5.8 Nonhomogeneous Linear Systems

We now address the problem of finding the general solution of a nonhomogeneous first order linear system

	be a solution of $y' = P(t)y + g_1(t)$, $a < t < b$, and let $v(t)$ be a solution of
$\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}_2(t), \ a < t < \mathbf{y}$	$< b$. Let a_1 and a_2 be any constants. Then the vector function $\mathbf{y}_p(t) = a_1 \mathbf{u}(t) + a_2 \mathbf{v}(t)$
$is\ a\ particular\ solution\ of$	·

Definition 5.5. Let $\{y_1(t), y_2(t), \dots, y_n(t)\}$ be a set of solutions of a homogeneous first order linear system y' = P(t)y. The $n \times n$ matrix whose columns consist of solutions

Theorem 5.6. Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{5.2}$$

- 1. Let $\Psi(t)$ be any solution matrix of Eq. (5.2). Then $\Psi(t)$ satisfies the matrix differential equation
- 2. Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a, b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem

3. If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (5.2), then there exists an $n \times n$ constant matrix C such that

Example 5.24. Find the solution matrix that satisfies the following initial value problem

$$\boldsymbol{y}'(t) = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \boldsymbol{y}(t), \ \boldsymbol{y}(0) = \boldsymbol{y}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and the given eigenpairs $\left(3, \left[\begin{array}{c} 1 \\ 2 \end{array}\right]\right)$ and $\left(-1, \left[\begin{array}{c} 1 \\ -2 \end{array}\right]\right)$.

 $\underline{Solution}$:

The Method of Variation of Parameters

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), \ y(t_0) = y_0, \ a < t < b,$$
 (5.3)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a, b), and $t_0 \in (a, b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t)$, a < t < b. The complementary solution is $\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$ where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form

Example 5.25. Solve the initial value problem

$$m{y}' = \left[egin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}
ight] m{y} + \left[egin{array}{c} e^{2t} \\ -2t \end{array}
ight], \quad m{y}(0) = \left[egin{array}{c} 0 \\ 0 \end{array}
ight].$$

Solution:

Example 5.25 continued.

Example 5.26. Consider the system

$$\mathbf{y}' = \left[egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight] \mathbf{y} + \left[egin{array}{c} t \\ -1 \end{array}
ight], \quad \mathbf{y}(0) = \left[egin{array}{c} 2 \\ -1 \end{array}
ight]$$

with the particular solution $y_p(t) = ta + b$, where a, b are column vectors.

Solve the initial value problem given the eigenpairs $\left(1, \begin{bmatrix} 1\\1 \end{bmatrix}\right)$ and $\left(-1, \begin{bmatrix} 1\\-1 \end{bmatrix}\right)$. Solution:

Example 5.26 continued.