Math 2306 Lecture 19

Dr. Lihong Zhao
Izhaol12@kennesaw.edu

Friday, October 3, 2025



Worksheet 02 Solutions (due by 11:59pm on Oct 2, 2025)

@ Calculate /xeX2 dx using the method integration by parts.

Solution: Let u = x2, then du = 2xdx and xdx = %du. Thus

2 1 P 1 e
/xe dx—2/e du—2e —|—c—2e +c

@ Calculate / (1 — %) cos (w — Inw) dx using the method

integration by substitution.
Solution: Let u = w — Inw, then du = (1 — %) dw. Therefore,

/(1—%)cos(w—lnw)dx :/cosudu

=sinu+c
=sin(w—Inw)+c¢
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Two methods for finding a particular solution yp
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EXAMPLE 2.16 Solve the differential equation
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Solution: First, we need to find y.(t). The homogeneous equation
isy” +3y'+2y =0.
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Two methods for finding a particular solution yp
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Try y, = Ae! because g(t) = 5e?t.



Method of Undetermined Coefficients

Two methods for finding a particular solution yp
@ Method of undetermined coefficients: ay” + by’ + cy = g(t)

@ Method of variation of parameters [Section 2.5.3]

EXAMPLE 2.16 Solve the differential equation

y" 43y’ +2y = 5e*.
Solution: First, we need to find y.(t). The homogeneous equation
is y” + 3y’ + 2y = 0. The characteristic equation is

rP+3r+2=0=n =—1, n=-2.
Hence, y. = cie™t + cpe 2t
Try y, = Ae®t because g(t) = 5e?t. Taking the derivatives

yl'J = 2Ae?t: yl’j’ — 4Ae%,
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vp = A€’y =2Ae’"  y) = 4Ae.
Plug into the nonhomogeneous differential equation
y// + 3y/ + 2y — 5e2t

we have

4A€* 1 3 (24 ) +2 (Ae') = 5e* = A = %
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vp = A€’y =2Ae’"  y) = 4Ae.
Plug into the nonhomogeneous differential equation
y// + 3y/ + 2y — 5e2t

we have

4A€* 1 3 (24 ) +2 (Ae') = 5e* = A = %

Hence y, = €.
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we have
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Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae 2t

2t



Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t



Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t

But 5e—2¢ £ 0!



Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t

But 5e—2¢ £ 0!

To overcome this problem, try y, = Ate=?t
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Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t

But 5e~2f #£ 0!
To overcome this problem, try y, = Ate™ <" instead.
Yy = Ae %t — 2Ate%t = Ae 2t(1 — 2t)

—2t



Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t

But 5e~2f #£ 0!
To overcome this problem, try y, = Ate™ <" instead.
Yy = Ae %t — 2Ate%t = Ae 2t(1 — 2t)

vy = —2Ae % —2Ae ? + 4Ate™?" = 4Ae (1t — 1)

—2t



Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t

But 5e~2f #£ 0!
To overcome this problem, try y, = Ate™ <" instead.
Yy = Ae %t — 2Ate%t = Ae 2t(1 — 2t)

vy = —2Ae % —2Ae ? + 4Ate™?" = 4Ae (1t — 1)

—2t

Plugging into the ODE, we have
Be 2t =4Ae % (t — 1) +3Ae2(1 — 2t) + 2Ate™ %
= Ae %t(4t — 4 + 3 — 6t + 2t)



Example 2.18

Find the general solution for y” + 3y’ + 2y = 5e 2L,
Solution: From Example 2.16, we know that y. = cie™f + cpe™
Let y, = Ae~2t. Then

4Ae%t — 6Ae 2t 4 2Ae7 % = e 2t(4A — 6A 4 2A) = 0.

2t

But 5e~2f #£ 0!
To overcome this problem, try y, = Ate™ <" instead.
Yy = Ae %t — 2Ate%t = Ae 2t(1 — 2t)

vy = —2Ae % —2Ae ? + 4Ate™?" = 4Ae (1t — 1)

—2t

Plugging into the ODE, we have
Be 2t =4Ae % (t — 1) +3Ae2(1 — 2t) + 2Ate™ %
= Ae %t(4t — 4 + 3 — 6t + 2t)
— _Aef2t
= A=-5

The general solution is y = cje™! + et — 5te 2t



Similar Table to the One on Page 156 of Textbook

TABLE 3.1

The right-hand column gives the proper form to assume for a particular solution of
ay” + by’ + cy = g(t). In the right-hand column, choose r to be the smallest nonnegative integer such

that no term in the assumed form is a solution of the homogeneous equation ay” + by’ + cy = 0. The
value of rwill be O, 1, or 2.

Form of g(t) Form to Assume for a Particular Solution yp(t)
a4+ +at+ag LA+ AT+ Ag]
la " + -+ +a,t +agle™ LA+ + A+ Agle™
[a,t" 4+ +a,t+a,]sinpt
or LA+ -+ At +Ag) sin Bt + (B, 1" + - -« + Bt + By) cos pi]

la, " +---+a,t+ag]cos pt
e™sinpt or e cospt '[Ae™ sin Bt + Be" cos Bt]
e a " + - +aglsin pt

or I'[(Aul” 4 +A0)e"' sin pr + (B”l” 4 +Bo)eM cos pt]
e“la,l" + - +aylcospt

Caution: This method has problems when proposed y, contains
elements of y..
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Example 2.19

Find the correct form for y,(t) when
y" + 4y = 2t% + 5sin(2t) + €.

Solution: From Theorem 2.6, we can break down the particular

solution into parts. Let y” + 4y = gi(t) with i = 1,2,3.

o gi(t) =2t2 try ypi(t) = At? + Bt + C.

o g(t) = 5sin(2t), try ypo(t) = Dt cos(2t) + Etsin(2t) since the
sine and cosine appear in the complementary solution.

o g3(t) = €%, try yps(t) = Fe.

Then the particular solution is going to be

yp(t) = yp1(t) + ypa(t) + yp3(t)
= At? + Bt + C + Dt cos(2t) + Etsin(2t) + Fe3t.

Observe that the characteristic equation is r> + 4 = 0, and the
roots are r;» = £2i. Therefore the complementary solution is
ye(t) = c1 cos(2t) + cosin(2t).
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Example 2.20

Find the general solution of y” — y/ — 2y = 3t3.

Solution: The roots for the characteristic equation are n = —1,
r = 2. Thus, y(t) = cre™t + cpe?t.

Try yp(t) = At3 + Bt? + Ct + D.



Example 2.20

Find the general solution of y” — y/ — 2y = 3t3.

Solution: The roots for the characteristic equation are n = —1,
r = 2. Thus, y(t) = cre™t + cpe?t.

Try y,(t) = At3 + Bt? + Ct + D. Plug into the ODE

3t3 = (6At +2B) — (3At2 + 2Bt + C) — 2 (At + Bt?> + Ct + D)
= —2At3 — (3A+2B)t? + (6A — 2B — 2C)t + (2B — C — 2D)



Example 2.20

Find the general solution of y” — y/ — 2y = 3t3.

Solution: The roots for the characteristic equation are n = —1,
r = 2. Thus, y(t) = cre™t + cpe?t.

Try y,(t) = At3 + Bt? + Ct + D. Plug into the ODE

3t3 = (6At +2B) — (3At2 + 2Bt + C) — 2 (At + Bt?> + Ct + D)
= —2At3 — (3A+2B)t? + (6A — 2B — 2C)t + (2B — C — 2D)

Matching powers of t, we have a system of equations to solve:

—2A =3 A=-3
—3A-2B=0 B=3%
=
6A—2B-2C=0 C=-2
2B—C—-2D=0 D=%



Example 2.20

Find the general solution of y” — y/ — 2y = 3t3.

Solution: The roots for the characteristic equation are n = —1,
r = 2. Thus, y(t) = cre™t + cpe?t.

Try y,(t) = At3 + Bt? + Ct + D. Plug into the ODE

3t3 = (6At +2B) — (3At2 + 2Bt + C) — 2 (At + Bt?> + Ct + D)
= —2At3 — (3A+2B)t? + (6A — 2B — 2C)t + (2B — C — 2D)

Matching powers of t, we have a system of equations to solve:

—2A=3 A:—%
=
6A—2B—-2C=0 C:_¥
Thusyp:_%t3+%t2_%7t+%'



Example 2.20

Find the general solution of y” — y/ — 2y = 3t3.

Solution: The roots for the characteristic equation are n = —1,
r = 2. Thus, y(t) = cre™t + cpe?t.

Try y,(t) = At3 + Bt? + Ct + D. Plug into the ODE

3t3 = (6At +2B) — (3At2 + 2Bt + C) — 2 (At + Bt?> + Ct + D)
= —2At3 — (3A+2B)t? + (6A — 2B — 2C)t + (2B — C — 2D)

Matching powers of t, we have a system of equations to solve:

—2A =3 A=-3
—3A-2B=0 B=3%
=
6A—2B—-2C =0 c=-%
2B—-C—-2D=0 D=%
Thus y, = —%t3—i— %tQ . %771“—# %. The general solution is

- 27, 4
y(t)=cet+ et — 3834+ 92—t 4 B



Worksheet 02 Solution Continued

243x+5
Exercise 3. Calculate /%
x+1

partial fraction decomposition.
Solution: First, let us do the long division

dx using the method of

X+ 2
x+1) x>+3x+5
—x2 —x
2x +5
—2x =2
3
Thus
243x+5 3 2
/%dx:/x+2+x+ldx:%+2x+3|n|x+1|+c



Today we learned
@ method of undetermined coefficients
next time, we will learn

@ method of variation of parameters
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