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Method of Undetermined Coefficients
Two methods for finding a particular solution yP

Method of undetermined coefficients: ay ′′ + by ′ + cy = g(t)
Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation
y ′′ + 3y ′ + 2y = 5e2t .

Solution: First, we need to find yc(t). The homogeneous equation
is y ′′ + 3y ′ + 2y = 0. The characteristic equation is

r2 + 3r + 2 = 0 ⇒ r1 = −1, r2 = −2.

Hence, yc = c1e−t + c2e−2t .
Try yp = Ae2t because g(t) = 5e2t . Taking the derivatives

y ′
p = 2Ae2t ; y ′′

p = 4Ae2t .
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Example 2.16 Continued

yp = Ae2t ; y ′
p = 2Ae2t ; y ′′

p = 4Ae2t .

Plug into the nonhomogeneous differential equation
y ′′ + 3y ′ + 2y = 5e2t

we have

4Ae2t + 3
(
2Ae2t

)
+ 2

(
Ae2t

)
= 5e2t ⇒ A = 5

12

Hence yp = 5
12e2t . The general solution is

y = yc + yp = c1e−t + c2e−2t + 5
12e2t .
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Example 2.18
Find the general solution for y ′′ + 3y ′ + 2y = 5e−2t .

Solution: From Example 2.16, we know that yc = c1e−t + c2e−2t .
Let yp = Ae−2t . Then

4Ae−2t − 6Ae−2t + 2Ae−2t = e−2t(4A − 6A + 2A) = 0.

But 5e−2t ̸= 0!
To overcome this problem, try yp = Ate−2t instead.

y ′
p = Ae−2t − 2Ate−2t = Ae−2t(1 − 2t)

y ′′
p = −2Ae−2t − 2Ae−2t + 4Ate−2t = 4Ae−2t(t − 1)

Plugging into the ODE, we have
5e−2t = 4Ae−2t(t − 1) + 3Ae−2t(1 − 2t) + 2Ate−2t

= Ae−2t(4t − 4 + 3 − 6t + 2t)
= −Ae−2t

⇒ A = −5

The general solution is y = c1e−t + c2e−2t − 5te−2t .
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Similar Table to the One on Page 156 of Textbook

Caution: This method has problems when proposed yp contains
elements of yc .
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Example 2.19
Find the correct form for yp(t) when

y ′′ + 4y = 2t2 + 5 sin(2t) + e3t .

Solution: From Theorem 2.6, we can break down the particular
solution into parts. Let y ′′ + 4y = gi(t) with i = 1, 2, 3.

g1(t) = 2t2, try yp1(t) = At2 + Bt + C .
g2(t) = 5 sin(2t), try yp2(t) = Dt cos(2t) + Et sin(2t) since the
sine and cosine appear in the complementary solution.
g3(t) = e3t , try yp3(t) = Fe3t .

Then the particular solution is going to be
yp(t) = yp1(t) + yp2(t) + yp3(t)

= At2 + Bt + C + Dt cos(2t) + Et sin(2t) + Fe3t .

Observe that the characteristic equation is r2 + 4 = 0, and the
roots are r1,2 = ±2i . Therefore the complementary solution is
yc(t) = c1 cos(2t) + c2 sin(2t).
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Example 2.20
Find the general solution of y ′′ − y ′ − 2y = 3t3.

Solution: The roots for the characteristic equation are r1 = −1,
r2 = 2. Thus, yc(t) = c1e−t + c2e2t .
Try yp(t) = At3 + Bt2 + Ct + D. Plug into the ODE
3t3 = (6At + 2B) −

(
3At2 + 2Bt + C

)
− 2

(
At3 + Bt2 + Ct + D

)
= −2At3 − (3A + 2B)t2 + (6A − 2B − 2C)t + (2B − C − 2D)

Matching powers of t, we have a system of equations to solve:
−2A = 3
−3A − 2B = 0
6A − 2B − 2C = 0
2B − C − 2D = 0

⇒


A = −3

2
B = 9

4
C = −27

4
D = 45

8

Thus yp = −3
2 t3 + 9

4 t2 − 27
4 t + 45

8 . The general solution is

y(t) = c1e−t + c2e2t − 3
2 t3 + 9

4 t2 − 27
4 t + 45

8 .
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Summary

Today we learned
method of undetermined coefficients

next time, we will learn
method of variation of parameters
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