Math 2306 Lecture 19

Dr. Lihong Zhao

lzhao12@kennesaw.edu

Friday, October 3, 2025

Worksheet 02 Solutions (due by 11:59pm on Oct 2, 2025)

- Calculate $\int xe^{x^2} dx$ using the method integration by parts. • Solution: Let $u = x^2$, then du = 2x dx and $x dx = \frac{1}{2} du$. Thus $\int xe^{x^2} dx = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + c = \frac{1}{2} e^{x^2} + c$
- ② Calculate $\int \left(1 \frac{1}{\omega}\right) \cos\left(\omega \ln \omega\right) dx$ using the method integration by substitution.

Solution: Let
$$u = \omega - \ln \omega$$
, then $du = \left(1 - \frac{1}{\omega}\right) d\omega$. Therefore,
$$\int \left(1 - \frac{1}{\omega}\right) \cos\left(\omega - \ln \omega\right) dx = \int \cos u \, du$$
$$= \sin u + c$$
$$= \sin(\omega - \ln \omega) + c$$

Outline

- Section 2.5 Nonhomogeneous Equations and Undetermined Coefficients
 - Method of Undetermined Coefficients

Outline

- Section 2.5 Nonhomogeneous Equations and Undetermined Coefficients
 - Method of Undetermined Coefficients

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

Solution: First, we need to find $y_c(t)$.

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

<u>Solution</u>: First, we need to find $y_c(t)$. The homogeneous equation is y'' + 3y' + 2y = 0.

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

<u>Solution</u>: First, we need to find $y_c(t)$. The homogeneous equation is y'' + 3y' + 2y = 0. The characteristic equation is

$$r^2 + 3r + 2 = 0 \Rightarrow r_1 = -1, r_2 = -2.$$

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

<u>Solution</u>: First, we need to find $y_c(t)$. The homogeneous equation is y'' + 3y' + 2y = 0. The characteristic equation is

$$r^2 + 3r + 2 = 0 \Rightarrow r_1 = -1, \ r_2 = -2.$$

Hence, $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

EXAMPLE 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

<u>Solution</u>: First, we need to find $y_c(t)$. The homogeneous equation is y'' + 3y' + 2y = 0. The characteristic equation is

$$r^2 + 3r + 2 = 0 \Rightarrow r_1 = -1, \ r_2 = -2.$$

Hence, $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Try $y_p = Ae^{2t}$ because $g(t) = 5e^{2t}$.

Two methods for finding a particular solution y_P

- Method of undetermined coefficients: ay'' + by' + cy = g(t)
- Method of variation of parameters [Section 2.5.3]

Example 2.16 Solve the differential equation

$$y'' + 3y' + 2y = 5e^{2t}.$$

<u>Solution</u>: First, we need to find $y_c(t)$. The homogeneous equation is y'' + 3y' + 2y = 0. The characteristic equation is

$$r^2 + 3r + 2 = 0 \Rightarrow r_1 = -1, \ r_2 = -2.$$

Hence, $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Try $y_p = Ae^{2t}$ because $g(t) = 5e^{2t}$. Taking the derivatives

$$y_p' = 2Ae^{2t}; \quad y_p'' = 4Ae^{2t}.$$

$$y_p = Ae^{2t}; \quad y_p' = 2Ae^{2t}; \quad y_p'' = 4Ae^{2t}.$$

Plug into the nonhomogeneous differential equation

$$y'' + 3y' + 2y = 5e^{2t}$$

we have

$$4Ae^{2t} + 3(2Ae^{2t}) + 2(Ae^{2t}) = 5e^{2t} \Rightarrow A = \frac{5}{12}$$

$$y_p = Ae^{2t}; \quad y_p' = 2Ae^{2t}; \quad y_p'' = 4Ae^{2t}.$$

Plug into the nonhomogeneous differential equation

$$y'' + 3y' + 2y = 5e^{2t}$$

we have

$$4Ae^{2t} + 3(2Ae^{2t}) + 2(Ae^{2t}) = 5e^{2t} \Rightarrow A = \frac{5}{12}$$

Hence $y_p = \frac{5}{12}e^{2t}$.

$$y_p = Ae^{2t}; \quad y_p' = 2Ae^{2t}; \quad y_p'' = 4Ae^{2t}.$$

Plug into the nonhomogeneous differential equation

$$y'' + 3y' + 2y = 5e^{2t}$$

we have

$$4Ae^{2t} + 3(2Ae^{2t}) + 2(Ae^{2t}) = 5e^{2t} \Rightarrow A = \frac{5}{12}$$

Hence $y_p = \frac{5}{12}e^{2t}$. The general solution is

$$y = y_c + y_p = c_1 e^{-t} + c_2 e^{-2t} + \frac{5}{12} e^{2t}.$$

$$y_p = Ae^{2t}; \quad y_p' = 2Ae^{2t}; \quad y_p'' = 4Ae^{2t}.$$

Plug into the nonhomogeneous differential equation

$$y'' + 3y' + 2y = 5e^{2t}$$

we have

$$4Ae^{2t} + 3(2Ae^{2t}) + 2(Ae^{2t}) = 5e^{2t} \Rightarrow A = \frac{5}{12}$$

Hence $y_p = \frac{5}{12}e^{2t}$. The general solution is

$$y = y_c + y_p = c_1 e^{-t} + c_2 e^{-2t} + \frac{5}{12} e^{2t}.$$

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$.

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$. <u>Solution</u>: From Example 2.16, we know that $y_c = c_1e^{-t} + c_2e^{-2t}$.

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$. <u>Solution</u>: From Example 2.16, we know that $y_c = c_1e^{-t} + c_2e^{-2t}$. Let $y_p = Ae^{-2t}$.

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$. <u>Solution</u>: From Example 2.16, we know that $y_c = c_1e^{-t} + c_2e^{-2t}$. Let $y_p = Ae^{-2t}$. Then $4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0.$

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$. <u>Solution</u>: From Example 2.16, we know that $y_c = c_1e^{-t} + c_2e^{-2t}$. Let $y_p = Ae^{-2t}$. Then $4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0$. But $5e^{-2t} \neq 0$!

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$. <u>Solution</u>: From Example 2.16, we know that $y_c = c_1e^{-t} + c_2e^{-2t}$. Let $y_p = Ae^{-2t}$. Then $4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0.$

But $5e^{-2t} \neq 0!$

To overcome this problem, try $y_p = Ate^{-2t}$ instead.

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$.

Solution: From Example 2.16, we know that $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Let
$$y_p = Ae^{-2t}$$
. Then

$$4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0.$$

But
$$5e^{-2t} \neq 0!$$

To overcome this problem, try $y_p = Ate^{-2t}$ instead.

$$y_p' = Ae^{-2t} - 2Ate^{-2t} = Ae^{-2t}(1 - 2t)$$

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$.

Solution: From Example 2.16, we know that $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Let
$$y_p = Ae^{-2t}$$
. Then

$$4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0.$$

But
$$5e^{-2t} \neq 0!$$

To overcome this problem, try $y_p = Ate^{-2t}$ instead.

$$y_p' = Ae^{-2t} - 2Ate^{-2t} = Ae^{-2t}(1-2t)$$

$$y_p'' = -2Ae^{-2t} - 2Ae^{-2t} + 4Ate^{-2t} = 4Ae^{-2t}(t-1)$$

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$.

Solution: From Example 2.16, we know that $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Let $y_p = Ae^{-2t}$. Then

$$4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0.$$

But $5e^{-2t} \neq 0!$

To overcome this problem, try $y_p = Ate^{-2t}$ instead.

$$y_p' = Ae^{-2t} - 2Ate^{-2t} = Ae^{-2t}(1 - 2t)$$

$$y_p'' = -2Ae^{-2t} - 2Ae^{-2t} + 4Ate^{-2t} = 4Ae^{-2t}(t - 1)$$

Plugging into the ODE, we have

$$5e^{-2t} = 4Ae^{-2t}(t-1) + 3Ae^{-2t}(1-2t) + 2Ate^{-2t}$$

$$= Ae^{-2t}(4t-4+3-6t+2t)$$

$$= -Ae^{-2t}$$

$$\Rightarrow A = -5$$

Find the general solution for $y'' + 3y' + 2y = 5e^{-2t}$.

Solution: From Example 2.16, we know that $y_c = c_1 e^{-t} + c_2 e^{-2t}$.

Let $y_p = Ae^{-2t}$. Then

$$4Ae^{-2t} - 6Ae^{-2t} + 2Ae^{-2t} = e^{-2t}(4A - 6A + 2A) = 0.$$

But $5e^{-2t} \neq 0!$

To overcome this problem, try $y_p = Ate^{-2t}$ instead.

$$y_p' = Ae^{-2t} - 2Ate^{-2t} = Ae^{-2t}(1 - 2t)$$

$$y_p'' = -2Ae^{-2t} - 2Ae^{-2t} + 4Ate^{-2t} = 4Ae^{-2t}(t - 1)$$

Plugging into the ODE, we have

$$5e^{-2t} = 4Ae^{-2t}(t-1) + 3Ae^{-2t}(1-2t) + 2Ate^{-2t}$$

$$= Ae^{-2t}(4t-4+3-6t+2t)$$

$$= -Ae^{-2t}$$

$$\Rightarrow A = -5$$

The general solution is $y = c_1 e^{-t} + c_2 e^{-2t} - 5t e^{-2t}$.

Similar Table to the One on Page 156 of Textbook

TABLE 3.1

The right-hand column gives the proper form to assume for a particular solution of ay'' + by' + cy = g(t). In the right-hand column, choose r to be the smallest nonnegative integer such that no term in the assumed form is a solution of the homogeneous equation ay'' + by' + cy = 0. The value of r will be 0, 1, or 2.

 $t^{r}[A_{..}t^{n} + \cdots + A_{1}t + A_{0}]$

$\begin{bmatrix} a_n t^n + \dots + a_1 t + a_0 \\ [a_n t^n + \dots + a_1 t + a_0] e^{at} \\ [a_n t^n + \dots + a_1 t + a_0] \sin \beta t \\ \text{or} \\ [a_n t^n + \dots + a_1 t + a_0] \cos \beta t \end{bmatrix}$

 $e^{\alpha t} \sin \beta t$ or $e^{\alpha t} \cos \beta t$

 $e^{\alpha t}[a_n t^n + \dots + a_0] \sin \beta t$ or $e^{\alpha t}[a_n t^n + \dots + a_0] \cos \beta t$

Form of g(t)

Form to Assume for a Particular Solution
$$y_P(t)$$

$$t^{r}[A_{n}t^{n} + \dots + A_{1}t + A_{0}]e^{\alpha t}$$

$$t^{r}[(A_{n}t^{n} + \dots + A_{1}t + A_{0})\sin\beta t + (B_{n}t^{n} + \dots + B_{1}t + B_{0})\cos\beta t]$$

$$t^{r}[Ae^{\alpha t}\sin\beta t + Be^{\alpha t}\cos\beta t]$$

 $t'[(A_nt^n+\cdots+A_n)e^{\alpha t}\sin\beta t+(B_nt^n+\cdots+B_n)e^{\alpha t}\cos\beta t]$

<u>Caution:</u> This method has problems when proposed y_p contains elements of y_c .

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

•
$$g_1(t) = 2t^2$$
, try $y_{p1}(t) = At^2 + Bt + C$.

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

- $g_1(t) = 2t^2$, try $y_{p1}(t) = At^2 + Bt + C$.
- $g_2(t) = 5\sin(2t)$, try $y_{p2}(t) = Dt\cos(2t) + Et\sin(2t)$ since the sine and cosine appear in the complementary solution.

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

- $g_1(t) = 2t^2$, try $y_{p1}(t) = At^2 + Bt + C$.
- $g_2(t) = 5\sin(2t)$, try $y_{p2}(t) = Dt\cos(2t) + Et\sin(2t)$ since the sine and cosine appear in the complementary solution.
- $g_3(t) = e^{3t}$, try $y_{p3}(t) = Fe^{3t}$.

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

<u>Solution</u>: From Theorem 2.6, we can break down the particular solution into parts. Let $y'' + 4y = g_i(t)$ with i = 1, 2, 3.

- $g_1(t) = 2t^2$, try $y_{p1}(t) = At^2 + Bt + C$.
- $g_2(t) = 5\sin(2t)$, try $y_{p2}(t) = Dt\cos(2t) + Et\sin(2t)$ since the sine and cosine appear in the complementary solution.
- $g_3(t) = e^{3t}$, try $y_{p3}(t) = Fe^{3t}$.

Then the particular solution is going to be

$$y_p(t) = y_{p1}(t) + y_{p2}(t) + y_{p3}(t)$$

= $At^2 + Bt + C + Dt\cos(2t) + Et\sin(2t) + Fe^{3t}$.

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

<u>Solution</u>: From Theorem 2.6, we can break down the particular solution into parts. Let $y'' + 4y = g_i(t)$ with i = 1, 2, 3.

- $g_1(t) = 2t^2$, try $y_{p1}(t) = At^2 + Bt + C$.
- $g_2(t) = 5\sin(2t)$, try $y_{p2}(t) = Dt\cos(2t) + Et\sin(2t)$ since the sine and cosine appear in the complementary solution.
- $g_3(t) = e^{3t}$, try $y_{p3}(t) = Fe^{3t}$.

Then the particular solution is going to be

$$y_p(t) = y_{p1}(t) + y_{p2}(t) + y_{p3}(t)$$

= $At^2 + Bt + C + Dt\cos(2t) + Et\sin(2t) + Fe^{3t}$.

Observe that the characteristic equation is $r^2 + 4 = 0$, and the roots are $r_{1,2} = \pm 2i$.

Find the correct form for $y_p(t)$ when

$$y'' + 4y = 2t^2 + 5\sin(2t) + e^{3t}.$$

<u>Solution</u>: From Theorem 2.6, we can break down the particular solution into parts. Let $y'' + 4y = g_i(t)$ with i = 1, 2, 3.

- $g_1(t) = 2t^2$, try $y_{p1}(t) = At^2 + Bt + C$.
- $g_2(t) = 5\sin(2t)$, try $y_{p2}(t) = Dt\cos(2t) + Et\sin(2t)$ since the sine and cosine appear in the complementary solution.
- $g_3(t) = e^{3t}$, try $y_{p3}(t) = Fe^{3t}$.

Then the particular solution is going to be

$$y_p(t) = y_{p1}(t) + y_{p2}(t) + y_{p3}(t)$$

= $At^2 + Bt + C + Dt\cos(2t) + Et\sin(2t) + Fe^{3t}$.

Observe that the characteristic equation is $r^2 + 4 = 0$, and the roots are $r_{1,2} = \pm 2i$. Therefore the complementary solution is $y_c(t) = c_1 \cos(2t) + c_2 \sin(2t)$.

Find the general solution of $y'' - y' - 2y = 3t^3$.

Find the general solution of $y'' - y' - 2y = 3t^3$. <u>Solution</u>: The roots for the characteristic equation are $r_1 = -1$, $r_2 = 2$.

Find the general solution of $y'' - y' - 2y = 3t^3$. <u>Solution</u>: The roots for the characteristic equation are $r_1 = -1$, $r_2 = 2$. Thus, $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$.

Find the general solution of $y'' - y' - 2y = 3t^3$. <u>Solution</u>: The roots for the characteristic equation are $r_1 = -1$, $r_2 = 2$. Thus, $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$. Try $y_p(t) = At^3 + Bt^2 + Ct + D$.

Find the general solution of $y'' - y' - 2y = 3t^3$. <u>Solution</u>: The roots for the characteristic equation are $r_1 = -1$, $r_2 = 2$. Thus, $y_c(t) = c_1e^{-t} + c_2e^{2t}$.

Try
$$y_p(t) = At^3 + Bt^2 + Ct + D$$
. Plug into the ODE

$$3t^3 = (6At + 2B) - (3At^2 + 2Bt + C) - 2(At^3 + Bt^2 + Ct + D)$$

= -2At^3 - (3A + 2B)t^2 + (6A - 2B - 2C)t + (2B - C - 2D)

Find the general solution of $y'' - y' - 2y = 3t^3$.

<u>Solution</u>: The roots for the characteristic equation are $r_1 = -1$,

$$r_2 = 2$$
. Thus, $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$.

Try
$$y_p(t) = At^3 + Bt^2 + Ct + D$$
. Plug into the ODE

$$3t^3 = (6At + 2B) - (3At^2 + 2Bt + C) - 2(At^3 + Bt^2 + Ct + D)$$

= -2At^3 - (3A + 2B)t^2 + (6A - 2B - 2C)t + (2B - C - 2D)

Matching powers of t, we have a system of equations to solve:

$$\begin{cases}
-2A = 3 \\
-3A - 2B = 0 \\
6A - 2B - 2C = 0 \\
2B - C - 2D = 0
\end{cases} \Rightarrow \begin{cases}
A = -\frac{3}{2} \\
B = \frac{9}{4} \\
C = -\frac{27}{4} \\
D = \frac{45}{8}
\end{cases}$$

Find the general solution of $y'' - y' - 2y = 3t^3$.

<u>Solution</u>: The roots for the characteristic equation are $r_1 = -1$,

$$r_2 = 2$$
. Thus, $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$.

Try $y_p(t) = At^3 + Bt^2 + Ct + D$. Plug into the ODE

$$3t^3 = (6At + 2B) - (3At^2 + 2Bt + C) - 2(At^3 + Bt^2 + Ct + D)$$

= -2At^3 - (3A + 2B)t^2 + (6A - 2B - 2C)t + (2B - C - 2D)

Matching powers of t, we have a system of equations to solve:

$$\begin{cases}
-2A = 3 \\
-3A - 2B = 0 \\
6A - 2B - 2C = 0 \\
2B - C - 2D = 0
\end{cases} \Rightarrow \begin{cases}
A = -\frac{3}{2} \\
B = \frac{9}{4} \\
C = -\frac{27}{4} \\
D = \frac{45}{8}
\end{cases}$$

Thus
$$y_p = -\frac{3}{2}t^3 + \frac{9}{4}t^2 - \frac{27}{4}t + \frac{45}{8}$$
.

Find the general solution of $y'' - y' - 2y = 3t^3$.

 $\underline{\textit{Solution}}$: The roots for the characteristic equation are $r_1=-1$,

$$r_2 = 2$$
. Thus, $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$.

Try
$$y_p(t) = At^3 + Bt^2 + Ct + D$$
. Plug into the ODE

$$3t^3 = (6At + 2B) - (3At^2 + 2Bt + C) - 2(At^3 + Bt^2 + Ct + D)$$

= -2At^3 - (3A + 2B)t^2 + (6A - 2B - 2C)t + (2B - C - 2D)

Matching powers of t, we have a system of equations to solve:

$$\begin{cases}
-2A = 3 \\
-3A - 2B = 0 \\
6A - 2B - 2C = 0 \\
2B - C - 2D = 0
\end{cases} \Rightarrow \begin{cases}
A = -\frac{3}{2} \\
B = \frac{9}{4} \\
C = -\frac{27}{4} \\
D = \frac{45}{8}
\end{cases}$$

Thus
$$y_p = -\frac{3}{2}t^3 + \frac{9}{4}t^2 - \frac{27}{4}t + \frac{45}{8}$$
. The general solution is

$$y(t) = c_1 e^{-t} + c_2 e^{2t} - \frac{3}{2}t^3 + \frac{9}{4}t^2 - \frac{27}{4}t + \frac{45}{8}.$$

Worksheet 02 Solution Continued

Exercise 3. Calculate $\int \frac{x^2 + 3x + 5}{x + 1} dx$ using the method of partial fraction decomposition.

Solution: First, let us do the long division

Thus

$$\int \frac{x^2 + 3x + 5}{x + 1} \, \mathrm{d}x = \int x + 2 + \frac{3}{x + 1} \, \mathrm{d}x = \frac{x^2}{2} + 2x + 3\ln|x + 1| + c$$

Summary

Today we learned

- method of undetermined coefficients next time, we will learn
- method of variation of parameters