Math 2306 Lecture 33

Dr. Lihong Zhao

lzhao12@kennesaw.edu

Friday, November 7, 2025

Outline

Section 5.8 Nonhomogeneous Linear Systems

Superposition Principle and Solution Matrix

Theorem (5.5)

Let $\mathbf{u}(t)$ be a solution of $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}_1(t)$, a < t < b, and let $\mathbf{v}(t)$ be a solution of $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}_2(t)$, a < t < b. Let a_1 and a_2 be any constants. Then the vector function $\mathbf{y}_p(t) = a_1\mathbf{u}(t) + a_2\mathbf{v}(t)$ is a particular solution of $\mathbf{y}' = P(t)\mathbf{y} + a_1\mathbf{g}_1(t) + a_2\mathbf{g}_2(t)$, a < t < b.

Definition

Let $\{y_1(t), y_2(t), \dots, y_n(t)\}$ be a set of solutions of a homogeneous first order linear system y' = P(t)y. The $n \times n$ matrix whose columns consist of solutions $\Psi(t) = [y_1(t), y_2(t), \dots, y_n(t)]$ is a solution matrix.

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem

1 If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem

3 If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$.

If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an n × n constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$. Moreover, if the constant matrix Ψ_0 is invertible (i.e., has nonzero determinant), then the matrix $\Psi(t)$ is a fundamental matrix of Eq. (1).
- If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an n × n constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$. Moreover, if the constant matrix Ψ_0 is invertible (i.e., has nonzero determinant), then the matrix $\Psi(t)$ is a fundamental matrix of Eq. (1).
- **3** If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$, a < t < b.

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$. Moreover, if the constant matrix Ψ_0 is invertible (i.e., has nonzero determinant), then the matrix $\Psi(t)$ is a fundamental matrix of Eq. (1).
- If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$, a < t < b. Moreover, the matrix $\hat{\Psi}(t)$ is also a fundamental matrix if and only if $\det(C) \neq 0$.

Example 5.24

Find the solution matrix that satisfies the following initial value problem $\mathbf{y}'(t) = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{y}(t), \ \mathbf{y}(0) = \mathbf{y}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$ and the given eigenpairs $\left(3, \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right)$ and $\left(-1, \begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$.

Example 5.24 (cont'd)

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\boldsymbol{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is $\boldsymbol{y}_c(t) = \Psi(t)\boldsymbol{c}$ where \boldsymbol{c} is an arbitrary $n \times 1$ vector.

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is $\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$ where \mathbf{c} is an arbitrary $n \times 1$ vector. We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined.

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is $\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$ where \mathbf{c} is an arbitrary $n \times 1$ vector. We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\boldsymbol{u}(t)]' = P(t)[\Psi(t)\boldsymbol{u}(t)] + \boldsymbol{g}(t)$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is

$$\mathbf{y}_{c}(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that

$$\Psi'(t) = P(t)\Psi(t), \ a < t < b.$$
 The complementary solution is

$$\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi(t)\mathbf{u}'(t) = \mathbf{g}(t)$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that

$$\Psi'(t) = P(t)\Psi(t), \ a < t < b.$$
 The complementary solution is

$$\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

$$\Rightarrow \Psi(t)\mathbf{u}'(t) = \mathbf{g}(t)$$

$$\Rightarrow$$
 $\boldsymbol{u}'(t) = \Psi^{-1}(t)\boldsymbol{g}(t)$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that

$$\Psi'(t) = P(t)\Psi(t), \ a < t < b.$$
 The complementary solution is

$$\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\boldsymbol{u}(t)]' = P(t)[\Psi(t)\boldsymbol{u}(t)] + \boldsymbol{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\boldsymbol{u}(t) + \Psi(t)\boldsymbol{u}'(t) = P(t)\Psi(t)\boldsymbol{u}(t) + \boldsymbol{g}(t)$$

$$\Rightarrow \Psi(t)\boldsymbol{u}'(t) = \boldsymbol{g}(t)$$

 \Rightarrow $u'(t) = \Psi^{-1}(t)g(t)$ as the fundamental matrix $\Psi(t)$ is invertible

Example 5.25

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Example 5.25 (cont'd)

Example 5.26

Consider the system
$$\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y} + \begin{pmatrix} t \\ -1 \end{pmatrix}, \ \mathbf{y}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 with the particular solution $\mathbf{y}_p(t) = t\mathbf{a} + \mathbf{b}$, where \mathbf{a} , \mathbf{b} are column vectors. Solve the initial value problem given the eigenpairs $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Example 5.26 (cont'd)

Summary

Today we learned/reviewed

- more on nonhomogeneous linear systems
 - superposition principle and solution matrix
 - fundamental matrix
 - the method of variation of parameters
 - the method of undetermined coefficients

next time, we will learn

Euler's method