2, 2,−2⟩

and thus

Row1 (A) · x⃗ = ⟨−2,−1, 1, 1⟩ · ⟨x1, x2, x3, x4⟩
= −2x1 − x2 + x3 + x4

and

Row2 (A) · x⃗ = −2x1 + 2x2 − 2x3 − x4

Row3 (A) · x⃗ = −2x1 + 2x2 + 2x3 − 2x4

This gives

Ax⃗ = ⟨−2x1 − x2 + x3 + x4,−2x1 + 2x2 − 2x3 − x4,−2x1 + 2x2 + 2x3 − 2x4⟩ .
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Now we will use (3.7).

Col1 (A) = ⟨−2,−2,−2⟩
Col2 (A) = ⟨−1, 2, 2⟩
Col3 (A) = ⟨1,−2, 2⟩
Col4 (A) = ⟨1,−1,−2⟩ .

Thus

x1Col1 (A) = ⟨−2x1,−2x1,−2x1⟩
x2Col2 (A) = ⟨−x2, 2x2, 2x2⟩
x3Col3 (A) = ⟨x3,−2x3, 2x3⟩
x4Col4 (A) = ⟨x4,−x4,−2x4⟩

and we see that

Ax⃗ = x1Col1 (A) + x2Col2 (A) + x3Col3 (A) + x4Col4 (A)

= ⟨−2x1 − x2 + x3 + x4,−2x1 + 2x2 − 2x3 − x4,−2x1 + 2x2 + 2x3 − 2x4⟩ .

17) Suppose that A is an n × n matrix and suppose that the vector x⃗ in
Rn is a solution of the homogeneous equation Ax⃗ = 0⃗n. Explain why
all of the row vectors of A are orthogonal to x⃗.

Explanation: Note that

Ax⃗ = ⟨Row1 (A) · x⃗,Row2 (A) · x⃗, . . . ,Rown (A) · x⃗⟩

by (3.6). If Ax⃗ = 0⃗n, then

⟨Row1 (A) · x⃗,Row2 (A) · x⃗, . . . ,Rown (A) · x⃗⟩ = ⟨0, 0, . . . , 0⟩

which means that Rowi (A) · x⃗ = 0 for all i = 1, 2, . . . , n. We know
that two vectors are orthogonal to each other if and only if their dot
product is equal to 0. Therefore Rowi (A) is orthogonal to x⃗ for all
i = 1, 2, . . . , n.

19) For the following matrices A and vectors y⃗, find the solution set of
the equation Ax⃗ = y⃗. Indicate whether the equation is inconsistent,
consistent with a unique solution, or consistent with infinitely many
solutions.



A.3. CHAPTER 3 EXERCISES: 479

(a)

A =

 0 −1 0
−1 −1 0
1 −1 −1

 and y⃗ = ⟨1,−3, 2⟩

Solution: The augmented matrix for Ax⃗ = y⃗ is

Â =

 0 −1 0
−1 −1 0
1 −1 −1

∣∣∣∣∣∣
1
−3
2


and we see that

rref
(
Â
)
=

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
4
−1
3

 .

This shows that Ax⃗ = y⃗ has the unique solution x⃗ = ⟨4,−1, 3⟩.

21) Write down the multiply–augmented matrix for the matrix equation
AX = I2 where A is the matrix

A =

[
1 4
3 0

]
and then perform row reduction on this multiply–augmented matrix to
find the solution of the equation AX = I2. (What you are doing here
is finding A−1.)

Solution: The multiply–augmented matrix for AX = I2 is

Â =

[
1 4
3 0

∣∣∣∣ 1 0
0 1

]
and we see that

rref
(
Â
)
=

[
1 0
0 1

∣∣∣∣ 0 1
3

1
4

− 1
12

]
.

This tells us that the unique solution of AX = I2 is

X =

[
0 1

3
1
4

− 1
12

]
.

Since X satisfies AX = I2, then X = A−1.
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23) Show that the matrix

A =

 1 2 3
4 5 6
7 8 9


is not invertible by studying the equation AX = I3.

Solution: The multiply–augmented matrix for AX = I3 is

Â =

 1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


and we see that

rref
(
Â
)
=

 1 0 −1
0 1 2
0 0 0

∣∣∣∣∣∣
0 −8

3
5
3

0 7
3

−4
3

1 −2 1

 .

Since that fourth column of Â is e⃗1 and this is a pivot column of Â (as
seen after performing the row reduction), then Ax⃗ = e⃗1 is inconsistent.
This means that AX = I3 is inconsistent. Therefore A is not invertible.

A.4 Chapter 4 Exercises:

Exercise 4.1.1 For each set of one or two vectors, determine whether the set
is linearly dependent or linearly independent.

1. x⃗ = ⟨1, 0, 1, 2⟩
Answer: It’s nonzero, the set {x⃗} is linearly independent.

2. x⃗1 = ⟨1,−1⟩, x⃗2 = ⟨−4, 4⟩
Answer: The set {x⃗1, x⃗2} is linearly dependent, x⃗2 = −4x⃗1.

3. x⃗1 = ⟨0, 0, 0, 0, 0⟩, x⃗2 = ⟨1, 2, 3, 4, 5⟩
Answer: The set {x⃗1, x⃗2} is linearly dependent, x⃗1 = 0x⃗2.

4. x⃗1 = ⟨3, 6, 18⟩, x⃗2 =
〈
1
3
, 2
3
, 2
〉

Answer: The set {x⃗1, x⃗2} is linearly dependent, x⃗1 = 9x⃗2
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5. x⃗1 = ⟨2, 1, 0⟩, x⃗2 = ⟨−1, 2, 0⟩
Answer: The set {x⃗1, x⃗2} is linearly independent. The vectors are not
scalar multiplies of each other.

Exercise 4.1.2 For each matrix A, determine if the columns are linearly
dependent or linearly independent. If dependent, find a linear dependence
relation.

1. A =

 1 2 3
4 5 6
7 8 9


Answer: Note that rref(A) =

 1 0 −1
0 1 2
0 0 0

. From this, we see that

the columns are linearly dependent, and

Col3(A) = −Col1(A) + 2Col2(A).

We can rearrange to get a linear dependence relation

Col1(A)− 2Col2(A) + Col3(A) = 0⃗3.

2. A =

 1 3 2
2 5 1
1 3 1


Answer: rref(A) = I3, so the columns are linearly independent.

Exercise 4.1.3 Without performing any computations explain why each of
the following sets of vectors is linearly dependent.

1. {⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 0⟩}
Answer: It includes the zero vector.

2. {⟨1, 2⟩, ⟨2, 1⟩, ⟨3, 0⟩}
Answer: There are three vectors in R2 (more vectors than components
in each).

3. {⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 1⟩, ⟨1,−1, 1⟩}
Answer: Similarly, there are four vectors in R3.
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4. {⟨1, 2, 1⟩, ⟨−1,−2,−1⟩, ⟨1, 0, 0⟩}
Answer: The second vector is a multiple of the first.

Exercise 4.1.4 For each set of vectors, determine if the set is linearly depen-
dent or linearly independent. If dependent, find a linear dependence relation.

1. {⟨1, 1, 2⟩, ⟨2,−1, 0⟩, ⟨1,−3, 1⟩}
Answer: They are independent. If we create a matrix with these as
columns, it row reduces to I3

2. {⟨1, 2, 0,−3⟩, ⟨−2,−4, 0, 6⟩, ⟨0, 2, 3, 1⟩, ⟨1, 6, 6,−1⟩}
Answer: They are linearly dependent. This can be found by creating a
matrix having these vectors as its column vectors. If we call the vectors
x⃗1, x⃗2, x⃗3 and x⃗4 in the order they’re given in, then a linear dependence
relation is any equation of the form

(2s− t)x⃗1 + sx⃗2 − 2tx⃗3 + tx⃗4 = 0⃗4,

with at least one of s or t being nonzero.

3. {⟨0, 4,−2, 5⟩, ⟨3, 7,−5,−4⟩, ⟨1, 5,−3, 2⟩}
Answer: They are linearly dependent. Calling the vectors x⃗1, x⃗2 and
x⃗3, in the order given, a linear dependence relation is any equation of
the form

2tx⃗1 + tx⃗2 − 3tx⃗3 = 0⃗4

for t ̸= 0.

4. {⟨3, 1, 0,−1⟩, ⟨2, 0,−2, 8⟩, ⟨3, 1, 5, 4⟩}
Answer: These are linearly independent. Again, set up a matrix with
these as its columns, and do row reduction. All three columns will be
pivot columns.

Exercise 4.2.1 Determine whether each subset is a subspace of Rn for the
indicated value of n.
Details shown for 2., 4., and 5.

1. S = {⟨0, a⟩ ∈ R2 | a ∈ R}
Answer: This is a subspace. All three criteria can be established.
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2. T = {⟨1, a⟩ ∈ R2 | a ∈ R}
Answer: This is not a subspace. Note x⃗ = ⟨1, 0⟩ is in T , but 2x⃗ =
⟨2, 0⟩ is not in T . So T is not closed under scalar multiplication. (It’s
not closed under vector addition either.)

3. Q = {⟨0, 0, 0⟩} in R3

Answer: This is a subspace. All three criteria can be established.

4. P = {⟨k, k⟩ ∈ R2 | k = 1, 2, . . .}
Answer: This is not a subspace. For example, x⃗ = ⟨1, 1⟩ is in P , but
1
2
x⃗ =

〈
1
2
, 1
2

〉
is not in P . P is not closed under scalar multiplication.

Incidentally, P is closed under vector addition.

5. L = {⟨k, k⟩ ∈ R2 | k ∈ R}
Answer: This is a subspace. Here is a detailed justification for this
conclusion. First, L is nonempty, for example it contains the vector
⟨1, 1⟩. We should note that the property of vectors in L is that their
first and second entries are the same real number. We need to show
that this property is preserved when we add such vectors or scale them.
Suppose x⃗1 = ⟨k1, k1⟩ and x⃗2 = ⟨k2, k2⟩ are any vectors in L, and let c
be any scalar. Note that

x⃗1 + x⃗2 = ⟨k1 + k2, k1 + k2⟩,

and

cx⃗1 = ⟨ck1, ck1⟩.

Note that x⃗1+ x⃗2 and cx⃗1 satisfy the property necessary to be elements
of L. Hence L is a subspace of R2. We can also argue that L =
Span{⟨1, 1⟩}, and as a span, it is necessarily a subspace.

Exercise 4.2.2 Find a spanning set for each subspace of Rn.
Details shown for 3.

• Q = {⟨0, a⟩ ∈ R2 | a ∈ R}
Answer: Q = Span{⟨0, 1⟩}

• P = {⟨a, a, b⟩ ∈ R3 | a, b ∈ R}
Answer: P = Span{⟨1, 1, 0⟩, ⟨0, 0, 1⟩}
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• T = {⟨a, b, c, a+ b+ c⟩ ∈ R4 | a, b, c ∈ R}
Answer: T = Span{⟨1, 0, 0, 1⟩, ⟨0, 1, 0, 1⟩, ⟨0, 0, 1, 1⟩}. Note that an
element of T can be decomposed.

⟨a, b, c, a+ b+ c⟩ = ⟨a, 0, 0, a⟩+ ⟨0, b, 0, b⟩+ ⟨0, 0, c, c⟩
= a⟨1, 0, 0, 1⟩+ b⟨0, 1, 0, 1⟩+ c⟨0, 0, 1, 1⟩

Exercise 4.2.3 Consider the set of vectors

T = {⟨1, 0, 1, 1⟩, ⟨−2, 3, 0, 8⟩, ⟨4, 4, 5, 2⟩}.

1. Find a matrix A having row space RS(A) = Span(T ).
Answer: Answers can vary, but the obvious choice is the matrix whose
row vectors are the elements of A.

A =

 1 0 1 1
−2 3 0 8
4 4 5 2


2. Find a matrix A having columns space CS(A) = Span(T ).

Answer: Answers can vary, but the obvious choice is the matrix whose
column vectors are the elements of A.

A =


1 −2 4
0 3 4
1 0 5
1 8 2


Exercise 4.2.4 Find a spanning set for the null space N (A) where

A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2

 .

Answer: The solutions to Ax⃗ = 0⃗4 are given in vector parametric form
x⃗ = t

〈
−2

3
,−1

3
, 1
〉
. So N (A) = Span

{〈
−2

3
,−1

3
, 1
〉}

.

Exercise 4.2.5 For each matrix A, find a spanning set for each of the four
fundamental subspaces of A.
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1. A =


1 2 0 2
2 1 3 0
3 −1 7 3
2 0 4 0


Answer:

RS(A) = Span{⟨1, 2, 0, 1⟩, ⟨2, 1, 3, 0⟩, ⟨3,−1, 7, 3⟩, ⟨2, 0, 4, 0⟩},
CS(A) = Span{⟨1, 2, 3, 2⟩, ⟨2, 1,−1, 0⟩, ⟨0, 3, 7, 4⟩, ⟨2, 0, 3, 0⟩},
N (A) = Span {⟨−2, 1, 1, 0⟩} , and

N (AT ) = Span {⟨6/19,−16/19,−4/19, 1⟩} .

2. A =

 1 3 1 0 11
−1 1 4 1 0
−2 0 3 −1 −3


Answer:

RS(A) = Span{⟨1, 3, 1, 0, 11⟩, ⟨−1, 1, 4, 1, 0⟩, ⟨−2, 0, 3,−1,−3⟩},
CS(A) = Span{⟨1,−1,−2⟩, ⟨3, 1, 0⟩, ⟨1, 4, 3⟩, ⟨0, 1,−1⟩, ⟨11, 0,−3⟩},
N (A) = Span {⟨−2, 1,−1, 1, 0⟩, ⟨0,−4, 1, 0, 1⟩} , and

N (AT ) = Span {⟨0, 0, 0⟩} .

3. A =

 4 8 −3 1
−2 −4 5 −11
3 6 1 −9


Answer:

RS(A) = Span{⟨4, 8,−3, 1⟩, ⟨−2,−4, 5,−11⟩, ⟨3, 6, 1,−9⟩},
CS(A) = Span{⟨4,−2, 3⟩, ⟨8,−4, 6⟩, ⟨−3, 5, 1⟩, ⟨1,−11,−9⟩},
N (A) = Span {⟨−2, 1, 0, 0⟩, ⟨2, 0, 3, 1⟩} , and

N (AT ) = Span {⟨−17/14,−13/14, 1⟩} .

Exercise 4.3.1 Suppose S is a subspace of Rn for some n ≥ 2, and let
B = {u⃗2, . . . , u⃗k} be a basis for S. Explain why the number of vectors, k, in
the basis B must be less than or equal to n.
Answer: We know that if a set contains more vectors than there are compo-
nents in each vector, the set is linearly dependent (see Theorem 4.1.2). The
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basis B is a linearly independent set of vectors in Rn (each of its elements
has n components), so it contains at most n vectors.

Exercise 4.3.2 Find a basis for each subspace of Rn. You may wish to start
with the spanning sets you found for these same subspaces in Exercise 4.2.2,
but you should demonstrate that the set you claim is a basis is both a span-
ning set and is linearly independent.
Details shown for 3.

• Q = {⟨0, a⟩ ∈ R2 | a ∈ R}
Answer: Calling the basis B, B = {⟨0, 1⟩}.

• P = {⟨a, a, b⟩ ∈ R3 | a, b ∈ R}
Answer: Calling the basis B, B = {⟨1, 1, 0⟩, ⟨0, 0, 1⟩}.

• T = {⟨a, b, c, a+ b+ c⟩ ∈ R4 | a, b, c ∈ R}
Answer: Calling the basis B, B = {⟨1, 0, 0, 1⟩, ⟨0, 1, 0, 1⟩, ⟨0, 0, 1, 1⟩}.
It is a spanning set since we can write any element ⟨a, b, c, a+ b+ c⟩ of
T as a linear combination

⟨a, b, c, a+ b+ c⟩ = a⟨1, 0, 0, 1⟩+ b⟨0, 1, 0, 1⟩+ c⟨0, 0, 1, 1⟩.

To show that they are linearly independent, consider the matrix A
having these as its column vectors.

A =


1 0 0
0 1 0
0 0 1
1 1 1

 rref−→


1 0 0
0 1 0
0 0 1
0 0 0

 .

Since all columns are pivot columns, the columns of A, the vectors in
our set B, are linearly independent.

Exercise 4.3.3 Find a basis for N (A) and for N (AT ) for each matrix A.

1. A =

 1 3 0 1
2 6 0 2
3 9 1 2


Answer: A basis for N (A) is {⟨−3, 1, 0, 0⟩, ⟨−1, 0, 1, 1⟩} and a basis
for N (AT ) is {⟨−2, 1, 0⟩}.
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2. A =

 2 3 1
−3 5 8
4 2 −2


Answer: A basis for N (A) is {⟨1,−1, 1⟩} and a basis for N (AT ) is{〈

−26
19
, 8
19
, 1
〉}

.

Exercise 4.3.4 Consider the basis B = {⟨1, 1⟩, ⟨1,−1⟩} of R2.

1. Find [x⃗]B if x⃗ = ⟨1, 1⟩
Answer: [x⃗]B = ⟨1, 0⟩

2. Find [x⃗]B if x⃗ = ⟨1,−1⟩
Answer: [x⃗]B = ⟨0, 1⟩

3. Find [x⃗]B if x⃗ = ⟨0, 0⟩
Answer: [x⃗]B = ⟨0, 0⟩

4. Find [x⃗]B if x⃗ = ⟨2, 3⟩
Answer: [x⃗]B =

〈
5
2
,−1

2

〉
5. Find x⃗ if [x⃗]B = ⟨−1, 4⟩

Answer: x⃗ = −1⟨1, 1⟩+ 4⟨1,−1⟩ = ⟨3,−5⟩.

Exercise 4.3.5 For the subspace P in Example 4.3.9, construct the matrix B
whose columns are the basis elements in the order given. For each coordinate
vector [x⃗]B in R2, find the element x⃗ in P by using the matrix-vector product
x⃗ = B[x⃗]B.

Details: The matrix B =


1 0
0 0
0 1
0 0

.
1. [x⃗]B = ⟨1, 1⟩

Answer: B[x⃗]B =


1 0
0 0
0 1
0 0

[ 1
1

]
=


1
0
1
0

. So x⃗ = ⟨1, 0, 1, 0⟩.
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2. [x⃗]B = ⟨−3, 5⟩

Answer: B[x⃗]B =


1 0
0 0
0 1
0 0

[ −3
5

]
=


−3
0
5
0

. So x⃗ = ⟨−3, 0, 5, 0⟩.

3. [x⃗]B = ⟨x1, x2⟩

Answer: B[x⃗]B =


1 0
0 0
0 1
0 0

[ x1

x2

]
=


x2

0
x2

0

. So x⃗ = ⟨x1, 0, x2, 0⟩.

Exercise 4.3.6 Consider the vectors u⃗1, u⃗2, and u⃗3 in R5 given by

u⃗1 = ⟨1, 0, 0, 0, 0⟩, u⃗2 = ⟨1, 1, 0, 0, 0⟩, and u⃗3 = ⟨1, 1, 1, 0, 0⟩.

Let B = {u⃗1, u⃗2, u⃗3} be the ordered basis for the subspace S = Span(B) of
R5. Verify that the coordinate vectors, [u⃗i]B, of the basis elements are the
standard unit vectors in R3. That is, show that

[u⃗1]B = ⟨1, 0, 0⟩, [u⃗2]B = ⟨0, 1, 0⟩, and [u⃗3]B = ⟨0, 0, 1⟩.

Answer: This can be done using a matrix with the basis elements as col-
umn vectors, or it can be demonstrated by considering the coefficients when
expressing one of the basis elements as a linear combination. Note that if
u⃗1 = c1u⃗1 + c2u⃗2 + c3u⃗3, then [u⃗1]B = ⟨c1, c2, c3⟩. Since

u⃗1 = 1u⃗1 + 0u⃗2 + 0u⃗3,

the coefficients for u⃗1 as a linear combination of the basis elements are c1 = 1,
c2 = 0, and c3 = 0. This makes

[u⃗1]B = ⟨1, 0, 0⟩.

Similar observations lead to [u⃗2]B = ⟨0, 1, 0⟩, and [u⃗3]B = ⟨0, 0, 1⟩. To verify
using a matrix, we let B have column vectors from the basis elements (in the
given order).

B =


1 1 1
0 1 1
0 0 1
0 0 0
0 0 0

 .
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Note that if we compute Be⃗1, for the standard unit vector e⃗1 = ⟨1, 0, 0⟩ in
R3, we get 

1 1 1
0 1 1
0 0 1
0 0 0
0 0 0


 1

0
0

 =


1
0
0
0
0

 ,

which is u⃗1 from our basis. Similar computations show that Be⃗2 = u⃗2 and
Be⃗3 = u⃗3.

Exercise 4.3.7 Suppose n ≥ 2 and 1 ≤ k ≤ n. Let B = {u⃗1, . . . , u⃗k} be an
ordered basis of the subspace S = Span(B) of Rn. Explain why [u⃗i]B = e⃗i for
each i = 1, . . . , k. That is, explain why the coordinate vectors for the basis
elements are the standard unit vectors in Rk.

Hint: don’t worry about a bunch of computations, just consider the equa-
tion

u⃗i = c1u⃗1 + · · ·+ ciu⃗i + · · ·+ cku⃗k.

Answer: To express u⃗i as a linear combination of the basis elements, we
need the ith coefficient to be 1 and all the other coefficients to be zero. For
example,

u⃗1 = 1u⃗1 + 0u⃗2 + · · ·+ 0u⃗k,

making [u⃗1]B = ⟨1, 0, . . . , 0⟩ = e⃗1, and so forth. Note that since there are
k basis elements, this coordinate vector, e⃗1, has k entries—one 1 and k − 1
zeros.

Exercise 4.3.8 Find the dimension of the null space of the matrix

A =


1 2 5 3 3

−1 0 3 −1 −3
1 1 1 0 −1
1 1 1 4 7

 .

Answer: To identify the solution of Ax⃗ = 0⃗4, we row reduce
[
A | 0⃗4

]
.

[
A | 0⃗4

] rref−→


1 0 −3 0 1 0
0 1 4 0 −2 0
0 0 0 1 2 0
0 0 0 0 0 0

 .
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For x⃗ = ⟨x1, x2, x3, x4, x5⟩,

x1 = 3x3 − x5

x2 = −4x3 + 2x5

x4 = −2x5

,

with x3 and x5 free variables. So a solution to the homogeneous equation
has the form

x⃗ = x3⟨3,−4, 1, 0, 0⟩+ x5⟨−1, 2, 0,−2, 1⟩.

The set
{
⟨3,−4, 1, 0, 0⟩, ⟨−1, 2, 0,−2, 1⟩

}
is a basis and it contains two vec-

tors. So

dim
(
N (A)

)
= 2.

Exercise 4.3.9 Find the dimension of the null space of the matrix

B =


1 −1 1 1
2 0 1 1
5 3 1 1
3 −1 0 4
3 −3 −1 7

 .

Answer: Consider Bx⃗ = 0⃗5.

[
B | 0⃗5

] rref−→


1 0 0 1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 0
0 0 0 0 0

 .

A solution x⃗ = ⟨x1, x2, x3, x4⟩, satisfies

x1 = −x4

x2 = x4

x3 = x4

,

with x4 a free variable. So the vectors in N (B) have the form

x⃗ = x4⟨−1, 1, 1, 1⟩,
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and a basis is
{
⟨−1, 1, 1, 1⟩

}
, containing one vector.

dim
(
N (B)

)
= 1.

Exercise 4.3.10 Consider the matrix H.

H =


1 −2 0 0 3
0 0 1 0 −4
0 0 0 1 5
0 0 0 0 0

 .

1. Classify each column as a pivot column or a non-pivot column.
Answer: The pivot columns are the first, third and fourth, and the
non-pivot columns are the second and fifth.

2. Express each non-pivot column as a linear combination of one or more
pivot columns.
Answer: Since H is an rref,

Col2(H) = −2Col1(H),

Col5(H) = 3Col1(H)− 4Col3(H) + 5Col4(H).

3. Identify a basis for CS(H).
Answer: A basis is the set of pivot columns, {⟨1, 0, 0, 0⟩, ⟨0, 1, 0, 0⟩, ⟨0, 0, 1, 0⟩}.

Exercise 4.4.1 Find a basis for the column space of each matrix.

1. A =

 3 3 3
−1 −2 1
−5 −6 −3


Answer: {⟨3,−1,−5⟩, ⟨3,−2,−6⟩}

2. M =

 1 3 1 0 2
2 2 −2 4 0
3 1 −5 8 1


Answer: {⟨1, 2, 3⟩, ⟨3, 2, 1⟩, ⟨2, 0, 1⟩}
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3. X =


1 2 −1 4
0 0 3 −3
2 4 1 5
1 2 1 2
3 6 2 7


Answer: {⟨1, 0, 2, 1, 3⟩, ⟨−1, 3, 1, 1, 2⟩}

Exercise 4.4.2 Find bases for the row space, column space, and null space
of each matrix.

1. A =

 3 3 3
−1 −2 1
−5 −6 −3


Answer: Column {⟨3,−1,−5⟩, ⟨3,−2,−6⟩},
Row {⟨1, 0, 3⟩, ⟨0, 1,−2⟩},
null {⟨−3, 2, 1⟩}

2. M =

 1 3 1 0 2
2 2 −2 4 0
3 1 −5 8 1


Answer: Column {⟨1, 2, 3⟩, ⟨3, 2, 1⟩, ⟨2, 0, 1⟩},
Row {⟨1, 0,−2, 3, 0⟩, ⟨0, 1, 1,−1, 0⟩, ⟨0, 0, 0, 0, 1⟩},
null {⟨2,−1, 1, 0, 0⟩, ⟨−1, 1, 0, 1, 0⟩}

3. X =


1 2 −1 4
0 0 3 −3
2 4 1 5
1 2 1 2
3 6 2 7


Answer: Column {⟨1, 0, 2, 1, 3⟩, ⟨−1, 3, 1, 1, 2⟩},
Row {⟨1, 2, 0, 3⟩, ⟨0, 0, 1,−1⟩},
null {⟨−2, 1, 0, 0⟩, ⟨−3, 0, 1, 1⟩}

Exercise 4.5.1 Suppose A is a 10× 20 matrix.

1. If rank(A) = 7, what is nullity(A)?
Answer: nullity(A) = 20− 7 = 13

2. If rank(A) = 7, what is nullity(AT )?
Answer: nullity(AT ) = 10− 7 = 3
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3. If AT has 8 pivot columns, what is rank(A)?
Answer: rank(A) = rank(AT ) = 8

4. If dim
(
CS(AT )

)
= 9, how many free variables are there in any solution

to Ax⃗ = 0⃗10?
Answer: rank(A) = rank(AT ) = dim

(
CS(AT )

)
= 9. So nullity(A) =

20 − rank(A) = 20 − 9 = 11. There are eleven free variables (corre-
sponding to the 11 non-pivot columns).

5. What is the maximum possible rank of A?
Answer: The maximum rank if 10. There are at most 10 pivot posi-
tions since there are ten rows.

Exercise 4.5.2 Explain why the maximum rank of an m × n matrix is the
smaller of the two numbers, m and n.
Answer: The rank of a matrix is the number of pivot columns which is the
same as the number of pivot positions. Each pivot position is in a row and
a column, so the rank can’t exceed the smallest of these two numbers.

Exercise 4.5.3 Suppose A is an n× n matrix (so A is square). Explain why
if A is full rank, then nullity(A) = 0.
Answer: Since A is square the maximum rank is n. If A is full rank,
then rank(A) = n meaning that by the rank-nullity theorem nullity(A) =
n− rank(A) = n− n = 0.

Exercise 4.6.1: Verify that V =
{
0⃗
}

with operations as defined above

satisfies all of the axioms given in Definition 4.6.1 (and is thus a vector
space).

Proof:

1. The only vector in V is 0⃗ and 0⃗ + 0⃗ = 0⃗ ∈ V , so V is closed under
addition.

2. The only vector in V is 0⃗ and if c is any scalar then we have c⃗0 = 0⃗ ∈ V ,
so V is closed under scalar multiplication.

3. 0⃗ + 0⃗ = 0⃗ + 0⃗, so V satisfies the commutative property of addition.
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4.
(
0⃗ + 0⃗

)
+ 0⃗ = 0⃗ + 0⃗ = 0⃗ and 0⃗ +

(
0⃗ + 0⃗

)
= 0⃗ + 0⃗ = 0⃗, so V satisfies

the associative property of addition.

5. 0⃗ is clearly the zero vector of V .

6. It is clear that 0⃗ is the additive inverser of 0⃗ because 0⃗ + 0⃗ = 0⃗.

7. If c is any scalar then c
(
0⃗ + 0⃗

)
= c⃗0 = 0⃗ and c⃗0 + c⃗0 = 0⃗ + 0⃗ = 0⃗, so

the distributive property is satisfied.

8. If c and d are any two scalars, then (c+ d) 0⃗ = 0⃗ and c⃗0+d⃗0 = 0⃗+0⃗ = 0⃗.
Thus (c+ d) 0⃗ = c⃗0 + d⃗0.

9. If c and d are any two scalars then (cd) 0⃗ = 0⃗ and c
(
d⃗0
)
= c⃗0 = 0⃗ so

it is true that (cd) 0⃗ = c
(
d⃗0
)
.

10. (1) 0⃗ = 0⃗ by our definition of scalar multiplication. (Any scalar times
0⃗ is 0⃗ by definition.)

Exercise 4.6.3: Prove statements 2 and 4 of Theorem 4.6.1.
Proof of statement 2: We want to prove that if V is a vector space x⃗

is any vector in V , then there is only one vector that can serve as an additive
inverse for x⃗.

Suppose that x⃗ ∈ V and suppose that there are vectors y⃗ and z⃗ in V
that both serve as additive inverses for x⃗. This means that x⃗ + y⃗ = 0⃗ and
x⃗+ z⃗ = 0⃗. Hence x⃗+ y⃗ = x⃗+ z⃗. We can add z⃗ to both sides of this equation
to obtain

z⃗ + (x⃗+ y⃗) = z⃗ + (x⃗+ z⃗)

and then use the associative property to obtain

(z⃗ + x⃗) + y⃗ = (z⃗ + x⃗) + z⃗.

This gives
0⃗ + y⃗ = 0⃗ + z⃗

and (because 0⃗ is the additive identity element)

y⃗ = z⃗.
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We have proved that x⃗ cannot have two different additive inverses.
Proof of statement 4: We want to prove that if V is a vector space

and c is any scalar, then c⃗0 = 0⃗.
First note that one of the axioms tells us that we must have

c
(
0⃗ + 0⃗

)
= c⃗0 + c⃗0.

Since 0⃗ + 0⃗ = 0⃗ (because 0⃗ is the additive identity element), then we have

c⃗0 = c⃗0 + c⃗0.

We know that the vector c⃗0 has an additive inverse, denoted by −
(
c⃗0
)
. If

we add this to both sides of the above equation, we obtain

c⃗0 +
(
−
(
c⃗0
))

=
(
c⃗0 + c⃗0

)
+
(
−
(
c⃗0
))

.

We then use the associative property to obtain

c⃗0 +
(
−
(
c⃗0
))

= c⃗0 +
(
c⃗0 +

(
−
(
c⃗0
)))

.

This gives
0⃗ = c⃗0 + 0⃗

and since c⃗0 + 0⃗ = c⃗0, we have c⃗0 = 0⃗, which is what we wanted to prove.

Exercise 4.7.1 Let A =

[
a11 a12
a21 a22

]
be any element of M2×2. Show that

−1A is the additive inverse of A.
Answer: We have to show that −1A+A = O. This is what it means to be
the additive inverse. Using the operations defined back in section 3.2

−1A+ A =

[
−1a11 −1a12
−1a21 −1a22

]
+

[
a11 a12
a21 a22

]
=

[
−1a11 + a11 −1a12 + a12
−1a21 + a21 −1a22 + a22

]
=

[
0 0
0 0

]
.

Hence −1A is the additive inverse −A.
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Exercise 4.7.5 Consider the ordered basis B = {E11, E12, E21, E22} of M2×2

where

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
.

1. If A is any matrix in M2×2, then the coordinate vector [A]B is a vector
in Rk. Determine the value of k.
Answer: k = 4 (since there are four basis vectors)

2. Find the coordinate vectors [A]B and [B]B for the matrices

A =

[
2 −4
3 1

]
, and B =

[
−3 2
0 5

]
.

Answer: [A]B = ⟨2,−4, 3, 1⟩ and [B]B = ⟨−3, 2, 0, 5⟩

3. Evaluate A+B and confirm that [A]B + [B]B = [A+B]B

Answer: A + B =

[
−1 −2
3 6

]
, so [A + B]B = ⟨−1,−2, 3, 6⟩. Also

[A]B + [B]B = ⟨2,−4, 3, 1⟩+ ⟨−3, 2, 0, 5⟩ = ⟨−1,−2, 3, 6⟩. As expected,
they are the same.

4. Evaluate 5A and confirm that 5[A]B = [5A]B.

Answer: 5A =

[
10 −20
15 5

]
, so that [5A]B = ⟨10,−20, 15, 5⟩. Also

5[A]B = 5⟨2,−4, 3, 1⟩ = ⟨10,−20, 15, 5⟩. Again, they match.

5. Find the coordinate vectors for the elements of B. That is, find each
of [E11]B, [E12]B, [E21]B, and [E22]B.
Answer: [E11]B = ⟨1, 0, 0, 0⟩, [E12]B = ⟨0, 1, 0, 0⟩, [E21]B = ⟨0, 0, 1, 0⟩,
and [E22]B = ⟨0, 0, 0, 1⟩.

6. Can you make a conjecture about what the coordinate vectors should
be for the basis elements of a basis in general?
Answer: They should be the standard unit vectors e⃗i in Rk (where
k is the number of vectors in the basis). This makes sense because a
basis element is 1 times itself plus zero times each of the other basis
elements.
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Exercise 4.7.8 Let Zs be the subset of M2×2 whose entries sum to zero. That
is,

Zs =

{[
a b
c d

] ∣∣∣ a+ b+ c+ d = 0

}
.

Show that Zs is a subspace of M2×2.
Answer: The process followed in Example 4.7.2 can be followed here. The
zero matrix is obviously an element of Zs, so it’s not empty. If we let

A =

[
a11 a12
a21 a22

]
, and B =

[
b11 b12
b21 b22

]
be elements of Zs, then a11+a12+a21+a22 = 0 as well as b11+b12+b21+b22 = 0.
The sum

A+B =

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
,

and if we sum the elements, we get

a11 + b11 + a12 + b12 + a21 + b21 + a22 + b22 =

(a11 + a12 + a21 + a22) + (b11 + b12 + b21 + b22) = 0

So A+B is in Zs, making it closed under vector addition. Similarly, for any
scalar c,

cA =

[
ca11 ca12
ca21 ca22

]
,

and the sum of its entries is

ca11 + ca12 + ca21 + ca22 = c(a11 + a12 + a21 + a22) = c(0) = 0.

Hence cA is in Zs which is closed under scalar multiplication. We have
demonstrated that Zs is a subspace of M2×2.

Alternatively, we can produce a spanning set. An example is{[
−1 1
0 0

]
,

[
−1 0
1 0

]
,

[
−1 0
0 1

]}
.

Exercise 4.7.9 Let Ns be the subset of M2×2 whose entries sum to one. That
is,

Ns =

{[
a b
c d

] ∣∣∣ a+ b+ c+ d = 1.

}
.
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Show that Ns is not a subspace of M2×2.
Answer: We need only to show that one of the properties of a subspace is
violated, and this can be done by producing one example showing that the
set is not closed under one or the other operation (vector addition or scalar
multiplication). There are lots of examples to choose from. A simple one is

to consider the matrix A =

[
1 0
0 0

]
, which is clearly an element of Ns. If

we take any scalar different from one, for example let c = 2, we find that

cA =

[
2 0
0 0

]
.

The entries of cA sum to two, not one. So cA is not an element of Ns. Since
Ns is not closed under scalar multiplication, it is not a subspace of M2×2. It
is easy to verify that Ns is not closed under vector addition either.

Exercise 4.7.10 Let D be the subspace of M2×2 of diagonal matrices. That
is

D =

{[
a 0
0 d

] ∣∣∣ a, d ∈ R

}
.

Show that the set B =

{[
1 0
0 0

]
,

[
0 0
0 1

]}
is a basis for D.

Answer: We have to show that B is linearly independent and spans D. If
we take any element of D, we see that[

a 0
0 d

]
= a

[
1 0
0 0

]
+ d

[
0 0
0 1

]
.

So B spans D. If we consider the homogeneous equation

c1

[
1 0
0 0

]
+ c2

[
0 0
0 1

]
=

[
0 0
0 0

]
,

then equating each entry, we see that c1 = c2 = 0. So B is linearly indepen-
dent, and hence is a basis for D.

Exercise 4.7.11: Let S =
{
a⃗, b⃗
}

where an = 3 for all n and bn = (−1)n n2

for all n. Thus

a⃗ = ⟨3, 3, 3, 3, 3, . . .⟩
b⃗ = ⟨−1, 4,−9, 16,−25, . . .⟩ .
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1. Explain why the vector 0⃗ = ⟨0, 0, 0, 0, 0, . . .⟩ is in Span
{
a⃗, b⃗
}
.

Explanation:

0a⃗+ 0⃗b = 0 ⟨3, 3, 3, 3, 3, . . .⟩+ 0 ⟨−1, 4,−9, 16,−25, . . .⟩
= ⟨0, 0, 0, 0, 0, . . .⟩+ ⟨0, 0, 0, 0, 0, . . .⟩
= ⟨0, 0, 0, 0, 0, . . .⟩
= 0⃗

and thus 0⃗ is a linear combination of a⃗ and b⃗. Therefore 0⃗ ∈ Span
{
a⃗, b⃗
}
.

3. Prove that Span
{
a⃗, b⃗
}
̸= R∞.

Proof: Span
{
a⃗, b⃗
}

consists of all linear combinations of a⃗ and b⃗.

Hence every vector in Span
{
a⃗, b⃗
}
has the form

sa⃗+ t⃗b = s ⟨3, 3, 3, 3, 3, . . .⟩+ t ⟨−1, 4,−9, 16,−25, . . .⟩
= ⟨3s− t, 3s+ 4t, 3s− 9t, 3s+ 16t, 3s− 25t, . . .⟩ .

To show that Span
{
a⃗, b⃗
}

̸= R∞, we just need to come up with an

example of a vector, c⃗, in R∞ that is not a linear combination of a⃗ and
b⃗. How do we make up such and example? We, let’s see if we can come
up with a c⃗ that has 1 and 11 as its first two components. Thus let us
take c⃗ to be of the form

c⃗ = ⟨1, 11, c3, c4, . . .⟩ .

In order to have sa⃗+ t⃗b = c⃗ for some scalars s and t, we must have

3s− t = 1

3s+ 4t = 11.

The unique solution of this system of equations is s = 1, t = 2. This
completely determines what every entry of c⃗ must be is we are to have
sa⃗+ t⃗b = c⃗. We must have c3 = 3 (1)−9 (2) = −15, c4 = 3 (1)+16 (2) =
35, etc. Hence the vector

c⃗ = ⟨1, 11, 27, anything, anything, . . .⟩

is not in Span
{
a⃗, b⃗
}
.
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Exercise 4.7.13

1. Let a⃗ = ⟨1, 2, 3, 4, 5, . . .⟩ and b⃗ = ⟨2, 3, 4, 5, 6, . . .⟩. What is the dimen-

sion of the subspace S = Span
{
a⃗, b⃗
}
? Explain.

Answer: We claim that dim (S) = 2. To prove this, we need to prove
that S is linearly independent. This means we need to show that the
equation x1a⃗ + x2⃗b = 0⃗ has only the trivial solution. Writing this
equation out, we have

x1 ⟨1, 2, 3, 4, . . .⟩+ x2 ⟨2, 3, 4, 5, . . .⟩ = ⟨0, 0, 0, 0, 0, . . .⟩

or

⟨x1 + 2x2, 2x1 + 3x2, 3x1 + 4x2, 4x1 + 5x2, . . .⟩ = ⟨0, 0, 0, 0, 0, . . .⟩ .

This gives a system of linear equations with infinitely many equations
and two unknowns:

x1 + 2x2 = 0

2x1 + 3x2 = 0

3x1 + 4x2 = 0

etc.

We only need to consider the first two equation in this system to prove
our point. The first two equations are the system give the system

x1 + 2x2 = 0

2x1 + 3x2 = 0

which can easily be seen to have only the trivial solution x1 = x2 = 0.
This means that the infinite set of equations also have only the trivial
solution. Therefore S is linearly independent and dim (S) = 2.

3. Let e⃗1 = ⟨1, 0, 0, 0, 0, . . .⟩, e⃗2 = ⟨0, 1, 0, 0, 0, . . .⟩ and e⃗3 = ⟨0, 0, 1, 0, 0, . . .⟩.
(Thus e⃗1 has 1 as its first entry and all other entries are 0, etc.) What
is the dimension of Span {e⃗1, e⃗2, e⃗3}? Explain.

Answer: We claim that dim (Span {e⃗1, e⃗2, e⃗3}) = 3. To see why this is
true, we need to show that the set {e⃗1, e⃗2, e⃗3} is linearly independent.
Consider the equation

x1e⃗1 + x2e⃗2 + x3e⃗3 = 0⃗.
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This is
⟨x1, x2, x3, 0, 0, . . .⟩ = ⟨0, 0, 0, 0, 0, . . .⟩

which clearly has only the trivial solution x1 = x2 = x3 = 0.

Since {e⃗1, e⃗2, e⃗3} is a set of three linearly independent vectors, then
dim (Span {e⃗1, e⃗2, e⃗3}) = 3.

Exercise 4.7.17 Let F0 be the subset of C0(R) of functions that take the
value of zero at zero. That is,

F0 =
{
f ∈ C0(R) | f(0) = 0

}
.

Determine whether F0 is a subspace of C0(R). That is, either show that F0

is a subspace of C0(R), or demonstrate that F0 is not closed under vector
addition or scalar multiplication.
Answer: F0 is a subspace. First, the zero function z(x) = 0 is in F0 because
z(0) = 0. So F0 is not empty. (We could use a more interesting example
such as the sine function, since sin(x) is continuous on R and sin(0) = 0.) If
we consider any elements, f and g in F0, then

f(0) = 0 and g(0) = 0.

Note that their sum, f(x) + g(x) satisfies

f(0) + g(0) = 0 + 0 = 0.

And if c is any scalar, then the scalar multiple cf satisfies

cf(0) = c(0) = 0.

Hence F0 is closed under both operations making it a subspace of C0(R)

Exercise 4.7.20 Consider the vector space P4.

1. Determine which of the following are vectors in P4.

(a) p(x) = 2 + 3x− x2 + 2x3 + 4x4

Answer This is a vector in P4.

(b) q(x) = 2 + 3x2 − 9x3 + 2x4

Answer This is a vector in P4.
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(c) f(x) = −12 + x+ 5x2 − 6x3

Answer This is a vector in P4.

(d) r(x) = 21x3 − 4x5

Answer This is not a vector in P4. The degree exceeds 4.

2. Let f(x) = 2x+ x3 − 14x4 and g(x) = −3 + 4x2 − 5x3 + 10x4.

(a) evaluate 2f(x)
Answer 2f(x) = 4x+ 2x3 − 28x4.

(b) evaluate 3g(x)
Answer 3g(x) = −9 + 12x2 − 15x3 + 30x4.

(c) evaluate f(x)− g(x)
Answer f(x)− g(x) = 3 + 2x− 4x2 + 6x3 − 24x4.

(d) identify −g(x)
Answer −g(x) = 3− 4x2 + 5x3 − 10x4

Exercise 4.7.21 Let P2,1 denote the set of all polynomials, p(x) = p0+p1x+
p2x

2 of degree at most 2 with real coefficients that satisfy p(1) = 0.

1. Determine which of the following are elements of P2,1.

(a) g(x) = 2− 3x− x2

Answer: g(1) = −2, g is not in P2,1

(b) f(x) = 2− 3x+ x2

Answer: f(1) = 0, f is in P2,1

(c) q(x) = 4x2 + 2x− 6
Answer: q(1) = 0, q is in P2,1

2. Show that P2,1 is closed with respect to vector addition and scalar
multiplication.
Answer: Suppose f1 and f2 are elements of P2,1, and let c be any
scalar. Note that since f1 and f2 are in P2,1, we know that f1(1) = 0
and f2(1) = 0. Using the definition of vector addition in P2, evaluating
the sum at x = 1,

(f1 + f2)(1) = f1(1) + f2(1) = 0 + 0 = 0.
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Similarly, the evaluating the scalar multiple cf1 at x = 1,

(cf1)(1) = cf1(1) = c(0) = 0.

That is, the sum of elements in P2,1 are in P2,1, and scalar multiples
of elements of P2,1 are in P2,1. This set is closed under vector addition
and scalar multiplication.

3. Verify that every element of P2,1 can be written in the form p(x) =
p1(x − 1) + p2(x

2 − 1). Note that we can say that P2,1 = Span{x −
1, x2 − 1}.
Answer: Let p(x) = p0 + p1x+ p2x

2 be any element of P2,1. Then

p(1) = p0 + p1(1) + p2(1)
2 = p0 + p1 + p2 = 0.

This gives an equation relating the values of p0, p1, and p2, namely

p0 = −p1 − p2.

So we can replace p0 in p(x) and write

p(x) = −p1 − p2 + p1x+ p2x
2,

which we can rearrange in the form

p(x) = p1(x− 1) + p2(x
2 − 1).

Exercise 4.7.23 Determine whether the indicated set is linearly independent
or linearly dependent in the indicated vector space.

2. {1 + x, 1− x} in P1.
Answer: These are linearly independent.

3. {1 + x, 1− x, 2− 3x} in P1.
Answer: These are linearly dependent. For example,

(1 + x)− 5(1− x) + 2(2− 3x) = 0 + 0x = 0⃗(x).
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Exercise 4.7.25: Show that the set of functions S = {ex, e2x} is linearly
independent and thus dim (Span (S)) = 2.

Solution: We need to show that the equation

c1e
x + c2e

2x = 0 for all x ∈ R

has only the trivial solution c1 = c2 = 0.
Since we require that the above equation is true for all x ∈ R, then we

can set x = 0 to obtain
c1 + c2 = 0.

We can also set x = ln (2)

c1e
ln(2) + c2e

ln(4) = 0

which can be written as
2c1 + 4c2 = 0.

The system of equations

c1 + c2 = 0

2c1 + 4c2 = 0

has only the trivial solution. Therefore S is linearly independent.

Exercise 4.8.2 Let B = {E11, E12, E21, E22} be the ordered basis of M2×2

where

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
.

Use coordinate vectors to determine whether the following collection of vec-
tors is linearly dependent or linearly independent in M2×2.

A1 =

[
1 1
0 1

]
, A2 =

[
2 −1
1 −2

]
, A3 =

[
0 2
1 3

]
, A4 =

[
1 6
0 8

]
.

Answer: We determine the coordinate vectors,

[A1]B = ⟨1, 1, 0, 1⟩, [A2]B = ⟨2,−1, 1,−2⟩

[A3]B = ⟨0, 2, 1, 3⟩, [A4]B = ⟨1, 6, 0, 8⟩.
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Using these a column vectors, we can find an rref.
1 2 0 1
1 −1 2 6
0 1 1 0
1 −2 3 8

 rref−→


1 0 0 3
0 1 0 −1
0 0 1 1
0 0 0 0

 .

We see that there is a non-pivot column, so the columns are linearly depen-
dent. We can conclude that the set {A1, A2, A3, A4} is linearly dependent in
M2×2.

Chapter 4 Additional Exercises

1. Prove statement a. of Theorem 4.1.2. That is, show that any set of
vectors in Rn that includes the zero vector, 0⃗n, is linearly dependent.

Answer: Let k ≥ 0 and suppose we have a set of vectors S ={
0⃗n, u⃗2, u⃗3, . . . , u⃗k

}
that includes the zero vector. Note that we can

form the linear dependence relation

1⃗0n + 0u⃗2 + 0u⃗3 + · · ·+ 0u⃗k = 0⃗n.

This is a valid linear dependence relation because at least one coefficient
(the first one shown in the equation) is nonzero. Hence S is linearly
dependent.

2. Prove that the set {⃗0n} is a subspace of Rn for any n ≥ 2.

Answer: The set if nonempty since is contains the zero vector. This
vector also satisfies that all linear combinations of it are the zero vector
(that is, when we scale the zero vector or add it to itself, we always
get the zero vector). So the set is closed under both vector addition
and scalar multiplication. So the set {⃗0n} satisfies the three conditions
necessary to be a subspace.

3. Prove that if S is an subspace of Rn, then S must contain the zero
vector, 0⃗n.

Answer: Since S is nonempty (that’s a property of a subspace), it
contains at least one vector which we can call x⃗. As a subspace, S
must be closed under scalar multiplication, so S must contain cx⃗ for
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every possible scalar c, including zero. So 0x⃗ = 0⃗n must be an element
of S.

4. Consider the subspace

S = Span{⟨1, 2, 1, 1⟩, ⟨3, 5, 3, 4⟩, ⟨1, 1, 1, 2⟩, ⟨2, 1, 1, 4⟩}

of R4. Find a basis for S.

Answer: If we create a matrix A having the vectors in the spanning
set as its column vectors, then S will be its column space. A basis will
be the pivot columns.

A =


1 3 1 2
2 5 1 1
1 3 1 1
1 4 2 4

 rref−→


1 0 −2 0
0 1 1 0
0 0 0 1
0 0 0 0

 .

The first, second and fourth columns are pivot columns, so a basis for
S is

{⟨1, 2, 1, 1⟩, ⟨3, 5, 3, 4⟩, ⟨2, 1, 1, 4⟩}.

5. Let n ≥ 2; suppose S is a subspace of Rn and B = {u⃗1, . . . , u⃗k} is a
basis for S where 1 ≤ k ≤ n. Explain why

[⃗0n]B = 0⃗k.

That is, explain why the coordinate vector for the zero vector in S
(which is the zero vector in Rn) must be the zero vector in Rk.

Answer: The elements of the basis are linearly independent. So the
only coefficients that satisfy

0⃗n = c1u⃗1 + c2u⃗2 + · · ·+ cku⃗k

are c1 = c2 = · · · = ck = 0. These are the entries of the coordinate
vector [⃗0n]B making it the zero vector in Rk.

6. Determine whether the columns of A are linearly independent or lin-
early dependent. If the columns are linearly dependent, find a linear
dependence relation.
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Note: Each of these can be determined by setting up the homogeneous
equation Ax⃗ = 0⃗m (where m is the number of rows of A). If there
are any non-pivot columns, they are linearly dependent, and a linear
dependence relation is any nontrivial solution.

(a) A =

 1 1 2
2 −1 0
1 −3 1


Answer: They’re independent.

(b) A =


1 −2 0 1
2 −4 2 6
0 0 3 6

−3 6 1 −1


Answer: They are dependent. Any linear dependence relation
will be some variation on

(2s− t) Col1(A) + sCol2(A)− 2tCol3(A) + tCol4(A) = 0⃗4.

(c) A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2


Answer: They are dependent. Any linear dependence relation
will be some variation on

2tCol1(A) + tCol2(A) + 3tCol3(A) = 0⃗4.

(d) A =


3 2 3
1 0 1
0 −2 5

−1 8 4


Answer: These are independent.

7. Verify that Pn satisfies axioms 1–4 and axioms 7–10 of Definition 4.6.1.
(Note that axioms 5 and 6 have already been discussed.)
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Answer: The first two axioms 1 and 2 are the closure axioms. Suppose
that p and q are elements of Pn. This means that they are polynomials
of degree at most n (i.e. n or less). Letting p(x) = p0+p1x+ . . .+pnx

n

and q(x) = q0 + q1x+ . . .+ qnx
n, then their sum

(p+ q)(x) = (p0 + q0) + (p1 + q1)x+ . . .+ (pn + qn)x
n,

and any scalar multiple of p,

cp(x) = cp0 + cp1x+ . . .+ cpnx
n,

are also polynomials of degree at most n (the degree can decrease, but
it can’t increase). Hence axioms 1 and 2 are satisfied. To show that
axiom 3 holds, we use the commutative property of real number (since
the coefficients are real numbers). Note that

p(x) + q(x) = (p0 + q0) + (p1 + q1)x+ . . .+ (pn + qn)x
n

= (q0 + p0) + (q1 + p1)x+ . . .+ (qn + pn)x
n

= q(x) + p(x).

For axiom 4, let r = r0 + r1x+ . . .+ rnx
n. Then

(
p(x) + q(x)

)
+ r(x) = (p0 + q0) + (p1 + q1)x+ . . .+ (pn + qn)x

n + r0 + r1x+ . . .+ rnx
n

= (p0 + q0 + r0) + (p1 + q1 + r1)x+ . . .+ (pn + qn + rn)x
n

=
(
p0 + (q0 + r0)

)
+

(
p1 + (q1 + r1)

)
x+ . . .+

(
pn + (qn + rn)

)
xn

= p0 + p1x+ . . .+ pnx
n + (q0 + r0) + (q1 + r1)x+ . . .+ (qn + rn)x

n

= p(x) +
(
q(x)) + r(x)

)
.

The additive identity and additive inverse properties have already been
considered. Moving on to axiom 7, letting c be any scalar,

c
(
p(x) + q(x)

)
= c
(
(p0 + q0) + (p1 + q1)x+ . . .+ (pn + qn)x

n
)

= c(p0 + q0) + c(p1 + q1)x+ . . .+ c(pn + qn)x
n

= (cp0 + cq0) + (cp1 + cq1)x+ . . .+ (cpn + cqn)x
n

= cp0 + cp1x+ . . .+ cpnx
n + cq0 + cq1x+ . . .+ cqnx

n

= c(p0 + p1x+ . . .+ pnx
n) + c(q0 + q1x+ . . .+ qnx

n)

= cp(x) + cq(x).
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Axiom 8 can be established similarly. Letting d be any scalar,

(c+ d)p(x) = (c+ d)p0 + (c+ d)p1x+ . . .+ (c+ d)pnx
n

= cp0 + dp0 + cp1x+ dp1x+ . . .+ cpnx
n + dpnx

n

= cp0 + cp1x+ . . .+ cpnx
n + dp0 + dp1x+ . . .+ dpnx

n

= cp(x) + dp(x).

For axiom 9, we have

c
(
dp(x)

)
= c
(
dp0 + dp1x+ . . .+ dpnx

n
)

= cdp0 + cdp1x+ . . .+ cdpnx
n

= (cd)
(
p0 + p1x+ . . .+ pnx

n
)

= (cd)p(x)

= (dc)p(x)

= (dc)
(
p0 + p1x+ . . .+ pnx

n
)

= dcp0 + dcp1x+ . . .+ dcpnx
n

= d
(
cp0 + cp1x+ . . .+ cpnx

n
)

= d
(
cp(x)

)
Then finally, axiom 10 follows immediately from the fact that 1pi = pi
for each real number pi. That is,

1p(x) = 1p0 + 1p1x+ . . .+ 1pnx
n = p0 + p1x+ . . .+ pnx

n = p(x).

8. For each statement, indicate whether the statement is true or false.
Give a brief explanation of reason for each conclusion.

(a) If A is an n× n matrix, then RS(A) = CS(A).

Answer: This is false. The have the same dimension (which is

always true), but consider

[
1 2
0 0

]
The row space is Span{⟨1, 2⟩},

but the column space is Span{⟨1, 0⟩}.
(b) If A is an n× n matrix, then dim

(
RS(A)

)
= dim

(
CS(A)

)
.

Answer: This is true. The rank, dimension of the row space and
dimension of the column space are all the same number. It doesn’t
matter if the matrix is square or not.
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(c) If A is a 3 × 3 matrix and rank(A) = 3, then the homogeneous
equation Ax⃗ = 0⃗3 has only the trivial solution.

Answer: True. This indicates that the nullity (A) = 3 − 3 = 0.
So the null space only includes the zero vector.

(d) The dimension of P5 is dim
(
P5

)
= 5.

Answer: This is false. The dimension is 6. In general dim
(
Pn

)
=

n + 1. The simplest basis is {1, x, x2, . . . , xn} which has n + 1
elements.

(e) If A is an m × n matrix with linearly dependent columns, then
the equation Ax⃗ = 0⃗m must have infinitely many solutions.

Answer: This is true. The system must be consistent, and A will
have non-pivot column(s) meaning there will be free variable(s).

(f) If A is an m × n matrix with linearly dependent columns, then
the equation Ax⃗ = y⃗ must have infinitely many solutions for any
y⃗ in Rm.

Answer: This is false. Such a system could be inconsistent. It
is the case that every consistent system will have infinitely many
solutions, but there’s no general guarantee that the system is con-
sistent.

(g) An element of a vector space is called a vector.

Answer: This is true. This is the most general definition of what
a vector is.

(h) If p is a vector in P4 and B is some basis of P4, then the coordinate
vector [p]B is a vector in R5.

Answer: This is true. Since dim
(
P4

)
= 5, the basis will have five

elements, and the coordinate vectors will be real five-tuples.

(i) For matrix A, if the first three rows of rref(A) are nonzero, then
the first three rows of A are linearly independent.

Answer: This is false. Row operations allow for swapping the or-
der of the rows and do not preserve the linear dependence relations
of the rows.

(j) For matrix A, if the first three column vectors of rref(A) are three
different standard unit vectors, then the first three columns of A
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are linearly independent.

Answer: This is true. This would mean that the first three
columns are pivot columns making them linearly independent.

9. For each matrix, find bases for the row space, the column space, and
the null space.

(a) A =

 1 2 −1 3
2 4 −2 6
1 4 0 0


Answer:

• A basis for N (A) is
{
⟨2,−1/2, 1, 0⟩, ⟨−6, 3/2, 0, 1⟩

}
.

• A basis for CS(A) is
{
⟨1, 2, 1⟩, ⟨2, 4, 4⟩

}
.

• A basis for RS(A) is
{
⟨1, 0,−2, 6⟩, ⟨0, 1, 1/2,−3/2⟩

}
.

(b) B =


1 2 1
3 5 0
4 6 −2
2 3 −1


Answer:

• A basis for N (A) is
{
⟨5,−3, 1⟩

}
.

• A basis for CS(A) is
{
⟨1, 3, 4, 2⟩, ⟨2, 5, 6, 3⟩

}
.

• A basis for RS(A) is
{
⟨1, 0,−5⟩, ⟨0, 1, 3⟩

}
.

(c) C =

 −2 2 −3 −2 −8
3 −3 3 1 10
2 −2 2 0 4


Answer:

• A basis for N (A) is
{
⟨1, 1, 0, 0, 0⟩, ⟨−6, 0, 4,−4, 1⟩

}
.

• A basis for CS(A) is
{
⟨−2, 3, 2⟩, ⟨−3, 3, 2⟩, ⟨−2, 1, 0⟩

}
.

• A basis forRS(A) is
{
⟨1,−1, 0, 0, 6⟩, ⟨0, 0, 1, 0,−4⟩, ⟨0, 0, 0, 1, 4⟩

}
.

10. The first three Chebyshev polynomials are

T0(x) = 1, T1(x) = x, and T2(x) = 2x2 − 1.
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(It is customary to use the notation Ti when writing these polynomials.)
Show that the set C = {T0, T1, T2} is a basis for P2.

Answer: We have to show that C spans P2 and is linearly independent.
If p(x) = p0 + p1x+ p2x

2 is any element of P2, we can write

p(x) = c1T0(x) + c2T1(x) + c3T2(x),

where c1 = p0 +
1
2
p2, c2 = p1, and c3 =

1
2
p2. To verify, note that

c1T0(x) + c2T1(x) + c3T2(x) = c1(1) + c2(x) + c3(2x
2 − 1)

= (p0 +
1

2
p2)(1) + p1x+

(
1

2
p2

)
(2x2 − 1)

= p0 +
1

2
p2 + p1x+

1

2
p2(2x

2)− 1

2
p2

= p0 + p1x+ p2x
2

= p(x).

So C spans P2. To show that C is linearly independent, we can consider
the homogeneous equation c1T0(x) + c2T1(x) + c3T2(x) = z(x).

c1 + c2x+ c3(2x
2 − 1) = 0 + 0x+ 0x2

(c1 − c3) + c2x+ 2c3x
2 = 0 + 0x+ 0x2.

Equating coefficients, we see that c1− c3 = 0, c2 = 0, and 2c3 = 0. The
last two equations show that c2 = c3 = 0, and substituting c3 = 0 into
the first equation, we see that c1 = 0 as well. The only solution is the
trivial solution, so C is linearly independent. We can conclude that C
is a basis for P2.

11. Suppose A is a 7× 10 matrix.

(a) If RS(A) is a subspace of Rk, what is k?

Answer: k = 10 because the row vectors are vectors in R10.

(b) If CS(A) is a subspace of Rk, what is k?

Answer: k = 7 because the column vectors are vectors in R7.

(c) If N (A) is a subspace of Rk, what is k?

Answer: k = 10 because Ax⃗ is defined for vectors in R10.
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(d) If rank(A) = 7, find nullity(A).

Answer: nullity(A) = 3 because rank(A) + nullity(A) = 10, the
total number of columns.

(e) If the homogeneous equation Ax⃗ = 0⃗7 has four free variables, what
is dim(RS(A))?

Answer: dim((RS(A)) = 6. The given means that nullity(A) =
4. Since rank(A)+nullity(A) = 10, this would make rank(A) = 6,
and the row space dimension is the same as the rank.

(f) If A is full rank, what is rank(A)? (Recall that full rank means
that the rank is the largest it can be.)

Answer: rank(A) = 7. The largest the rank can be is the smaller
of the number of rows and columns.

(g) If rank(A) = 4, find nullity(AT ).

Answer: nullity(AT ) = 3. Since rank(AT ) = rank(A), we can
use the rank-nullity theorem. The n value for AT is 7.

(h) If rank(AT ) = 6, what is dim(CS(A))?

Answer: dim(CS(A)) = 6 because rank(A) = rank(AT ), and the
rank is the dimension of the column space.

12. Which of the following sets, S, are subspaces of R∞? Explain your
answers.

(a) S = Span {⟨1, 3, 5, 7, . . .⟩ , ⟨2, 4, 6, 8, . . .⟩}
Answer: Yes. Any span of any set of vectors is a subspace.

(b) S = {a⃗ = ⟨a1, a2, a3, . . .⟩ ∈ R∞ | an ≥ 0 for all n = 1, 2, 3, . . .}

(c) S = {a⃗ ∈ R∞ | a⃗ diverges} (Note: This question requires knowl-
edge of Calculus II material.)

Answer: No, S is not a subspace of R∞. It does not contain the
zero vector 0⃗ = ⟨0, 0, 0, . . .⟩.

(d) S = {a⃗ ∈ R∞ | all entries of a⃗ are either 0 or 1 or − 1}

(e) S = {a⃗ ∈ R∞ | a⃗ has only finitely many non–zero entries}
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Answer: S is a subspace of R∞. If we take any two vectors, a⃗
and b⃗ in S, then each of these vectors contains only finitely many
non–zero entires. If we write these vectors out as

a⃗ = ⟨a1, a2, a3, . . .⟩
b⃗ = ⟨b1, b2, b3, . . .⟩ ,

then we know that there is some subscript M for which an = 0
for all n > M and we know that there is some subscript N for
which bn = 0 for all n > N . This means that an + bn = 0 for all
n > max {M,N} and thus a⃗ + b⃗ ∈ S. In other words S is closed
under vector addition. It is also easy to see that S is closed under
scalar multiplication. Therefore S is a subspace of R∞.

13. Let S be the set of all functions, f , in C1 (R) that are equal to their
derivative. In other words,

S =
{
f ∈ C1 (R) | f ′ = f

}
.

(a) Which of the following functions, with domain R, are in the set
S?

i. f (x) = x

ii. f (x) = x2

iii. f (x) = ex

iv. f (x) = 4ex

v. f (x) = 7

vi. f (x) = sin (x)

vii. f (x) = e3x

(b) Is S a subspace of C1 (R)? Explain.

14. Let T be the set of all functions, f , in C1 (R) whose derivatives are
equal to the function x2. In other words,

S =
{
f ∈ C1 (R) | f ′ (x) = x2 for all x ∈ R

}
.

(a) Which of the following functions, with domain R, are in the set
S?
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i. f (x) = xAnswer: f is not in S because f ′ (x) = 1. (f ′ (x) ̸=
x2.)

ii. f (x) = x2

iii. f (x) = x3 Answer: f is not in S.

iv. f (x) = x3 − 12

v. f (x) = 1
3
x3 + 27 Answer: f is in S.

vi. f (x) = 3x3

(b) Is T a subspace of C1 (R)? Explain.

Answer: T is not a subspace of C1 (R). There are many reasons
that could be given. The simplest reason is that the zero vector of
C1 (R) is the function z defined by z (x) = 0 for all x ∈ R and T
does not contain this function because z′ (x) ̸= x2. Any subspace,
S, of any vector space, V , must contain the zero vector of V .

15. Let K be the set of all functions, f , in C0 ([−π, π]) that satisfy∫ π

−π

f (x) dx = 0.

(a) Which of the following functions, with domain [−π, π], are in the
set K?

i. f (x) = x

ii. f (x) = x2

iii. f (x) = x3

iv. f (x) = sin (x)

v. f (x) = cos (x)

vi. f (x) = x sin (x)

vii. f (x) = x cos (x)

(b) Is K a subspace of C0 ([−π, π])? Explain.

16. Let L be the set of all functions, f , in C0 ([−π, π]) that satisfy∫ π

−π

f (x) dx = 1.

Is L a subspace of C0 ([−π, π])? Explain.
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Answer: L is not a subspace of of C0 ([−π, π]). The zero vector of
C0 ([−π, π]) is the function z defined by z (x) = 0 for all x ∈ [−π, π]
and this function is not in L because∫ π

−π

z (x) dx = 0 ̸= 1.

17. Consider the set of functions S = {1, ex} in F (R). Show that this set
of functions is linearly independent and is thus a basis for Span (S).
Determine [7− 8ex]S.

Solution: We must show that the equation

c1 (1) + c2e
x = 0 for all x ∈ R

has only the trivial solution. Setting x = 0 and x = ln (2) we obtain

c1 + c2 = 0

c1 + 2c2 = 0.

This system has only the trivial solution, so S = {1, ex} is linearly
independent. Since

7− 8ex = 7 (1) + (−8) ex,

then

[7− 8ex]S = ⟨7,−8⟩ .

18. Consider the set

V = {x⃗ = ⟨x1, x2⟩ | x1 ∈ R and x2 ∈ R} .

In other words, V = R2, but we are going to define one of the operations
on V differently than how we defined it for R2 in Chapter 1. Thus V
and R2 are equal as sets, but not as vector spaces.

We will define addition of elements of V in the usual way: For any
elements x⃗ and y⃗ in V we define

x⃗+ y⃗ = ⟨x1, x2⟩+ ⟨y1, y2⟩ = ⟨x1 + y1, x2 + y2⟩ .
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However, we will define scalar multiplication in a different way: For
any element x⃗ ∈ V and scalar c ∈ R we define

cx⃗ = ⟨0, 0⟩ .

Explain why V with the operations defined as we have defined them
above is not a vector space. This is a good exercise in understanding
Definition 4.6.1. (Which of the ten axioms of Definition 4.6.1 does V
satisfy and which of the axioms does it not satisfy?)

A.5 Chapter 5 Exercises:

Exercise 5.1.3 Let f : D → R be defined by the formula

f (x) =
1

x
.

1. What is the largest possible subset of R that you can choose for the do-
main, D, such that this formula makes sense (meaning that the formula
produces a real number for all x ∈ D)?

Answer: 1/x is defined for all real numbers x ̸= 0, so the largest
possible set we can choose for the domain is D = (−∞, 0) ∪ (0,∞).

2. Draw the graph of f (either by hand or using technology).

-3 -2 -1 1 2 3

-4

-2

2

4

Figure A.4: Graph of f(x) = 1/x
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3. Using the domain,D, that you designated in part 1, what is Range (f)?

Answer: The range of f is Range (f) = (−∞, 0) ∪ (0,∞).

4. Do you see that f maps D onto its range and that f is one–to–one?

5. Find the formula for f−1.

Answer: f−1 (x) = 1
x
.

Exercise 5.1.4

1.

A =

[
−3 1
1 −2

]
Solution: The function T defined by T (x⃗) = Ax⃗ maps R2 into R2, so
the domain of T is R2 and the codomain of T is R2. Since

A =

[
−3 1
1 −2

]
→
[
1 0
0 1

]
= rref (A) ,

we see that every row of of A contains a pivot which tells us that T
maps R2 onto R2 and hence

Range (T ) = Span {⟨−3, 1⟩ , ⟨1,−2⟩} = R2.

Since every column of A contains a pivot, then T is one–to–one. Since T
is onto R2 and one–to–one, then T is invertible. Also, T−1 (x⃗) = A−1x⃗
were

A−1 =

[
−2

5
−1

5

−1
5

−3
5

]
.

The formula for T−1 is

T−1 (⟨x1, x2⟩) =
〈
−2

5
x1 −

1

5
x2,−

1

5
x1 −

3

5
x2

〉
.

3.

A =

[
0 3
0 −4

]
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Solution: The function T defined by T (x⃗) = Ax⃗ maps R2 into R2, so
the domain of T is R2 and the codomain of T is R2. Since

A =

[
0 3
0 −4

]
→
[
0 1
0 0

]
= rref (A) ,

we see that not every row of of A contains a pivot which tells us that
T does not map R2 onto R2. We see that

Range (T ) = Span {⟨3,−4⟩} .

Since not every column of A contains a pivot, then T is not one–to–one.
Since T is not onto R2 and not one–to–one, then T is not invertible.

5.

A =

 3 0 1
1 −4 1
4 −4 2


Solution: The function T defined by T (x⃗) = Ax⃗ maps R3 into R3, so
the domain of T is R3 and the codomain of T is R3. Since

A =

 3 0 1
1 −4 1
4 −4 2

→

 1 0 1
3

0 1 −1
6

0 0 0

 = rref (A) ,

we see that not every row of of A contains a pivot which tells us that
T does not map R3 onto R3. We see that

Range (T ) = Span {⟨3, 1, 4⟩ , ⟨0,−4,−4⟩} .

Since not every column of A contains a pivot, then T is not one–to–one.
Thus T is not invertible.

7.

A =

 −2 −4 4 0
0 2 3 −4
2 −3 1 1


Solution: The function T defined by T (x⃗) = Ax⃗ maps R4 into R3, so
the domain of T is R4 and the codomain of T is R3. Since

A =

 −2 −4 4 0
0 2 3 −4
2 −3 1 1

→

 1 0 0 − 6
31

0 1 0 −23
31

0 0 1 −26
31

 = rref (A) ,
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we see that every row of of A contains a pivot which tells us that T
maps R4 onto R3. We see that

Range (T ) = R3.

Since not every column of A contains a pivot, then T is not one–to–one.
Since T is not one–to–one, then T is not invertible.

9.
A =

[
4 2

]
Solution: The function T defined by T (x⃗) = Ax⃗ maps R2 into R1, so
the domain of T is R2 and the codomain of T is R1. Since

A =
[
4 2

]
→
[
1 1

2

]
= rref (A) ,

we see that every row of of A contains a pivot which tells us that T
maps R2 onto R1. We see that

Range (T ) = R1.

Since not every column of A contains a pivot, then T is not one–to–one.
Since T is not one–to–one, then T is not invertible.

Exercise 5.1.6 Suppose that A is an m × n matrix and suppose that T :
Rn → Rm is the function defined by T (x⃗) = Ax⃗. Explain why if m ̸= n,
then T is not invertible.

Answer: If m > n, then it is not possible that every row of A contains
a pivot and thus it is not possible that T maps Rn onto Rm and thus it is
not possible that T is invertible. If m < n, then it is not possible that every
column of A contains a pivot and thus it is not possible that T is one–to–one
and thus it is not possible that T is invertible. In conclusion, it is not possible
for T to be invertible unless m = n.

Exercise 5.2.2 Determine whether or not each of the following expressions
defines a linear transformation T : Rn → Rm (for appropriate m and n).

1. T (⟨x1, x2⟩) = ⟨−4x1 − 4x2,−5x1 + 3x2⟩
Answer: This is a linear transformation.
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3. T (⟨x1, x2⟩) = ⟨x1, 6x2,−3x1⟩
Answer: This is a linear transformation.

5. T (⟨x1, x2, x3⟩) =
〈√

x2
1 + x2

2 + x2
3, 0
〉

Answer: This is a not a linear transformation.

7. T (⟨x1, x2⟩) = ⟨0, 0⟩
Answer: This is a linear transformation.

Exercise 5.2.4 Illustrate Theorem 5.2.3 for the linear transformations T :
Rn → Rm given in 1-5.

1. T (⟨x1, x2⟩) = ⟨3x1 + 4x2, 4x2⟩
Solution: First note that T : R2 → R2. The matrix for T is

A =

[
3 4
0 4

]
.

Since

A =

[
3 4
0 4

]
→
[
1 0
0 1

]
= rref (A) ,

we see that

Range (T ) = R2

ker (T ) =
{
0⃗2

}
.

We also see that

dim (Range (T )) + dim (ker (T )) = 2 + 0 = 2.

3. T (⟨x1, x2, x3⟩) = ⟨x1 + x2 + x3, x1 + x2 + x3, x1 + x2 + x3⟩
Solution: First note that T : R3 → R3. The matrix for T is

A =

 1 1 1
1 1 1
1 1 1

 .
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Since

A =

 1 1 1
1 1 1
1 1 1

→

 1 1 1
0 0 0
0 0 0

 = rref (A) ,

we see that

Range (T ) = Span {⟨1, 1, 1⟩}
ker (T ) = Span {⟨−1, 1, 0⟩ , ⟨−1, 0, 1⟩} .

We have

dim (Range (T )) + dim (ker (T )) = 1 + 2 = 3.

5. T (⟨x1, x2, x3⟩) = ⟨0, 0, 0, 0, 0⟩.

Solution: First note that T : R3 → R5. The matrix for T is

A =


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 .

Since

A =


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

→


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 = rref (A) ,

we see that

Range (T ) = Span
{
0⃗5

}
ker (T ) = R3.

We have

dim (Range (T )) + dim (ker (T )) = 0 + 3 = 3.
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Exercise 5.2.6 Suppose that T : R4 → R5 is a linear transformation.
Explain why it is not possible that Range (T ) = R5.

Explanation: If Range (T ) = R5, then dim (Range (T )) = 5. However,
by the Fundamental Theorem of Linear Algebra, we must have dim (Range (T ))+
dim (ker (T )) = 4. This would not be possible if dim (Range (T )) = 5.

Exercise 5.2.8 Suppose that Z : R4 → R4 is the zero transformation,
which is defined by Z (x⃗) = 0⃗4 for all x⃗ ∈ R4. What are the dimensions of
Range (Z) and ker (Z)?

Answer: dim (Range (Z)) = 0 and dim (ker (Z)) = 4.

Exercise 5.3.1

1. We have T ⟨0,−3⟩ = ⟨3, 0⟩. A picture of the input vector and output
vector is shown below.

-4 -2 2 4
x1

-4

-2

2

4

x2

〈0, -3〉

T 〈0, -3〉  〈3, 0〉

Exercise 5.3.3 For the vector x⃗ = ⟨1,−1⟩, we have

2x⃗ = ⟨2,−2⟩
T (x⃗) = ⟨1, 1⟩
T (2x⃗) = ⟨2, 2⟩
2T (x⃗) = ⟨2, 2⟩
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-3 -2 -1 1 2 3
x1

-3

-2

-1

1

2

3
x2

〈2, -2〉

T 〈2, -2〉  〈2, 2〉

Exercise 5.3.5

-3 -2 -1 1 2 3 4
x1

-4

-2

2

4

x2

x  〈-3, 5〉

T ( x) 〈-3, 0〉

x  〈4, -4〉

T ( x) 〈4, 0〉

Figure A.5: T (⟨x1, x2⟩) = ⟨x1, 0⟩

Exercise 5.3.7 For the linear transformation T (⟨x1, x2⟩) = ⟨x1, 0⟩ we have

T (⟨1, 0⟩) = ⟨1, 0⟩
T (⟨0, 1⟩) = ⟨0, 0⟩
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so the standard matrix for T is

A =

[
1 0
0 0

]
.

A already has reduced echelon form and we see that

Range (T ) = Span (⟨1, 0⟩)
ker (T ) = Span (⟨0, 1⟩) .

T does not map R2 onto R2 and T is not one–to–one. Thus T is not invertible.

Exercise 5.3.10 For the linear transformation T (x⃗) = 2x⃗ we have

T (⟨1, 0⟩) = 2 ⟨1, 0⟩ = ⟨2, 0⟩
T (⟨0, 1⟩) = 2 ⟨0, 1⟩ = ⟨0, 2⟩

and thus the matrix for T is

A =

[
2 0
0 2

]
.

Since

A =

[
2 0
0 2

]
→
[
1 0
0 1

]
= rref (A) ,

we see that

Range (T ) = Span {⟨2, 0⟩ , ⟨0, 2⟩} = R2

ker (T ) =
{
0⃗2

}
.

T maps R2 onto R2 and is one–to–one, so T is invertible. The matrix for
T−1 is

A−1 =

[
1
2

0
0 1

2

]
,

so the formula for T−1 is

T−1 (⟨x1, x2⟩) =
〈
1

2
x1,

1

2
x2

〉
or simply T−1 (x⃗) = 1

2
x⃗.
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Exercise 5.3.11 This transformation is T (x⃗) = −4x⃗.

Exercise 5.3.14 Concerning the reflection transformation T (⟨x1, x2⟩) = ⟨x2, x1⟩,
the matrix for this transformation is

A =

[
0 1
1 0

]
.

Since

A =

[
0 1
1 0

]
→
[
1 0
0 1

]
= rref (A) ,

then

Range (T ) = R2

ker (T ) =
{
0⃗2

}
.

T maps R2 onto R2 and is one–to–one, so it is invertible. T−1 has matrix

A−1 =

[
0 1
1 0

]
.

so T−1 (⟨x1, x2⟩) = ⟨x2, x1⟩. Note that T−1 = T . This makes sense because
to “undo” reflection through the line x2 = x1, we repeat the same action
(reflect again).

Exercise 5.3.18 The shearing transformation T (⟨x1, x2⟩) = ⟨x1 + x2, x2⟩ has
matrix

A =

[
1 1
0 1

]
.

Since

A =

[
1 1
0 1

]
→
[
1 0
0 1

]
= rref (A) ,

then

Range (T ) = R2

ker (T ) =
{
0⃗2

}
.
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T maps R2 onto R2 and is one–to-one. Therefore T is invertible. The matrix
for T−1 is

A−1 =

[
1 −1
0 1

]
and thus the formula for T−1 is T−1 (⟨x1, x2⟩) = ⟨x1 − x2, x2⟩.

Note that

dim (Range (T )) + dim (ker (T )) = 2 + 0 = 2.

Exercise 5.3.20 Based on our knowledge of the unit circle, we see that

T (⟨1, 0⟩) =

〈√
3

2
,
1

2

〉

T (⟨0, 1⟩) =

〈
−1

2
,

√
3

2

〉

so the matrix for R30◦ is

A30◦ =

[ √
3
2

−1
2

1
2

√
3
2

]
.

The matrix for R−1
30◦ = R−30◦ is

(A30◦)
−1 = A−30◦ =

[ √
3
2

1
2

−1
2

√
3
2

]
.

Exercise 5.3.22 The matrix for Aθ is

Aθ =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
.

The matrix for (Aθ)
−1 = A−θ is

(Aθ)
−1 = A−θ =

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.
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We see that

A−1
θ Aθ =

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

] [
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
=

[
cos2 (θ) + sin2 (θ) − cos (θ) sin (θ) + sin (θ) cos (θ)

− sin (θ) cos (θ) + cos (θ) sin (θ) cos2 (θ) + sin2 (θ)

]
=

[
1 0
0 1

]
= I2.

Exercise 5.3.24 If x⃗ = ⟨x1, x2⟩ is any vector in R2 and θ is any angle then

x⃗ ·Rθ (x⃗) = ⟨x1, x2⟩ · ⟨cos (θ)x1 − sin (θ)x2, sin (θ)x1 + cos (θ)x2⟩

= x1 (cos (θ)x1 − sin (θ)x2) + x2 (sin (θ)x1 + cos (θ)x2)

= cos (θ)x2
1 − sin (θ)x1x2 + sin (θ)x1x2 + cos (θ)x2

2

=
(
x2
1 + x2

2

)
cos (θ)

= ∥x⃗∥2 cos (θ) .

If x⃗ ̸= 0⃗2 and θ is an acute angle, then ∥x⃗∥2 > 0 and cos (θ) > 0 and hence
x⃗ ·Rθ (x⃗) > 0.

If x⃗ ̸= 0⃗2 and θ is an obtuse angle, then ∥x⃗∥2 > 0 and cos (θ) < 0 and
hence x⃗ ·Rθ (x⃗) < 0.

If x⃗ ̸= 0⃗2 and θ = 90◦, then ∥x⃗∥2 > 0 and cos (θ) = 0 and hence x⃗·Rθ (x⃗) =
0.

If x⃗ = 0⃗2, then ∥x⃗∥2 = 0 and hence x⃗ ·Rθ (x⃗) = 0.

Exercise 5.4.1 Here are the solutions for numbers 1 and 3.
1) The line L that contains the points P = (3, 1) and Q = (2,−4) has

slope

m =
−4− 1

2− 3
= 5

so L has equation
x2 − 1 = 5 (x1 − 3)

which can be written as
x2 = 5x1 − 14.
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3) The line L that contains the points P = (3, 5) and Q = (−12, 5) has
slope

m =
5− 5

−12− 3
= 0.

so L has equation

x2 − 5 = 0 (x1 − 3)

which can be written as

x2 = 5.

Exercise 5.4.3 The points on L all have the form (x1, 2x1 + 1).

When we apply T to such a point, then we get the point (−2x1 − 1, x1).
Thus, for the point that we get, the first coordinate is −2 times the second
coordinate minus 1. This means that this point lies on the line

T (L) : x1 = −2x2 − 1

which can be written as

T (L) : x2 = −1

2
x1 −

1

2
. (A.5)

Another way to think about this problem is to write the equation for L
in vector parametric form. Since L has slope 2, then a direction vector for
L is d⃗ = ⟨1, 2⟩. In addition, L contains the point P = (1, 3). Hence a vector
equation for L is

L : x⃗ = ⟨1, 3⟩+ t ⟨1, 2⟩ .

Thus, for any point on L, we have

T (x⃗) = T (⟨1, 3⟩) + tT (⟨1, 2⟩) = ⟨−3, 1⟩+ t ⟨−2, 1⟩ .

Hence T (L) is the line that contains the point (−3, 1) and has direction
vector ⟨−2, 1⟩. (This means that L has slope −1/2.) This agrees with the
equation we wrote for T (L) in (A.5).
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LT(L)

-4 -2 2 4
x1

-4

-2

2

4

x2

Figure A.6: L and T (L) for Exercise 5.4.3

Exercise 5.4.5 This linear transformation maps all lines to lines. Its kernel

is
{
0⃗2

}
.

Exercise 5.4.7

(2,1)

(-1,-1)

(0,0)

(0,1)

(1,0)

(1,1)

(0,-1) (1,-1)

x1

x2

Figure A.7: Sheared E is in Red

Example 5.5.1
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For the linear transformations

S (⟨x1, x2, x3⟩) = ⟨2x1 + x2, 2x1 + x2 + x3⟩
T (⟨x1, x2⟩) = ⟨−x1, 3x1 − x2,−2x1 + 3x2⟩ :

1. S ◦ T is a linear transformation from R2 to R2.

2. The standard matrices for S and T are

AS =

[
2 1 0
2 1 1

]
and AT =

 −1 0
3 −1
−2 3

 .

3. The standard matrix for S ◦ T is

ASAT =

[
2 1 0
2 1 1

] −1 0
3 −1
−2 3

 =

[
1 −1
−1 2

]
.

4. The formula for S ◦ T is

(S ◦ T ) (⟨x1, x2⟩) = ⟨x1 − x2,−x1 + 2x2⟩ .

Exercise 5.5.3In Section 5.3.6, we studied the rotation transformations Rθ.
Let R45◦ : R2 → R2 be the linear transformation that rotates vectors in R2

counterclockwise through angle 45◦.

1. What does the linear transformation R45◦ ◦ R45◦ do to vectors in R2?
Explain in words and fill in the blank below

Answer: R45◦ ◦ R45◦ rotates a vector by 45◦ and then rotates by 45◦

again. Hence R45◦ ◦R45◦ rotates vectors by 90◦.

R45◦ ◦R45◦ = R90◦ .

2. Show that A45◦A45◦ = A90◦ .

A45◦A45◦ =

[ √
2
2

−
√
2
2√

2
2

√
2
2

][ √
2
2

−
√
2
2√

2
2

√
2
2

]

=

[
0 −1
1 0

]
= A90◦ .
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3. Without doing any computations, what do you guess that we get when
we multiply the matrix A45◦ by itself eight times? In other words, what
do you guess is (A45◦)

8. After guessing, compute (A45◦)
8 to see if your

guess is correct.

Answer: Composing R45◦ with itself eight times performs eight succes-
sive 45◦ counterclockwise rotations. This is the same as a 360◦ rotation,
which is the same as doing nothing. Thus we guess that (A45◦)

8 = I2.
Using a calculator, we obtain

(A45◦)
8 =

([ √
2
2

−
√
2
2√

2
2

√
2
2

])8

=

[
1 0
0 1

]
.

Exercise 5.5.5
The matrix for R30◦ is

A30◦ =

[
cos (30◦) − sin (30◦)
sin (30◦) cos (30◦)

]
=

[ √
3/2 −1/2

1/2
√
3/2

]
and the matrix for (R30◦)

−1 = R−30◦ is

A−30◦ =

[
cos (−30◦) − sin (−30◦)
sin (−30◦) cos (−30◦)

]
=

[ √
3/2 1/2

−1/2
√
3/2

]
.

We observe that

A30◦A−30◦ =

[ √
3/2 −1/2

1/2
√
3/2

] [ √
3/2 1/2

−1/2
√
3/2

]
= I2.

Exercise 5.5.7
The matrix for R60◦ is

A60◦ =

[
cos (60◦) − sin (60◦)
sin (60◦) cos (60◦)

]
=

[
1/2 −

√
3/2√

3/2 1/2

]
.

The matrix for S is

AS =

[
1 0
0 −1

]
.
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The matrix for P is

AP =

[
2 0
0 2

]
.

In Example 5.5.3, we found that the matrix for P ◦ S ◦R60◦ is

APASA60◦ =

[
1 −

√
3

−
√
3 −1

]
1. Is P ◦R60◦ ◦ S the same or different from P ◦ S ◦R60◦?

Answer: The matrix for P ◦R60◦ ◦ S is

APA60◦AS =

[
2 0
0 2

] [
1/2 −

√
3/2√

3/2 1/2

] [
1 0
0 −1

]
=

[
1

√
3√

3 −1

]
.

Hence P ◦R60◦ ◦ S is different from P ◦ S ◦R60◦

2. Is S ◦R60◦ ◦ P the same or different from P ◦ S ◦R60◦?

Answer: The matrix for S ◦R60◦ ◦ P is

ASA60◦AP =

[
1 0
0 −1

] [
1/2 −

√
3/2√

3/2 1/2

] [
2 0
0 2

]
=

[
1 −

√
3

−
√
3 −1

]
,

so S ◦R60◦ ◦ P the the same as P ◦ S ◦R60◦ .

Exercise 5.5.9

1. Explain why any n× n matrix, A, is similar to itself.

Explanation: Since A = I−1
n AIn, then A is similar to A.

2. Explain why if A is similar to B, then B is similar to A.

Explanation: Suppose that A is similar to B. Then there exists an
invertible n× n matrix C such that

A = C−1BC.
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This gives
CA = C

(
C−1BC

)
which gives

CA =
(
CC−1

)
(BC) = In (BC) = BC.

We now have that BC = CA. This gives

(BC)C−1 = (CA)C−1

and hence
B = CAC−1

or equivalently

B =
(
C−1

)−1
AC−1.

This shows that B is similar to A.

3. Explain why if A is similar to B and B is similar to C, then A is similar
to C.

Explanation: Suppose that A is similar to B and B is similar to C.
Then there exist invertible n× n matrices D and E such that

A = D−1BD and B = E−1CE.

This gives

A = D−1BD

= D−1
(
E−1CE

)
D

=
(
D−1E−1

)
C (ED)

= (ED)−1C (ED) ,

which shows that A is similar to C.

Exercise 5.5.11 Suppose that T : R2 → R2 is a linear transformation that
is similar to the identity transformation E (x⃗) = x⃗. Then there exists an
invertible linear transformation P : R2 → R2 such that T = P−1 ◦ E ◦ P .
However, the identity transformation does nothing to vectors in R2. This
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means that composing any transformation with the identity transformation
just gives the original transformation. Thus

T = P−1 ◦ E ◦ P
= P−1 ◦ (E ◦ P )

= P−1 ◦ P
= E.

Exercise 5.6.1
Proof: Suppose that a⃗ = ⟨a1, a2, a3, . . .⟩ ∈ R∞ and that c is a scalar.

Then

S (c⃗a) = S (c ⟨a1, a2, a3, . . .⟩)
= S (⟨ca1, ca2, ca3, . . .⟩)
= ⟨ca2, ca3, ca4, . . .⟩
= c ⟨a2, a3, a4, . . .⟩
= cS (⃗a)

Exercise 5.6.4
Proof: Suppose that x⃗ ∈ W and suppose that c is a scalar. Since T is

invertible then there is a unique vector u⃗ ∈ V such that T (u⃗) = x⃗ and hence
u⃗ = T−1 (x⃗). Since T is a linear transformation, then

cx⃗ = cT (u⃗) = T (cu⃗)

and thus
T−1 (cx⃗) = cu⃗ = cT−1 (x⃗) .

This shows that the second requirement of Definition 5.6.1 is satisfied.

Exercise 5.6.6 Proof: We need to show that

ker (T ) =
{
x⃗ ∈ V | T (x⃗) = 0⃗W

}
is closed under addition and closed under scalar multiplication. (Note that
ker (T ) is non–empty because 0⃗V ∈ ker (T ).)

Let x⃗ and y⃗ be vectors in ker (T ). Then we know that T (x⃗) = 0⃗W and
T (y⃗) = 0⃗W . Since T is a linear transformation, we have

T (x⃗+ y⃗) = T (x⃗) + T (y⃗) = 0⃗W + 0⃗W = 0⃗W
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and thus x⃗+y⃗ ∈ ker (T ). We have shown that ker (T ) is closed under addition.
Let x⃗ be a vector in V and let c be a scalar. Then we know that T (x⃗) =

0⃗W . Since T is a linear transformation, then

T (cx⃗) = cT (x⃗) = (c) 0⃗W = 0⃗W

and thus cx⃗ ∈ ker (T ). We have shown that ker (T ) is closed under scalar
multiplication.

Exercise 5.6.8
Explanation: D : C1 (R) → C0 (R) is not invertible because for any

function g ∈ C0 (R), there are infinitely many functions f ∈ C1 (R) in such
that D (f) = g. For example,

D (5x+ 12) = 5

and
D (5x− 37) = 5.

As another example
D (sin (x)) = cos (x)

and
D (sin (x) + 14) = cos (x) .

Exercise 5.6.10
Answer: Since

S (⟨a1, a2, a3, . . .⟩) = ⟨a2, a3, a4, . . .⟩ ,

then

S2 (⟨a1, a2, a3, . . .⟩) = S (S (⟨a1, a2, a3, . . .⟩))
= S (⟨a2, a3, a4, . . .⟩)
= ⟨a3, a4, a5, . . .⟩

and

S3 (⟨a1, a2, a3, . . .⟩) = S
(
S2 (⟨a1, a2, a3, . . .⟩)

)
= S (⟨a3, a4, a5, . . .⟩)
= ⟨a4, a5, a6, . . .⟩ .

Exercise 5.6.12
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a) [2 + 2x+ 2x2]B = ⟨2, 2, 2⟩

c) [x]B = ⟨0, 1, 0⟩

e) [⟨1,−2,−2⟩]−1
B = 1− 2x− 2x2

Exercise 5.6.14

a)

[−3 sin (x) + 2 cos (x) + 3x sin (x)− 3x cos (x)]B = ⟨−3, 2, 3,−3⟩

c)

[−4 cos (x) + 5x sin (x) + x cos (x) + 3 sin (x)]B = ⟨3,−4, 5, 1⟩ .

e) [ ⟨0, 0, 1, 0⟩]−1
B = x sin (x)

Exercise 5.6.15 Note that

D (1) = 0

D (x) = 1

D
(
x2
)
= 2x

D
(
x3
)
= 3x2.

Hence

[D (1)]B = ⟨0, 0, 0, 0⟩
[D (x)]B = ⟨1, 0, 0, 0⟩[
D
(
x2
)]

B = ⟨0, 2, 0, 0⟩[
D
(
x3
)]

B = ⟨0, 0, 3, 0⟩ .

The matrix of D with respect to the basis B is

AB =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
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Since

rref (AB) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

we see that Range (DB) has basis

{⟨1, 0, 0, 0⟩ , ⟨0, 2, 0, 0⟩ , ⟨0, 0, 3, 0⟩}

and this translates, via the inverse coordinate transformation, to{
1, 2x, 3x2

}
being a basis for Range (D). Hence

Range (D) = Span
{
1, 2x, 3x2

}
and dim (Range (D)) = 3. Since Span {1, 2x, 3x2} is the same thing as
Span {1, x, x2}, we could also say that

Range (D) = Span
{
1, x, x2

}
= P2.

The row reduction we have done also shows that every vector in ker (DB)
must have the form ⟨t, 0, 0, 0⟩, where t can be any scalar, and this means
that

ker (DB) = Span {⟨1, 0, 0, 0⟩} .

This translates, via the inverse coordinate transformation, to

ker (D) = Span {1} .

We see that the Fundamental Theorem of Linear Algebra is satisfied:

dim (Range (D)) + dim (ker (D)) = 3 + 1 = 4 = dim (P3) .

Now observe that

A2
B =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




2

=


0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0


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A3
B =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




3

=


0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0



A3
B =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




4

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

which makes sense because for any function f ∈ P3 we have D4 (f) = z.

Exercise 5.6.17
Solution: First we compute

D (1) = 0

D (ex sin (x)) = ex sin (x) + ex cos (x)

D (ex cos (x)) = −ex sin (x) + ex cos (x)

from which we see that

[D (1)]B = ⟨0, 0, 0⟩
[D (ex sin (x))]B = ⟨0, 1, 1⟩
[D (ex cos (x))]B = ⟨0,−1, 1⟩ .

The matrix of D with respect to B is thus

AB =

 0 0 0
0 1 −1
0 1 1

 .

This means that the matrix of the fifth derivative transformation, D5, with
respect to B is

A5
B =

 0 0 0
0 1 −1
0 1 1

5

=

 0 0 0
0 −4 4
0 −4 −4


The coordinate vector of the function f (x) = 5 − ex sin (x) with respect to
the ordered basis B is

[f ]B = [5− ex sin (x)]B = ⟨5,−1, 0⟩ .
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Since

A5
B [f ]B =

 0 0 0
0 −4 4
0 −4 −4

 ⟨5,−1, 0⟩ = ⟨0, 4, 4⟩

then
D5 (5− ex sin (x)) = 4ex sin (x) + 4ex cos (x) .

Exercise 5.6.20 Solution: The matrix we found in Exercise 5.6.17 is

AB =

 0 0 0
0 1 −1
0 1 1

 .

If we are asked to evaluate the indefinite integral∫
ex sin (x) dx,

then what we are being asked is to find all functions F such that D (F ) =
ex sin (x). Since the coordinate vector of f (x) = ex sin (x) with respect to
the ordered basis

B = {1, ex sin (x) , ex cos (x)}
is

[f ]B = [ex sin (x)]B = ⟨0, 1, 0⟩ ,
then we need to solve the equation AB [F ]B = [f ]B for F . If we let the
unknown [F ]B = ⟨c1, c2, c3⟩, then the equation we want to solve is 0 0 0

0 1 −1
0 1 1

 ⟨c1, c2, c3⟩ = ⟨0, 1, 0⟩ .

We form the augmented matrix for this equation and row reduce to obtain 0 0 0
0 1 −1
0 1 1

∣∣∣∣∣∣
0
1
0

→

 0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣
1
2

−1
2

0

 .

This tells us that the solutions of AB [F ]B = [f ]B are

[F ]B =

〈
t,
1

2
,−1

2

〉
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where t can be any scalar. Hence the solutions of D (F ) = ex sin (x) are

t (1) +
1

2
ex sin (x)− 1

2
ex cos (x)

where t can be any scalar. If we write C instead of t, we have∫
ex sin (x) dx =

1

2
ex sin (x)− 1

2
ex cos (x) + C.

Chapter 5 Additional Exercises

1. The identity transformation E : R2 → R2 is defined by

E (x⃗) = x⃗.

(a) Show that E satisfies both of the requirements of Definition 5.2.1
and is thus a linear transformation.

Answer: Let x⃗ and y⃗ be any two vectors in R2 and let c be any
scalar. Then

E (x⃗+ y⃗) = x⃗+ y⃗ = E (x⃗) + E (y⃗)

and
E (cx⃗) = cx⃗ = cE (x⃗) .

This shows that E satisfies both requirements of Definition 5.2.1
and is thus a linear transformation.

(b) Suppose that L is any line in R2. To what line does the identity
transformation map L? In other words, what is E(L)?

Answer: Since E does not do anything to vectors in R2, then
E (L) = L for any line L.

2. The zero transformation Z : R2 → R2 is defined by

Z (x⃗) = 0⃗2.

Let us show that the zero transformation defined by Z (x⃗) = 0⃗2 for
x⃗ ∈ R2 is a linear transformation.
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Let x⃗ and y⃗ be any two vectors in R2 and let c be any scalar. Then

Z (x⃗+ y⃗) = 0⃗2 = 0⃗2 + 0⃗2 = Z (x⃗) + Z (y⃗)

and
Z (cx⃗) = 0⃗2 = c⃗02 = cZ (x⃗) ,

so Z is a linear transformation.

Z maps every point in R2 to the zero vector. Thus if L is any line in
R2, then the entire line L gets mapped to 0⃗2. Basically what Z does is
to “squash” all of R2 onto a single point.

4. For the following linear transformations T : Rn → Rm, determine the
range of T and the kernel of T . Also determine whether or not T is
invertible. If T is invertible, then find the formula for T−1.

a. T : R2 → R2 defined by T (⟨x1, x2⟩) = ⟨−4x1 + 2x2,−4x1 − 6x2⟩
Solution: The matrix of T and its rref are

A =

[
−4 2
−4 −6

]
→
[
1 0
0 1

]
= rref (A) .

Since the pivot columns of A are a basis for Range (T ), then
{⟨−4,−4⟩ , ⟨2,−6⟩} is a basis for Range (T ) and

Range (T ) = Span {⟨−4,−4⟩ , ⟨2,−6⟩} = R2.

To find ker (T ), we solve Ax⃗ = 0⃗2 using the augmented matrix[
−4 2
−4 −6

∣∣∣∣ 0
0

]
→
[

1 0
0 1

∣∣∣∣ 0
0

]
.

By the above row reduction, we see that the only solution of Ax⃗ =
0⃗2 is x⃗ = 0⃗2. Thus

ker (T ) =
{
0⃗2

}
.

Since T maps R2 onto R2 (because every row of A contains a
pivot) and T is one–to–one (because every column of A contains
a pivot), then T is invertible. The matrix for T−1 is

A−1 =

[
− 3

16
− 1

16
1
8

−1
8

]
.
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Thus T−1 (x⃗) = A−1x⃗ for all x⃗ in R2. The formula for T−1 is

T−1 (⟨x1, x2⟩) =
〈
− 3

16
x1 −

1

16
x2,

1

8
x1 −

1

8
x2

〉
.

b. T : R2 → R2 defined by T (⟨x1, x2⟩) = ⟨−4x1 + 2x2,−4x1 + 2x2⟩
Solution: The matrix of T and its rref are

A =

[
−4 2
−4 2

]
→
[
1 −1

2

0 0

]
= rref (A) .

Since the pivot columns of A are a basis for Range (T ), then
{⟨−4,−4⟩} is a basis for Range (T ) and

Range (T ) = Span {⟨−4,−4⟩} .

To find ker (T ), we solve Ax⃗ = 0⃗2 using the augmented matrix[
−4 2
−4 −6

∣∣∣∣ 0
0

]
→
[

1 −1
2

0 0

∣∣∣∣ 0
0

]
.

By the above row reduction, we see that the solutions of Ax⃗ = 0⃗2
are

x1 =
1

2
t

x2 = t.

Thus the solutions are

x⃗ = t

〈
1

2
, 1

〉
and we see that

ker (T ) = Span

{〈
1

2
, 1

〉}
.

Since T does not map R2 onto R2 (because not every row of A
contains a pivot) and T is not one–to–one (because not every
column of A contains a pivot), then T is not invertible.
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d. T : R5 → R2 defined by T (⟨x1, x2, x3, x4, x5⟩) = ⟨5x1 − 3x2 − 3x3 − 5x4 − 2x5, x3⟩
Solution: The matrix of T and its rref are

A =

[
5 −3 −3 −5 −2
0 0 1 0 0

]
→
[
1 −3

5
0 −1 −2

5

0 0 1 0 0

]
= rref (A) .

Since the pivot columns of A are a basis for Range (T ), then

{⟨5, 0⟩ , ⟨−3, 1⟩}

is a basis for Range (T ) and

Range (T ) = Span {⟨5, 0⟩ , ⟨−3, 1⟩} = R2.

To find ker (T ), we solve Ax⃗ = 0⃗2 using the augmented matrix[
5 −3 −3 −5 −2
0 0 1 0 0

∣∣∣∣ 0
0

]
→
[

1 −3
5

0 −1 −2
5

0 0 1 0 0

∣∣∣∣ 0
0

]
.

By the above row reduction, we see that the solutions of Ax⃗ = 0⃗2
are

x1 =
3

5
r + t+

2

5
s

x2 = r

x3 = 0

x4 = t

x5 = s

which we can write in the vector form

x⃗ = r

〈
3

5
, 1, 0, 0, 0

〉
+ t ⟨1, 0, 0, 1, 0⟩+ s

〈
2

5
, 0, 0, 0, 1

〉
.

Thus

ker (T ) = Span

{〈
3

5
, 1, 0, 0, 0

〉
, ⟨1, 0, 0, 1, 0⟩ ,

〈
2

5
, 0, 0, 0, 1

〉}
.

T maps R5 onto R2 (because every row of A contains a pivot).
T is not one–to–one (because not every column of A contains a
pivot). Since T is not one–to–one, then T is not invertible.
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5. Find the linear transformation that reflects vectors in R2 through the
x1 axis. To do this

(a) Determine T (⟨1, 0⟩) and T (⟨0, 1⟩).
Answer:

T (⟨1, 0⟩) = ⟨1, 0⟩
T (⟨0, 1⟩) = ⟨0,−1⟩

(b) Use what you found in part a to write down the matrix A such
that T (x⃗) = Ax⃗ for all x⃗ ∈ R2.

Answer: The matrix for T is

A =

[
1 0
0 −1

]
(c) Write the formula for T in the form T (⟨x1, x2⟩) = ⟨ , ⟩.

Answer: The formula for T is T (⟨x1, x2⟩) = ⟨x1,−x2⟩.

7. Solution: Referring to Figure 5.26, the transformation that rotates
the line L by θ clockwise R−θ, which has matrix

A−θ =

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.

R−θ rotates L onto the x1 axis.

The transformation, S, that reflects vectors through the x1 axis has
matrix

AS =

[
1 0
0 −1

]
.

The transformation, Rθ, that rotates the line x1 axis by θ counterclock-
wise has matrix

Aθ =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
.

The desired reflection (reflecting vectors through the line L) is achieved
by the composition T = Rθ ◦ S ◦R−θ which has matrix

AT = AθSA−θ =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

] [
1 0
0 −1

] [
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.
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First note that

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

] [
1 0
0 −1

]
=

[
cos θ sin θ
sin θ − cos θ

]

and thus

AT =

[
cos θ sin θ
sin θ − cos θ

] [
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
(A.6)

=

[
cos2 (θ)− sin2 (θ) 2 cos (θ) sin (θ)
2 cos (θ) sin (θ) sin2 (θ)− cos2 (θ)

]
=

[
cos (2θ) sin (2θ)
sin (2θ) − cos (2θ)

]
.

8. Use the general result that you found in Exercise 7 to find the linear
transformation T : R2 → R2 that reflects vectors through the following
lines L:

(a) L is the line that makes an angle of 60◦ with the positive x1 axis.

Solution: Using the matrix (A.6) from Exercise 7, we see that
the transformation that reflects vectors through the line, L, that
makes an angle of 60◦ with the positive x1 axis is

AT =

[
cos (2(60◦)) sin (2(60◦))
sin (2(60◦)) − cos (2(60◦))

]
=

[
−1/2

√
3/2√

3/2 1/2

]
.

(b) L is the line x2 = 2x1.

Solution: The line L : x2 = 2x1 is pictured in Figure A.8.
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L : x2  2 x1

-2 -1 1 2
x1

-2

-1

1

2

x2

θ

1

2

Figure A.8: L : x2 = 2x1

The angle that this line makes with the positive x1 axis is θ where

tan (θ) =
2

1
.

Thus

θ = arctan (2) .

We also see from the picture that

sin (θ) =
2√
5

cos (θ) =
1√
5
.

This gives

sin (2θ) = 2 sin (θ) cos (θ)

= 2

(
2√
5

)(
1√
5

)
=

4

5
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and

cos (2θ) = cos2 (θ)− sin2 (θ)

=

(
1√
5

)2

−
(

2√
5

)2

= −3

5
.

The matrix for T is thus

AT =

[
cos (2θ) sin (2θ)
sin (2θ) − cos (2θ)

]
=

[
−3

5
4
5

4
5

3
5

]
.

The formula for T is

T (⟨x1, x2⟩) =
〈
−3

5
x1 +

4

5
x2,

4

5
x1 +

3

5
x2

〉
.

As a way to check that this formula is correct, what if we take a
point (x1, 2x1) that is actually on the line L? For this point, the
formula gives us

T (⟨x1, x2⟩) = T (⟨x1, 2x1⟩)

=

〈
−3

5
x1 +

4

5
(2x1) ,

4

5
x1 +

3

5
(2x1)

〉
=

〈
−3

5
x1 +

8

5
x1,

4

5
x1 +

6

5
x1

〉
= ⟨x1, 2x1⟩
= ⟨x1, x2⟩

which makes sense because a point that is already on L stays
where it is when T acts on it.

10. Solution: We want to show that the matrices

A =

[
3 0
1 3

]
and B =

[
7/2 −1/2
1/2 5/2

]
are similar to each other. To do this we need to find an by finding an
invertible 2× 2 matrix C such that CA = BC. To do this, we will let

C =

[
x1 x2

x3 x4

]
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be an unknown matrix and solve the equation CA = BC. This equation
is [

x1 x2

x3 x4

] [
3 0
1 3

]
=

[
7/2 −1/2
1/2 5/2

] [
x1 x2

x3 x4

]
.

Matrix multiplication on the left had side of the above equation gives[
x1 x2

x3 x4

] [
3 0
1 3

]
=

[
3x1 + x2 3x2

3x3 + x4 3x4

]
and matrix multiplication on the right hand side of the above equation
gives [

7/2 −1/2
1/2 5/2

] [
x1 x2

x3 x4

]
=

[
7
2
x1 − 1

2
x3

7
2
x2 − 1

2
x4

1
2
x1 +

5
2
x3

1
2
x2 +

5
2
x4

]
.

Thus we need to solve[
3x1 + x2 3x2

3x3 + x4 3x4

]
=

[
7
2
x1 − 1

2
x3

7
2
x2 − 1

2
x4

1
2
x1 +

5
2
x3

1
2
x2 +

5
2
x4

]
.

We have a system of four equations with four unknowns:

3x1 + x2 =
7

2
x1 −

1

2
x3

3x2 =
7

2
x2 −

1

2
x4

3x3 + x4 =
1

2
x1 +

5

2
x3

3x4 =
1

2
x2 +

5

2
x4

which we can write as the homogeneous system

−1
2
x1 + x2 + 1

2
x3 = 0

−1
2
x2 + 1

2
x4 = 0

−1
2
x1 + 1

2
x3 + x4 = 0

−1
2
x2 + 1

2
x4 = 0

.

The augmented matrix for this system and its rref are
−1

2
1 1

2
0

0 −1
2

0 1
2

−1
2

0 1
2

1
0 −1

2
0 1

2

∣∣∣∣∣∣∣∣
0
0
0
0

→


1 0 −1 −2
0 1 0 −1
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

 .
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We see that the system has infinitely many solutions which are given
by

x1 = t+ 2s

x2 = s

x3 = t

x4 = s.

Thus the matrix we are looking for has the form

C =

[
t+ 2s s

t s

]
.

We need to be sure to choose t and s so that C is invertible. Let us
choose t = 0 and s=1. Then we get

C =

[
2 1
0 1

]
and we see that C is invertible with

C−1 =

[
1
2

−1
2

0 1

]
.

We now check that CA = BC:

CA =

[
2 1
0 1

] [
3 0
1 3

]
=

[
7 3
1 3

]
and

BC =

[
7/2 −1/2
1/2 5/2

] [
2 1
0 1

]
=

[
7 3
1 3

]
,

so it works! We have shown that the matrices A and B are similar to
each other.

11. Answer: In order to answer this question, we need to use some facts
from calculus. These facts are:

(a) If the sequence a⃗ converges and has limit La⃗ and the sequence b⃗

converges and has limit Lb⃗, then the sequence a⃗+ b⃗ also converges
and has limit La⃗ + Lb⃗.
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(b) If the sequence a⃗ converges and has limit La⃗ and c is any scalar,
then the sequence c⃗a converges and has limit cLa⃗

The above two facts are what is needed to conclude that C is a
subspace of R∞.

Now we will show that T : C → R defined by T (⃗a) = La⃗ is a linear
transformation.

Let a⃗ and b⃗ be in C. Then

T
(
a⃗+ b⃗

)
= La⃗+b⃗ = La⃗ + Lb⃗ = T (⃗a) + T

(⃗
b
)
,

which shows that the first requirement of Definition 5.6.1 is satisfied.

Let a⃗ be in C and let c be a scalar. then

T (c⃗a) = Lca⃗ = cLa⃗ = cT (⃗a) ,

which shows that the second requirement of Definition 5.6.1 is satisfied.
Therefore T is a linear transformation.

If we are given any real number, r, then we can easily come up with an
infinite sequence whose limit is r. In fact that sequence a⃗ = ⟨r, r, r, . . .⟩
has limit r. This shows that Range (T ) = R and that T maps C onto
R.

ker (T ) is the set of all a⃗ ∈ C for which T (⃗a) = 0. In other words,
ker (T ) is the set of all convergent infinite sequences that have 0 as their
limit. It is certainly not true that T is one–to–one, because given any
real number r, we can find infinitely many different sequences whose
limit is r. For example, if

a⃗ = ⟨0, 0, 0, . . .⟩ (all components are 0)

and

b⃗ =

〈
1,

1

2
,
1

3
, . . .

〉
(nth component is 1/n),

then T (⃗a) = 0 and T
(⃗
b
)
= 0. Clearly T is not invertible.

13. Solution: Since

D (sin (x)) = cos (x)

D (cos (x)) = − sin (x) ,
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then

[D (sin (x))] = ⟨0, 1⟩
[D (cos (x))] = ⟨−1, 0⟩ .

This tells us that the matrix of D with respect to the ordered basis
B = {sin (x) , cos (x)} is

A =

[
0 −1
1 0

]
.

We obtain

A2 =

[
−1 0
0 −1

]
A3 =

[
0 1
−1 0

]
A4 = I2.

The coordinate vector of f (x) = sin (x) with respect to B is ⟨1, 0⟩.
Since

A ⟨1, 0⟩ =
[
0 −1
1 0

]
⟨1, 0⟩ = ⟨0, 1⟩

A2 ⟨1, 0⟩ =
[
−1 0
0 −1

]
⟨1, 0⟩ = ⟨−1, 0⟩

A3 ⟨1, 0⟩ =
[

0 1
−1 0

]
⟨1, 0⟩ = ⟨0,−1⟩

A4 ⟨1, 0⟩ = I2 ⟨1, 0⟩ = ⟨1, 0⟩ ,

then

D (sin (x)) = [⟨0, 1⟩]−1 = cos (x)

D2 (sin (x)) = [⟨−1, 0⟩]−1 = − sin (x)

D3 (sin (x)) = [⟨0,−1⟩]−1 = − cos (x)

D4 (sin (x)) = [ ⟨1, 0⟩]−1 = sin (x) .
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A.6 Chapter 6 Exercises:

Exercise 6.0.1 For the matrix A =

[
5 −1
3 1

]
,

1. Evaluate Ax⃗ where x⃗ = ⟨1, 1⟩.
Answer:

Ax⃗ = ⟨Row1(A) · x⃗,Row2(A) · x⃗⟩ = ⟨4, 4⟩.

2. Show that if x⃗ is any vector in Span{⟨1, 1⟩}, then Ax⃗ = 4x⃗.
Answer: We saw above that A⟨1, 1⟩ = ⟨4, 4⟩ = 4⟨1, 1⟩. If x⃗ is any
vector in Span{⟨1, 1⟩}, then x⃗ = c⟨1, 1⟩ for some scalar c. By properties
of the matrix-vector product,

Ax⃗ = A(c⟨1, 1⟩) = cA⟨1, 1⟩ = c(4⟨1, 1⟩) = 4(c⟨1, 1⟩) = 4x⃗.

3. Identify the matrix A−4I2, and show that this matrix is not invertible.
Answer:

A− 4I2 =

[
5 −1
3 1

]
−
[
4 0
0 4

]
=

[
1 −1
3 −3

]
Note that rref(A− 4I2) =

[
1 −1
0 0

]
̸= I2 which shows that A− 4I2 is

not invertible.

Exercise 6.0.2 Consider the matrix A =

[
4 7
2 −1

]
.

1. 1 Find a nonzero vector v⃗ = ⟨v1, v2⟩ such that Av⃗ = 6v⃗.
Answer: This can be set up as a system of equations.

Av⃗ = ⟨4v1 + 7v2, 2v1 − v2⟩ = ⟨6v1, 6v2⟩,
4v1 + 7v2 = 6v1
2v1 − v2 = 6v2

.

Moving the v1 and v2 to the left side, we get a conventional looking
system that happens to be homogeneous.

−2v1 + 7v2 = 0
2v1 − 7v2 = 0

.

This can be solved using a matrix with row reduction (note that the
matrix is not the same as A). Solutions will be v⃗ = t

〈
7
2
, 1
〉
, for any

real t. Taking any nonzero value for t will give a correct solution.
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2. Confirm that Ax⃗ = 6x⃗ for every vector in Span{v⃗}, where v⃗ is the
vector you found in part 1. above.
Answer: We can use any example for v⃗ found above. A nice choice is
to take t = 2 to avoid fractions. This gives v⃗ = ⟨7, 2⟩. We can do the
product Av⃗.

Av⃗ = ⟨4(7) + 7(2), 2(7) + (−1)(2)⟩ = ⟨42, 12⟩ = 6⟨7, 2⟩ = 6v⃗.

Now, let x⃗ = cv⃗. Then

Ax⃗ = A(cv⃗) = cAv⃗ = c(6v⃗) = 6(cv⃗) = 6x⃗.

3. 3 Compute the matrix A− (−3)I2.
Answer:

A− (−3)I2 =

[
4 7
2 −1

]
−
[
−3 0
0 3

]
=

[
7 7
2 2

]
.

4. 4 Find a basis for N (A− (−3)I2), i.e., the null space of the matrix that
you computed in part 3. above.
Answer: We can row reduce

[
A− (−3)I2 | 0⃗2

]
.[

7 7 0
2 2 0

]
rref−→

[
1 1 0
0 0 0

]
.

So if (A− (−3)I2)x⃗ = 0⃗2, then x1 = −x2 with x2 free. Such a vector

x⃗ = t⟨−1, 1⟩, t ∈ R.

So we can take as a basis {⟨−1, 1⟩}.

5. Show that if x⃗ is in N (A − (−3)I2), then Ax⃗ = −3x⃗. (Hint: start by
taking x⃗ to be the basis element you found in part 4. above.)
Answer: Taking the hint, let’s note that

A⟨−1, 1⟩ = ⟨4(−1) + 7(1), 2(−1) + (−1)(1)⟩ = ⟨3,−3⟩ = −3⟨−1, 1⟩.

So if x⃗ is any vector in N (A − (−3)I2) = Span {⟨−1, 1⟩}, then x⃗ =
c⟨−1, 1⟩ for some scalar c, and

Ax⃗ = Ac⟨−1, 1⟩ = cA⟨−1, 1⟩ = c (−3⟨−1, 1⟩) = −3(c⟨−1, 1⟩) = −3x⃗.



A.6. CHAPTER 6 EXERCISES: 555

Exercise 6.0.3 Diagonal matrices are particularly easy to work with.

Consider the 3× 3 diagonal matrix A =

 a 0 0
0 b 0
0 0 c

 with a, b, and c some

real numbers. Show that there are three vectors, say v⃗1, v⃗2, and v⃗3, such that

Av⃗1 = av⃗1, Av⃗2 = bv⃗2, and Av⃗3 = cv⃗3.

Answer: We might just recall that Ae⃗i = Coli(A), and use v⃗1 = e⃗1, v⃗2 = e⃗2
and v⃗3 = e⃗3. It is easy to confirm that

Ae⃗1 = ae⃗1, Ae⃗2 = be⃗2, and Ae⃗3 = ce⃗3.

Exercise 6.1.1 Evaluate the determinant of each of the matrices

1. A =

[
2 −4
6 10

]
Answer: det(A) = 2(10)− (−4)(6) = 44

2. B =

[
0 −1
1 0

]
Answer: det(B) = 0(0)− (−1)(1) = 1

3. C =

[
cos θ − sin θ
sin θ cos θ

]
where θ is a real number.

Answer: det(C) = cos θ(cos θ)− (− sin θ) sin θ = cos2 θ + sin2 θ = 1

Exercise 6.1.2move to the next line

1. Show that for A =

[
a b
c d

]
, det(2A) = 4 det(A).

Answer: det(2A) = det

([
2a 2b
2c 2d

])
= 2a(2d) − 2b(2c) = 4ad −

4bc = 4(ad− bc) = 4 det(A).

2. Show that for A =

[
a b
c d

]
, det(3A) = 9 det(A).

Answer: det(3A) = det

([
3a 3b
3c 3d

])
= 3a(3d) − 3b(3c) = 9ad −

9bc = 9(ad− bc) = 9 det(A).
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3. Can you make a conjecture about the relationship between det(kA)
and det(A) for a 2× 2 matrix A and a scalar k?
Answer: The value of det(kA) should be k2 times the value det(A).
This is clear given that

det(kA) = ka(kd)− kb(kc) = k2(ad− bc) = k2 det(A).

Exercise 6.1.3 Let A =

[
a b
c d

]
, and suppose det(A) ̸= 0. Show that

A−1 =
1

det(A)

[
d −b

−c a

]
.

Answer: We can form the product and show that the result is I2. Note that

1

det(A)

[
d −b

−c a

] [
a b
c d

]
=

1

det(A)

[
ad− bc bd− bd

−ca+ ac −cb+ ad

]
=

1

det(A)

[
det(A) 0

0 det(A)

]
=

[
1 0
0 1

]

Exercise 6.1.4 Evaluate the determinant of each 3× 3 matrix.

1. A =

 1 2 −1
4 3 0

−2 1 5


Answer: det(A) = −35

2. A =

 −3 4 3
3 −4 −3
2 1 0


Answer: det(A) = 0

3. A =

 −5 −1 1
2 1 1
3 1 −1


Answer: det(A) = 4
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Exercise 6.1.5 Suppose A =

 a11 a12 a13
0 a22 a23
0 0 a33

 . Show that det(A) =

a11a22a33.
Answer: We can use Definition 6.1.2. Note that

A11 =

[
a22 a23
0 a33

]
, so det(A11) = a22a33 − 0 = a22a33.

A12 =

[
0 a23
0 a33

]
, so det(A12) = 0(a33)− 0(a23) = 0.

A13 =

[
0 a22
0 0

]
, so det(A13) = 0(0)− 0(a22) = 0.

So.

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13)

= a11(a22a33)− a12(0) + a13(0)

= a11a22a33

Exercise 6.1.6 Find the determinant of the matrix A =

 1 2 −1
3 4 0
2 −2 3


by computing a cofactor expansion

1. across the second row, Answer: det(A) = 8

2. down the first column, Answer: det(A) = 8

3. across the third row. Answer: det(A) = 8

Exercise 6.1.7 Find the determinant of each matrix using a cofactor
expansion that minimizes the computations.

1. A =


1 0 −1 2
2 0 4 −3
0 2 5 2
1 0 −1 0

 Answer: The second column only has one

nonzero entry, so cofactor expansion down this second column requires
the least amout of computation. det(A) = 24
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2. B =

 3 −4 0
0 −6 0
1 1 0

 Answer: If the third column is used for the co-

factor expansion, it isn’t necessary to compute any cofactors. det(B) =
0

Exercise 6.1.8 Suppose A is an n × n matrix, and A has a row or a
column vector of all zeros. Explain why det(A) = 0.
Answer: If we choose the row or column of zeros for the cofactor expansion,
then each factor aij will be zero.

Exercise 6.1.9 Confirm each of the three statements in Property 6.4 for

a 2× 2 matrix A =

[
a b
c d

]
.

Answer: Here is an example of a row replacement. The other two properties
can be examined in a similar manner. Let’s obtain a new matrix B by
performing the operation kR1 +R2 → R2. Then

B =

[
a b

ka+ c kb+ d

]
making

det(B) = a(kb+ d)− (ka+ c)b = akb+ ad− kab− bc = ad− bc = det(A).

Exercise 6.1.10 Suppose A is a 4 × 4 matrix that is row equivalent to
the matrix

B =


3 −1 0 2
0 4 −2 1
0 0 −1 1
0 0 0 −2

 .

If the following row operations were performed on A to produce B, determine
det(A).

• −2R1 +R2 → R2

• R3 ↔ R4

• 3R2 +R3 → R3
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• 1
2
R3 → R3

• −R2 +R4 → R4

Answer: There are three row replacements that do not change the determi-
nant. The row swap (R3 ↔ R4) will introduce a factor of −1 and the scaling
(1
2
R3 → R3) will introduce a factor of 1

2
. So

det(B) = (−1)

(
1

2

)
det(A)., hence det(A) = −2 det(B).

Since B is triangular, its determinant is just the product of the diagonal
entries. So

det(A) = −2 det(B) = −2(3)(4)(−1)(−2) = −48.

Exercise 6.1.11 If A is an n×n matrix, explain why det(kA) = kn det(A)
for scalar k.
Answer: The matrix kA is obtained by multiplying every row by k. With
n rows, this is equivalent to performing the scaling kRi → Ri n times, and
each one gives a factor of k. So

det(kA) = k · k · · · k︸ ︷︷ ︸
n factors

det(A) = kn det(A).

Exercise 6.1.12 For each pair of matrices A and B, evaluate the products
AB and BA. Compute the determinants det(A), det(B), det(AB), and
det(BA) and confirm that det(AB) = det(A) det(B) = det(BA).

1. A =

[
1 2

−4 3

]
and B =

[
3 1
2 5

]
.

Answer: Note that AB =

[
7 11

−6 11

]
and BA =

[
−1 9
−18 19

]
.

det(A) = 1(3)− (−4)(2) = 11, det(B) = 3(5)− 2(1) = 13,

det(AB) = 7(11)− (−6)(11) = 143,

and det(BA) = −1(−19)− (−18)(9) = 143.

Sure enough, det(A) det(B) = 11(13) = 143 = det(AB) = det(BA).
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2. A =

 1 −1 2
0 3 1
2 −2 4

 and B =

 6 0 −1
2 2 2

−1 0 3

. Answer:

AB =

 2 −2 3
5 6 9
4 −4 6

 , and BA =

 4 −4 8
6 0 14
5 −5 10

 .

det(A) = 0, det(B) = 34, det(AB) = 0, det(BA) = 0.

Again, det(A) det(B) = (0)(34) = 0 = det(AB) = det(BA).

Exercise 6.1.13 For each matrix A, determine all values of λ, if any, such
that A is not invertible.

1. A =

[
2− λ 1
5 −2− λ

]
Answer: The determinant det(A) = (2− λ)(−2− λ)− 1(5) = λ2 − 9.
A is not invertible if det(A) = 0. This gives two values of λ,

λ2 − 9 = 0 if λ = 3, or λ = −3.

2. A =

[
1− λ 1
1 1− λ

]
Answer: det(A) = (1− λ)2 − 1(1) = λ2 − 2λ. So det(A) = 0 if λ = 0
or λ = 2.

3. A =

[
3− λ 0
2 3− λ

]
Answer: det(A) = (3 − λ)2 − 2(0) = (3 − λ)2. The only value of λ
such that det(A) = 0 is λ = 3.

4. A =

[
2− λ 4
−1 3− λ

]
Answer: det(A) = (2 − λ)(3 − λ) − (−1)(4) = λ2 − 5λ + 10. The
descriminant of this quadratic is (−5)2 − 4(1)(10) = −15. So there
are no real numbers λ for which det(A) = 0. So A is invertible for all
real λ. (Depending on the context, we may be interested in complex

solutions. There are two complex roots of the quadratic, λ = 5±i
√
15

2
.

Substituting these numbers into the matrix A would result in complex
entries.)
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5. A =

 1− λ 2 −2
0 3− λ −1
0 −1 3− λ


Answer: Taking a cofactor expansion down the first column,

det(A) = (1−λ)((3−λ)2−(−1)(−1)) = (1−λ)(λ2−6λ+8) = (1−λ)(λ−2)(λ−4).

There are three values of λ for which det(A) = 0, i.e., for which A is
not invertible. λ = 1, λ = 2 or λ = 4. (Tip: Since our goal is to
solve an equation of the form “some expression in λ = 0”, it’s to our
advantage to factor rather than multiply everything out.)

Exercise 6.2.1 Let A =

[
3 −1
5 −3

]
.

1. Show that λ = 2 is an eigenvalue of A by finding a nonzero vector x⃗
such that Ax⃗ = 2x⃗.
Answer: Following the procedure seen in Example 6.2.1, we find that
x⃗ = t⟨1, 1⟩. Any choice of t ̸= 0 will give a valid solution.

2. Show that x⃗ = ⟨1, 5⟩ is an eigenvector of A by finding a scalar λ such
that Ax⃗ = λx⃗.
Answer: We find that Ax⃗ = ⟨3(1)− 1(5), 5(1)− 3(5)⟩ = ⟨−2,−10⟩ =
−2⟨1, 5⟩. So ⟨1, 5⟩ is an eigenvector corresponding to the eigenvalue
λ = −2.

3. Show that the number λ = 3 is not an eigenvalue of A. (Hint: Show
that Ax⃗ = 3x⃗ has no nontrivial solutions.)
Answer: If we let x⃗ = ⟨x1, x2⟩ and set up Ax⃗ = 3x⃗, we can rearrange
to get a homogeneous system.

3x1 − x2 = 3x1

5x1 − 3x2 = 3x2
becomes

− x2 = 0
5x1 − 6x2 = 0

.

Note that performing row reduction on the corresponding augmented
matrix gives [

0 −1 0
5 −6 0

]
rref−→

[
1 0 0
0 1 0

]
.

So the only solution is x⃗ = ⟨0, 0⟩ which can not be an eigenvector.
(Tip: If we mistake a number for an eigenvalue, this sort of result will
alert us to the error.)
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Exercise 6.2.2 We’ve seen that if (λ, x⃗) is an eigenvalue-eigenvector
pair for a matrix A, then Ax⃗ is in Span{x⃗}. Consider the transformation

R90◦(x⃗) =

[
0 −1
1 0

]
x⃗ that rotates a vector in R2 by 90◦ counterclockwise.

Explain why there are no (real) numbers λ that are eigenvalue of the matrix[
0 −1
1 0

]
.

Answer: We recall that R90◦ is invertible (by the clockwise rotation R−90◦),
so there are no nontrivial solutions to the equation R90◦(x⃗) = 0⃗2. That is,
there’s no eigenvector associated with the number λ = 0, so zero is not an
eigenvalue. For any nonzero λ the nonzero vector x⃗ and λx⃗ are parallel. But
x⃗ and R90◦(x⃗) are perpendicular since the rotation is 90◦. So it’s not possible
for R90◦(x⃗) to be in Span{x⃗}.

Exercise 6.2.3 For each matrix, determine all eigenvalues and for each
eigenvalue, find a corresponding eigenvector.

1. A =

[
2 1
5 −2

]
Answer: The characteristic polynomial is PA(λ) = λ2 − 9 with roots
λ1 = 3 and λ2 = −3. Solving the homogeneous equation (A−3I2)x⃗ = 0⃗2
gives solutions x⃗ = t⟨1, 1⟩, t ∈ R. Solving the homogeneous equation
(A − (−3)I2)x⃗ = 0⃗2 gives solutions x⃗ = s

〈
−1

5
, 1
〉
, s ∈ R. Example

eigenvectors can be chosen by selecting any nonzero value of the param-
eter (t or s). Selecting t = 1 and s = 5, we have eigenvalue-eigenvector
pairs,

λ1 = 3, x⃗1 = ⟨1, 1⟩, and λ2 = −3, x⃗2 = ⟨−1, 5⟩.

2. A =

[
3 0
2 3

]
Answer: The characteristic polynomial is PA(λ) = (3− λ)2. There is
one root, hence one eigenvalue λ = 3. The solutions of the homogeneous
equation (A − 3I2)x⃗ = 0⃗2 are of the form x⃗ = t⟨0, 1⟩, t ∈ R. We get
the one eigenvalue-eigenvector pair

λ = 3, x⃗ = ⟨0, 1⟩.
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3. A =

 1 2 −2
0 3 −1
0 −1 3


Answer: The characteristic polynomial is PA(λ) = (1−λ)(λ−2)(λ−4).
We find three eigenvalues λ1 = 1, λ2 = 2 and λ3 = 4. The equation
(A − 1I3)x⃗ = 0⃗3 has solutions x⃗ = t⟨1, 0, 0⟩, t ∈ R. The equation
(A − 2I3)x⃗ = 0⃗3 has solutions x⃗ = s⟨0, 1, 1⟩, s ∈ R. And the equation
(A − 4I3)x⃗ = 0⃗3 has solutions x⃗ = u

〈
−4

3
,−1, 1

〉
, u ∈ R. Selecting

t = s = 1 and u = 3, we have three eigenvalue-eigenvector pairs.

λ1 = 1, x⃗1 = ⟨1, 0, 0⟩, λ2 = 2, x⃗2 = ⟨0, 1, 1⟩,

and λ3 = 4, x⃗3 = ⟨−4,−3, 3⟩.

Exercise 6.2.4 Consider the pair of matrices

A =

 3 1 0
0 3 0
0 0 5

 , and B =

 3 0 0
0 3 1
0 0 5

 .

1. Find the characteristic polynomials PA and PB and show that they are
equal, PA(λ) = PB(λ).
Answer: Fortunately, these matrices are triangular, so the determi-
nants will be easy to take.

det(A− λI3) = det

 3− λ 1 0
0 3− λ 0
0 0 5− λ

 = (3− λ)2(5− λ)

and

det(B − λI3) = det

 3− λ 0 0
0 3− λ 1
0 0 5− λ

 = (3− λ)2(5− λ).

The common polynomial can be expanded to

PA(λ) = PB(λ) = −λ3 + 11λ2 − 39λ+ 45,

but it isn’t necessary to do so.
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2. Identify the eigenvalues of A and for each eigenvalue of A determine
its algebraic multiplicity and its geometric multiplicity.
Answer: From the factored form of PA, there are two eigenvalues
λ1 = 3 and λ2 = 5. Finding bases for the eigenspaces, we find

for λ1 = 3, a basis for the eigenspace is {⟨1, 0, 0⟩},

for λ2 = 5, a basis for the eigenspace is {⟨0, 0, 1⟩}.
For λ1 = 3, the algebraic multiplicity is two and the geometric mul-
tiplicity is one. For λ2 = 5, the algebraic multiplicity is one and the
geometric multiplicity is one.

3. Identify the eigenvalues of B and for each eigenvalue of B determine
its algebraic multiplicity and its geometric multiplicity.
Answer: From the factored form of PB, B has the same two eigenval-
ues λ1 = 3 and λ2 = 5. Finding bases for the eigenspaces, we find

for λ1 = 3, a basis for the eigenspace is {⟨1, 0, 0⟩, ⟨0, 1, 0⟩},

for λ2 = 5, a basis for the eigenspace is {⟨0, 1, 2⟩}.
For λ1 = 3, the algebraic multiplicity is two and the geometric multi-
plicity is also two. For λ2 = 5, the algebraic multiplicity is one and the
geometric multiplicity is one.

Exercise 6.2.5 For each of the matrices

A =

 3 1 0
0 3 0
0 0 5

 , and B =

 3 0 0
0 3 1
0 0 5

 .

from Exercise 6.2.4, construct an eigenbasis or explain why one does not
exist.

Answer: We recall that both matrices had the same two eigenvalues
λ1 = 3 and λ2 = 5 where λ1 has algebraic multiplicity 2 and λ2 has alge-
braic multiplicity 1. For A, the geometric multiplicity of both eigenvalues is
1. A does not give rise to an eigenbasis because the sum of the geometric
multiplicities is 1 + 1 = 2 ̸= 3.

For B, we found that the geometric multiplicity of λ1 = 3 is 2, and we
found a basis for the eigenspace EB(3) to be {⟨1, 0, 0⟩, ⟨0, 1, 0⟩}. For the
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eigenvalue λ2 = 5, we found a basis for the corresponding eigenspace EB(3)
to be {⟨0, 1, 2⟩}. The sum of the geometric multiplicities is 2+1 = 3, and we
have three linearly independent eigenvectors. An eigenbasis for the matrix
B is

EB = {⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 2⟩} .

Exercise 6.3.1 Let B =

 3 0 0
0 3 1
0 0 5

 and C =

 1 0 0
0 1 1
0 0 2

. Show that

B is diagonalizable. To do this, find C−1 and compute the product C−1BC.
Answer: C−1 can be computed by row reducing

[
C | I3

]
(it can even be

done by hand with only a couple of row operations). The inverse

C−1 =

 1 0 0
0 1 −1

2

0 0 −1
2

 .

Then

C−1BC =

 1 0 0
0 1 −1

2

0 0 −1
2

 3 0 0
0 3 1
0 0 5

 1 0 0
0 1 1
0 0 2


=

 1 0 0
0 1 −1

2

0 0 −1
2

 3 0 0
0 3 5
0 0 10


=

 3 0 0
0 3 0
0 0 5



We see that the product C−1BC is a diagonal matrix D =

 3 0 0
0 3 0
0 0 5


which shows that B is diagonalizable.

Exercise 6.3.2 For each matrix, either diagonalize the matrix (i.e., iden-
tify the diagonal matrix D and invertible matrix C) or show that the matrix
is not diagonalizable.
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1. A =

[
−4 7
−2 5

]
Answer: Note that answers may vary in the order in which the eigen-
values appear in D. The order of the columns in C and values in D
should be consistent. A possible answer is

D =

[
3 0
0 −2

]
and C =

[
1 7
1 2

]

2. L =

[
2 1
0 2

]
Answer: This matrix is not diagonalizable. The only eigenvalue is
λ = 2 with algebraic multiplicity 2 and geometric mutliplicity 1.

3. H =

[
2 3

−1 5

]
Answer: The matrix does not have any real eigenvalues. The charac-
teristic equation is λ2 − 7λ+ 13 = 0, which does not have real roots.

4. B =

 −2 1 0
0 −2 0
0 0 6


Answer: This matrix is not diagonalizable. The eigenvalues are λ1 =
−2 and λ2 = 6. The algebraic multiplicity of λ1 is two, but its geometric
mutliplicity is one.

5. G =

 1 2 3
0 2 3
0 0 −1


Answer: Answers may vary. An answer is

D =

 1 0 0
0 2 0
0 0 −1

 and C =

 1 2 −1
0 1 −2
0 0 2



Exercise 6.3.3 put text on next line.

1. Find a 3× 3 matrix A having eigenvalues L = {1,−4, 5} and for which
EA = {⟨1, 1, 3⟩ , ⟨1, 1,−3⟩ , ⟨0,−1,−2⟩} is an eigenbasis.



A.6. CHAPTER 6 EXERCISES: 567

Answer: Since we have an eigenbasis, our matrix A would be diagonal-
izable. We can create the diagonal matrix from the known eigenvalues
and the invertible matrix from the known eigenvectors. Let

D =

 1 0 0
0 −4 0
0 0 5

 and C =

 1 1 0
1 1 −1
3 −3 −2

 .

A solution can be computed as A = CDC−1.

A =

 1 1 0
1 1 −1
3 −3 −2

 1 0 0
0 −4 0
0 0 5

 1 1 0
1 1 −1
3 −3 −2

−1

=
1

6

 1 −10 5
−29 20 5
−33 78 −9

 .

2. Is your answer A in part 1. above unique? That is, can you find
another 3× 3 matrix having eigenvalues L = {1,−4, 5} and eigenbasis
EA = {⟨1, 1, 3⟩ , ⟨1, 1,−3⟩ , ⟨0,−1,−2⟩}?
Hint: Use technology to try rearranging the columns of D and C. Do
different arrangements give you the same matrix A?

Exercise 6.4.1 Consider the ordered basis ofR2 given by C = {⟨1, 1⟩, ⟨−1, 5⟩}.

1. Identify the change of basis matrix C and its inverse C−1.
Answer: The matrix and its inverse are

C =

[
1 −1
1 5

]
, and C−1 =

1

6

[
5 1

−1 1

]
.

(Because C is a 2×2 matrix, C−1 can be found by doing row reduction
on [C | I2] or by using the handy formula from Exercise 6.1.3.)

2. Find the coordinate vectors relative to the basis C for the following
vectors.
Answer: To get the coordinate vectors, we use the equation [x⃗]C =
C−1x⃗ (some might be done by observation without any computations).

(a) x⃗ = ⟨1, 1⟩ [x⃗]C = ⟨1, 0⟩
(b) y⃗ = ⟨−1, 5⟩ [y⃗]C = ⟨0, 1⟩
(c) z⃗ = ⟨0, 1⟩ [z⃗]C =

〈
1
6
, 1
6

〉
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3. Find the representation relative to the standard basis for the vectors
having the given coordinate vectors relative to the basis C.
Answer: To get the coordinate vectors, we use the equation x⃗ = C[x⃗]C

(a) [u⃗]C = ⟨1, 1⟩ u⃗ = ⟨0, 6⟩
(b) [v⃗]C = ⟨−1, 5⟩ v⃗ = ⟨−6, 9⟩
(c) [w⃗]C = ⟨0, 1⟩ w⃗ = ⟨−1, 5⟩

Exercise 6.4.2 Let T : R2 → R2 be the linear transformation defined

by T (x⃗) = Ax⃗ where A =

[
−2 6
−2 5

]
. Find a basis C of R2 such that the

C-matrix of T is diagonal. Find the C-matrix.
Answer: The basis C will have to be an eigenbasis for A. The characteristic
polynomial PA(λ) = det(A− λI2) = λ2 − 3λ+2 which has two roots, λ1 = 1
and λ2 = 2 with corresponding eigenvectors x⃗1 = ⟨2, 1⟩ and x⃗2 = ⟨3, 2⟩. So
a basis is C = {⟨2, 1⟩, ⟨3, 2⟩}. The change of basis matrix for this would be

C =

[
2 3
1 2

]
. The inverse is C−1 =

[
2 −3

−1 2

]
. The C-matrix for T would

be

C−1AC =

[
2 −3

−1 2

] [
−2 6
−2 5

] [
2 3
1 2

]
=

[
1 0
0 2

]
.

Note: Answers can vary in some details. For example, the order of the
eigenvalues in the diagonal C-matrix can be swapped. The eigenvectors cho-
sen may be different, but the eigenvector for each eigenvalue should be some
scalar multiple of the ones used here.

Exercise 6.4.3 A matrix A is called symmetric if A = AT . It is known
that symmetric matrices are always diagonalizable. Moreover, the eigenvec-
tors for distinct eigenvalues are orthogonal. That is, a symmetric matrix has
an eigenbasis of mutually orthogonal vectors. Let T : R3 → R3 be the linear
transformation defined by T (x⃗) = Ax⃗ for the matrix A given below. Find a
basis C of R3 such that the C-matrix of T is diagonal, and confirm that the
basis elements are orthogonal. Find the C-matrix.

A =

 6 1 0
1 6 0
0 0 −2


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Answer: The matrix A does satisfy AT = A. The determinant of A−λI3
can be taken across the third row to simplify the calculation.

PA(λ) = (−2−λ)((6−λ)2−1) = (−2−λ)(λ2−12λ+35) = (−2−λ)(λ−5)(λ−7).

We can find an eigenvector for each of the three eigenvalues, λ1 = −2, λ2 = 5
and λ3 = 5. Finding a basis for the null space of A− λiI3 in the usual way,
we can find corresponding eigenvectors x⃗1 = ⟨0, 0, 1⟩, x⃗2 = ⟨−1, 1, 0⟩ and
x⃗3 = ⟨1, 1, 0⟩. So a basis is

C = {⟨0, 0, 1⟩, ⟨−1, 1, 0⟩, ⟨1, 1, 0⟩} .

To show that the basis vectors are orthogonal, we can check the dot products,

x⃗1 · x⃗2 = 0(−1) + 0(1) + 1(0) = 0,

x⃗1 · x⃗3 = 0(1) + 0(1) + 1(0) = 0,

x⃗2 · x⃗3 = −1(1) + 1(1) + 0(0) = 0.

The change of basis matrix and its inverse are

C =

 0 −1 1
0 1 1
1 0 0

 and C−1 =

 0 0 1
−1

2
1
2

0
1
2

1
2

0

 .

The diagonal C-matrix of T is

C−1AC =

 −2 0 0
0 5 0
0 0 7

 .

Note: Answers may vary in some details. The eigenvectors should be or-
thogonal despite variations.

Exercise 6.4.4 Let T : R2 → R2 be the shear transformation such that
T (e⃗1) = e⃗1 − 2e⃗2 and T (e⃗2) = e⃗2 (so T leaves e⃗2 fixed). Determine whether
there is a basis C of R2 such that the C-matrix of T is diagonal. If so, find
the diagonal matrix.
Answer: From the description,

T (e⃗1) = ⟨1, 0⟩ − 2⟨0, 1⟩ = ⟨1,−2⟩, and T (e⃗2) = ⟨0, 1⟩.
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So the standard matrix

A =

[
1 0

−2 1

]
.

We can already see the eigenvalues of A since it is lower triangular. There’s
one eigenvalue λ = 1. It must have algebraic multiplicity two. We can
confirm that by noting that PA(λ) = (1 − λ)2. We also already know that
one eigenvector is e⃗2 because T (e⃗2) = 1e⃗2. A will be diagonalizable if there
is a second, linearly independent eigenvector. If we look for a basis for
N (A− 1I2), we find[

A− 1I2 | 0⃗2
]

rref−→
[
1 0 0
0 0 0

]
.

So if x⃗ = ⟨x1, x2⟩ is a solution of (A− 1I2)x⃗ = 0⃗2, then x1 = 0 and x2 is free.
This only gives the one basis vector e⃗2. So there is no basis for R2 for which
the matrix for T is diagonal.

Chapter 6 Additional Exercises

1. If A = [a11] is a 1× 1 matrix, we define its determinant to be det(A) =
a11. Use this definition to show that the determinant of a 2× 2 matrix
from Definition 6.1.1 is the same as a cofactor expansion

det(A) =
2∑

j=1

(−1)1+ja1j det(A1j).

Answer: If A =

[
a b
c d

]
, then notice that A11 = [d], and A12 = [c].

So

det(A) = (−1)1+1a det(A11) + (−1)1+2b det(A12)

= 1(a)(d) + (−1)(b)(c)

= ad− bc.

2. Let A =

[
a b
c d

]
. Suppose A has two (not necessarily distinct) eigen-

values λ1 and λ2. Show that

a+ d = λ1 + λ2 and det(A) = λ1λ2.
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(Hint: The characteristic polynomial must factor as PA(λ) = (λ1 −
λ)(λ2 − λ). Compare this to PA obtained in the usual way.)
Answer: On the one hand, the characteristic polynomial is

PA(λ) = det

([
a− λ b
c d− λ

])
= (a−λ)(d−λ)−bc = λ2−(a+d)λ+ad−bc.

On the other hand, we have the characteristic polynomial from its roots

PA(λ) = (λ1 − λ)(λ2 − λ) = λ2 − (λ1 + λ2)λ+ λ1λ2.

Comparing the two representations for the same polynomial, we can
equate the coefficient of λ to get

−(a+ d) = −(λ1 + λ2), i.e., a+ d = λ1 + λ2.

And equating the constant terms, we get

ad− bc = λ1λ2, i.e., det(A) = λ1λ2.

3. Give a coherent argument that if A = [aij] is an n×n triangular matrix,
the eigenvalues of A are its diagonal entries, aii.
Answer: The critical observation here is that if A is triangular, then
A−λIn is also triangular, since this matrix difference only has the effect
of subtracting λ from each diagonal entry of A—it has no effect on the
entries off of the main diagonal. So when we take det(A−λIn), we can
use Property 6.3 that says that the determinant will be the product of
the diagonal entries. This gives

PA(λ) = (a11 − λ)(a22 − λ) · · · (ann − λ).

From this factored form, we see that the zeros of PA, which are the
eigenvalues of the matrixA, are the numbers aii from the main diagonal.

4. Suppose A is an invertible matrix. Show that det (A−1) = (det(A))−1.
That is, show that the determinant of A−1 is the reciprocal of the
determinant of A.
Answer: We recall that for n × n matrices A and B, det(AB) =
det(A) det(B). We also note that the n×n identity matrix is a diagonal
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matrix with all diagonal entries equal to 1. So det(In) = 1n = 1. Now,
note that

AA−1 = In so that det(AA−1) = det(In) = 1.

But we have det(AA−1) = det(A) det(A−1). Since A is invertible, we
know that det(A) ̸= 0, and we can divide by det(A). We have

det(A) det(A−1) = 1 whence det(A−1) =
1

det(A)
.

5. For the matrix A, evaluate det(A). Find all of the eigenvalues of A and
show that det(A) is equal to the product of the eigenvalues of A.

A =

 −2 1 3
0 4 −1
0 6 −1

 .

Answer: First, taking a cofactor expansion down the first column of
A (to take advantage of the zeros)

det(A) = −2(4(−1)− (−1)(6)) = −2(−4 + 6) = −4.

To find the eigenvalues, we set up det(A− λI3). This determinant can
also be taking down the first column.

det

 −2− λ 1 3
0 4− λ −1
0 6 −1− λ

 = (−2− λ)
[
(4− λ)(−1− λ)− 6(−1)

]
= (−2− λ)

[
λ2 − 3λ− 4 + 6

]
= (−2− λ)

[
λ2 − 3λ+ 2

]
= (−2− λ)(λ− 1)(λ− 2)

From this factored form, we see that there are three eigenvalues λ1 =
−2, λ2 = 1, and λ3 = 2. As expected,

λ1λ2λ3 = −2(1)(2) = −4 = det(A).

6. Suppose the n × n matrix A has n not necessarily distinct real eigen-
values λ1, λ2, . . . , λn. Show that det(A) = λ1λ2 · · ·λn, that is, the de-
terminant of A is the product of its eigenvalues.
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(Hint: The characteristic polynomial can be written as a product of
linear factors PA(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ). How are det(A)
and PA(0) related?)
Answer: Since PA(λ) = det(A− λIn), we have that

PA(0) = det(A− 0In) = det(A).

Taking the hint about PA written as a product of linear factors,

det(A) = PA(0) = (λ1 − 0)(λ2 − 0) · · · (λn − 0) = λ1λ2 · · ·λn.

Side note: It turns out, this is the case even if some of the eigenvalues
are not real. In that case, the real entries in A ensure that complex
eigenvalues will occur in conjugate pairs, so the product of all of them
will be a real number and will be the determinant of A.

7. Suppose A is an n × n invertible matrix and λ0 is an eigenvalue of A.

Show that
1

λ0

is an eigenvalue of A−1.

Answer: Since λ0 is an eigenvalue, there is a nonzero vector x⃗ such
that Ax⃗ = λ0x⃗. If we multiply both sides by A−1, we get

A−1Ax⃗ = A−1 (λ0x⃗) =⇒ Inx⃗ = λ0A
−1x⃗.

Since A is invertible, λ0 is nonzero, so we can divide both sides by λ0

to get
1

λ0

x⃗ = A−1x⃗, i.e., A−1x⃗ =
1

λ0

x⃗.

This shows that
1

λ0

is an eigenvalue of A−1. It even shows that the

eigenspace for A associated with λ0 is the same as the eigenspace for

A−1 associated with
1

λ0

8. Suppose A is a 5× 5 matrix with characteristic polynomial

PA(λ) = (2− λ)2(4− λ)(−1− λ)(6− λ).

For each question, either provide a short answer or explain why it is
not possible to answer.
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(a) Is A invertible? Answer: Yes. The eigenvalues are 2, 4, −1 and
6. Zero is not an eigenvalue of A so it is invertible.

(b) Evaluate det(A− 2I5) Answer: Since 2 is an eigenvalue, det(A−
2I5) = 0.

(c) Is A diagonalizable? Answer: We can’t know without more in-
formation. The algebraic multiplicity of 2 is two. A will be diag-
onalizable if the geometric multiplicity is two, but that can’t be
determined from the characteristic polynomial alone.

(d) Is there a nonzero vector x⃗ in R5 such that Ax⃗ = −x⃗? Answer:
Yes. Since −1 is an eigenvalue, there is nonzero eigenvector x⃗ such
that Ax⃗ = −1x⃗ = −x⃗.

(e) What is det(A)? Answer: From the last exercise, det(A) =
PA(0) = 22(4)(−1)(6) = −96.

(f) Is det(A− 5I5) = 0? Answer: No. If this was zero, then 5 would
be an eigenvalue, but 5− λ is not a factor of PA.

(g) Is there an eigenbasis of R5 for A? Answer: We can’t know. This
is the same question about diagonalizability. We would need to
know the geometric multiplicity of the eigenvalue 2, but there’s
not enough information.

9. Suppose A is a 5× 5 matrix with characteristic polynomial

PA(λ) = −λ(1− λ)(−1− λ)(2− λ)(7− λ).

For each question, either provide a short answer or explain why it is
not possible to answer.

(a) Is A invertible? Answer: No. One of the factors is 0− λ, so zero
is an eigenvalue of A making it not invertible. From the factored
polynomial, the eigenvalues are 0, 1,−1, 2 and 7.

(b) Is A − I5 invertible? Answer: No, it’s not. Since 1 is an eigen-
value, det(A− 1I5) = 0. So A− I5 is not invertible.

(c) Is A diagonalizable? Answer: Yes it is. There are five distinct
eigenvalues, so A is guaranteed to be diagonalizable.

(d) Is there a nonzero vector x⃗ in R5 such that Ax⃗ = x⃗? Answer:
Yes. 1 is an eigenvalue so there must be a nonzero vector such
that Ax⃗ = 1x⃗.



A.6. CHAPTER 6 EXERCISES: 575

(e) What is det(A)? Answer: Since zero is an eigenvalue, det(A) =
0.

(f) Is A − 5I5 invertible? Answer: Yes, it is. Since 5 is not an
eigenvalue, it must be that det(A − 5I5) ̸= 0 making A − 5I5
invertible.

(g) Is there an eigenbasis of R5 for A? Answer: Yes. This is the
same as the question about diagonalizability above. Five distinct
eigenvalues for a 5× 5 matrix ensures that there are five linearly
independent eigenvectors to make a basis for R5.

10. Find a 3×3 matrix A having eigenvalues L = {2,−1, 3} and eigenbasis
EA = {⟨1, 0, 1⟩, ⟨−2, 1, 0⟩, ⟨3, 1, 2⟩}.
Answer: A solution can be formed as A = CDC−1 with the columns
of the matrix C set as the eigenvectors and the entries on the diago-
nal matrix D the eigenvalues. Taking them in the order given in the
problem statement, one solution is

A =

 1 −2 3
0 1 1
1 0 2

 2 0 0
0 −1 0
0 0 3

 1 −2 3
0 1 1
1 0 2

−1

=
1

3

 3 12 3
4 5 −4
2 4 4

 .

11. Prove Theorem 6.3.5. That is, show that if A and B are similar, then for
positive integer n, An and Bn are also similar with the same similarity
transformation matrix. (Hint: using induction.)
Answer: Suppose A and B are similar, so there exists and invertible
matrix C such that B = C−1AC. This is the base case (the case n = 2
is also shown before the statement of Theorem 6.3.5). Suppose that for
some integer k ≥ 1 that Bk = C−1AkC, then note that

Bk+1 = BBk = (C−1AC)(C−1AkC)

= C−1A(CC−1)AkC

= C−1AInA
kC

= C−1AAkC

= C−1Ak+1C,

so Bk+1 is similar to Ak+1. It follows that Bn is similar to An for all
integers n ≥ 1.
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12. Suppose A and B are similar, invertible matrices. Show that A−1 and
B−1 are similar and that AT and BT are similar.
Answer: Since A and B are similar, there is an invertible matrix C
such that B = C−1AC. We recall that the inverse of a product is the
product of the inverses in the reverse order (i.e., (XY )−1 = Y −1X−1),
and a matrix is the inverse of its inverse (i.e., (C−1)−1 = C). Take the
inverse of both sides of the equation between A and B to get

B−1 =
(
C−1AC

)−1
= C−1A−1(C−1)−1 = C−1A−1C.

So B−1 is similar to A−1 with the same similarity transform matrix
as A and B. We also recall that the transpose of a product is the
product of the transposes in the reverse order (i.e., (XY )T = Y TXT ),
and the inverse of the transpose is the transpose of the inverse (i.e.,
(CT )−1 = (C−1)T ). Take the transpose of the equation between A and
B to get

BT =
(
C−1AC

)T
= CTAT (C−1)T = CTAT (CT )−1.

So AT and BT are similar. If the matrix for the similarity transfor-
mation between A and B is C, then the matrix for the transformation
between AT and BT is (CT )−1.

13. (Involves calculus) An interesting use of diagonalization arises in the
solution of linear systems of differential equations. We know, for exam-
ple, that the simple differential equation dy

dt
= ay, with a a constant,

has family of solutions y(t) = eaty0 where y0 is a scalar (it is the value
of y(t) when t = 0). We can formulate a vector version of this simple
equation with y⃗(t) = ⟨x(t), y(t)⟩, a vector valued function of t. The
derivative is taken entry-wise, dy⃗

dt
=
〈
dx
dt
, dy
dt

〉
. If A is a 2× 2 matrix, we

can consider the vector differential equation

dy⃗

dt
= Ay⃗,

and propose a solution analogous to the scalar version, y⃗(t) = eAty⃗0.
This requires giving meaning to an exponential eAt when A is a matrix.
We can turn to a series representation. Recall that the exponential ex

can be expressed in terms of the series

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
.
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This suggests a way to give meaning to a matrix exponential. We can
define

eAt = In + tA+
t2

2!
A2 +

t3

3!
A3 + · · · =

∞∑
n=0

tn

n!
An.

If D is a diagonal matrix, D =

[
d11 0
0 d22

]
, then we can get a nice

form for the exponential of the matrix,

eDt =

[
ed11t 0

0 ed22t

]
.

Glossing over some technical issues, we can show that if D = C−1AC,
then eAt = CeDtC−1. Determine the matrix exponential eAt if A =[
−2 6
−2 5

]
. (Note this is the matrix from Exercise 6.4.2.) Show that

eA(0) = I2, that is, when t = 0, the matrix exponential is the identity
(this is analogous to the fact that e0 = 1).
Answer: From the previous exercise with this matrix A, D = C−1AC
where

D =

[
1 0
0 2

]
, C =

[
2 3
1 2

]
, and C−1 =

[
2 −3

−1 2

]
.

So

eAt =

[
2 3
1 2

] [
et 0
0 e2t

] [
2 −3

−1 2

]
=

[
2 3
1 2

] [
2et −3et

−e2t 2e2t

]
=

[
4et − 3e2t −6et + 6e2t

2et − 2e2t −3et + 4e2t

]
Note that when t = 0,

eA(0) =

[
4e0 − 3e2(0) −6e0 + 6e2(0)

2e0 − 2e2(0) −3e0 + 4e2(0)

]
=

[
4− 3 −6 + 6
2− 2 −3 + 4

]
=

[
1 0
0 1

]
= I2.
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A.7 Chapter 7 Exercises:

Exercise 7.1.1 Let S = {⟨1,−1, 3⟩, ⟨−1, 2, 1⟩, ⟨7, 4,−1⟩}. Show that S is an
orthgonal set.

Answer: Calling the vectors v⃗1, v⃗2, and v⃗3, in the order they appear, we
already know from Example 7.1.2 that v⃗1 · v⃗2 = 0. We need to show that
v⃗1 · v⃗3 = 0 and v⃗2 · v⃗3 = 0 as well. Note that

v⃗1 · v⃗3 = 1(7) + (−1)(4) + 3(−1) = 0

v⃗2 · v⃗3 = −1(7) + 2(4) + 1(−1) = 0

Hence we can conclude that S is an orthogonal set.

Exercise 7.1.2 Let S = {v⃗1, v⃗2, v⃗3} where

v⃗1 = ⟨3, 0,−3, 1⟩, v⃗2 = ⟨2, 1, 1,−3⟩, and v⃗3 = ⟨1, 5, 2, 3⟩.

In Example 7.1.1, we determined that S is an orthogonal basis for Span(S).
Use the formula for the weights from Theorem 7.1.2 to express x⃗ = ⟨3, 3,−2, 4⟩
as a linear combination of the elements of S, and confirm that your solution
is correct.

Answer: To use the formula fromTheorem 7.1.2 for the weights, we need
the dot product of x⃗ with each basis element as well as the dot product of
each basis element with itself.

x⃗ · v⃗1 = 3(3) + 3(0) + (−2)(−3) + 4(1) = 19,

x⃗ · v⃗2 = 3(2) + 3(1) + (−2)(1) + 4(−3) = −5,

x⃗ · v⃗3 = 3(1) + 3(5) + (−2)(2) + 4(3) = 26,

and

v⃗1 · v⃗1 = 32 + 02 + (−3)2 + 12 = 19,

v⃗2 · v⃗2 = 22 + 12 + 12 + (−3)2 = 15,

v⃗3 · v⃗3 = 12 + 52 + 22 + 32 = 39.

The weights are

c1 =
19

19
= 1, c2 = − 5

15
= −1

3
, and c3 =

26

39
=

2

3
.
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Hence

x⃗ = v⃗1 −
1

3
v⃗2 +

2

3
v⃗3.

It’s not necessarily obvious that x⃗ is in Span(S), but we can confirm by
actually computing this linear combination.

⟨3, 0,−3, 1⟩ − 1

3
⟨2, 1, 1,−3⟩+ 2

3
⟨1, 5, 2, 3⟩ =〈

3− 2

3
+

2

3
, 0− 1

3
+

10

3
,−3− 1

3
+

4

3
, 1−

(
−3

3

)
+

6

3

〉
=

⟨3, 3,−2, 4⟩ = x⃗.

Exercise 7.1.3 Show that the set {⟨2, 2, 1⟩, ⟨−2, 1, 2⟩, ⟨1,−2, 2⟩} is an
orthogonal basis for R3, and find an associated orthonormal basis by nor-
malizing the vectors.
Answer: Let’s call the vectors v⃗1, v⃗2 and v⃗3 in the order written. To show
that the set is an orthogonal basis, we need to confirm that they are orthog-
onal.

v⃗1 · v⃗2 = 2(−2) + 2(1) + 1(2) = 0,

v⃗1 · v⃗3 = 2(1) + 2(−2) + 1(2) = 0,

v⃗2 · v⃗3 = −2(1) + 1(−2) + 2(2) = 0.

The set is orthogonal. Since it’s orthogonal, it is linearly independent. And
since it is a linearly independent set of three vectors in R3, it is a basis for
R3. To obtain an orthonormal basis, we need to find the magnitudes.

∥v⃗1∥ =
√
22 + 22 + 12 = 3, ∥v⃗2∥ =

√
(−2)2 + 12 + 22 = 3,

and ∥v⃗3∥ =
√
12 + (−2)2 + 22 = 3.

They all have the same magnitude. An orthonormal basis is{〈
2

3
,
2

3
,
1

3

〉
,

〈
−2

3
,
1

3
,
2

3

〉
,

〈
1

3
,−2

3
,
2

3

〉}
Exercise 7.2.1 Consider the parallel vectors v⃗1 = ⟨−2, 3⟩ and v⃗2 =

⟨4,−6⟩, and let x⃗ = ⟨−5, 2⟩. Show that

projv⃗1 x⃗ = projv⃗2 x⃗.
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Answer:

projv⃗1 x⃗ =
x⃗ · v⃗1
∥v⃗1∥2

v⃗1 =
16

13
⟨−2, 3⟩ =

〈
−32

13
,
48

13

〉

projv⃗2 x⃗ =
x⃗ · v⃗2
∥v⃗2∥2

v⃗2 = −32

52
⟨4,−6⟩ =

〈
−32

13
,
48

13

〉
Exercise 7.2.2 Find the point on the line L defined by 4x− y = 0 closest

to the point P = (6, 1). What is the distance between the point P and the
line L?
Answer: The line L, which has equation y = 4x is parallel to the vector

v⃗ = ⟨1, 4⟩. Let x⃗ =
−→
OP = ⟨6, 1⟩. Then

projv⃗ x⃗ =
x⃗ · v⃗
∥v⃗∥2

v⃗ =
10

17
⟨1, 4⟩ =

〈
10

17
,
40

17

〉
.

The point on L that is closest to P is

(
10

17
,
40

17

)
. The orthogonal part is

x⃗− projv⃗ x⃗ = ⟨6, 1⟩ −
〈
10

17
,
40

17

〉
=

〈
92

17
,−23

17

〉
,

and the distance from P to L is

∥x⃗− projv⃗ x⃗∥ =
23√
17

≈ 5.58 (appropriate length units).

Exercise 7.2.3 move to the next line.

1. Let v⃗ = ⟨1,−1, 2,−3⟩ and x⃗ = ⟨3,−3, 6,−9⟩. Verify that x⃗ is parallel
to v⃗ and that projv⃗ x⃗ = x⃗.
Answer: A vector is parallel to v⃗ if it is a scalar multiple of v⃗. Since
x⃗ = ⟨3,−3, 6,−9⟩ = 3⟨1,−1, 2,−3⟩ = 3v⃗, x⃗ is parallel to v⃗. Using the
projection formula,

projv⃗ x⃗ =
x⃗ · v⃗
∥v⃗∥2

v⃗ =
45

15
⟨1,−1, 2,−3⟩ = ⟨3,−3, 6,−9⟩ = x⃗,

as expected.
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2. Let v⃗ be any nonzero vector in Rn. Show that if x⃗ is any vector in Rn

that is parallel to v⃗, then projv⃗ x⃗ = x⃗.
Answer: Since x⃗ is parallel to v⃗, x⃗ = cv⃗ for some scalar c. Then

projv⃗ x⃗ =
x⃗ · v⃗
∥v⃗∥2

v⃗ =
cv⃗ · v⃗
∥v⃗∥2

v⃗ =
c∥v⃗∥2

∥v⃗∥2
v⃗ = cv⃗ = x⃗.

This is the anticipated result.

Chapter 7 Additional Exercises
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