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5.8 Nonhomogeneous Linear Systems

We now address the problem of finding the general solution of a nonhomogeneous first order linear system

.
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104 Chapter 5. Introduction to Systems of Differential Equations

Theorem 5.5. Let u(t) be a solution of y′ = P (t)y + g1(t), a < t < b, and let v(t) be a solution of
y′ = P (t)y+g2(t), a < t < b. Let a1 and a2 be any constants. Then the vector function yp(t) = a1u(t)+a2v(t)

is a particular solution of .

Definition 5.5. Let {y1(t),y2(t), . . . ,yn(t)} be a set of solutions of a homogeneous first
order linear system y′ = P (t)y. The n × n matrix whose columns consist of solutions

.

Theorem 5.6. Consider the homogeneous linear first order system

y′ = P (t)y, a < t < b. (5.2)

1. Let Ψ(t) be any solution matrix of Eq. (5.2). Then Ψ(t) satisfies the matrix differential equation

2. Let Ψ0 represent any given constant n×n matrix, and let t0 be any fixed point in the interval (a, b). Then
there is a unique solution n× n matrix Ψ(t) that solves the initial value problem

3. If Ψ(t) is any fundamental matrix and Ψ̂(t) is any solution matrix of Eq. (5.2), then there exists an n×n
constant matrix C such that
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Example 5.24. Find the solution matrix that satisfies the following initial value problem

y′(t) =

(
1 1
4 1

)
y(t), y(0) = y0 =

(
1 0
0 1

)
,

and the given eigenpairs

(
3,

[
1
2

])
and

(
−1,

[
1
−2

])
.

Solution:
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The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y′(t) = P (t)y(t) + g(t), y(t0) = y0, a < t < b, (5.3)

where the n× n coefficient matrix P (t) and the n× 1 vector function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that Ψ′(t) = P (t)Ψ(t), a < t < b. The complementary

solution is yc(t) = Ψ(t)c where c is an arbitrary n× 1 vector.

We “vary the parameter” and look for particular solution of the form .

Example 5.25. Solve the initial value problem

y′ =

[
1 2
2 1

]
y +

[
e2t

−2t

]
, y(0) =

[
0
0

]
.

Solution:
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Example 5.25 continued.
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Example 5.26. Consider the system

y′ =

[
0 1
1 0

]
y +

[
t
−1

]
, y(0) =

[
2
−1

]
with the particular solution yp(t) = ta+ b, where a, b are column vectors.

Solve the initial value problem given the eigenpairs

(
1,

[
1
1

])
and

(
−1,

[
1
−1

])
.

Solution:
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Example 5.26 continued.
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