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Section 5.8 Nonhomogeneous Linear Systems

Superposition Principle and Solution Matrix

Theorem (5.5)
Let u(t) be a solution of y ′ = P(t)y + g1(t), a < t < b, and let
v(t) be a solution of y ′ = P(t)y + g2(t), a < t < b. Let a1 and
a2 be any constants. Then the vector function
yp(t) = a1u(t) + a2v(t) is a particular solution of
y ′ = P(t)y + a1g1(t) + a2g2(t), a < t < b.

Definition
Let {y1(t), y2(t), . . . , yn(t)} be a set of solutions of a
homogeneous first order linear system y ′ = P(t)y . The n × n
matrix whose columns consist of solutions
Ψ(t) = [y1(t), y2(t), . . . , yn(t)] is a solution matrix.
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Section 5.8 Nonhomogeneous Linear Systems

Fundamental Matrix
Theorem (5.6)
Consider the homogeneous linear first order system

y ′ = P(t)y , a < t < b. (1)
1 Let Ψ(t) be any solution matrix of Eq. (1). Then Ψ(t) satisfies

the matrix differential equation

Ψ′(t) = P(t)Ψ(t), a < t < b.

2 Let Ψ0 represent any given constant n × n matrix, and let t0 be
any fixed point in the interval (a, b). Then there is a unique
solution n × n matrix Ψ(t) that solves the initial value problem

Ψ′(t) = P(t)Ψ(t), Ψ (t0) = Ψ0, a < t < b. Moreover, if the
constant matrix Ψ0 is invertible (i.e., has nonzero determinant),
then the matrix Ψ(t) is a fundamental matrix of Eq. (1).

3 If Ψ(t) is any fundamental matrix and Ψ̂(t) is any solution
matrix of Eq. (1), then there exists an n × n constant matrix C
such that

Ψ̂(t) = Ψ(t) · C , a < t < b. Moreover, the matrix
Ψ̂(t) is also a fundamental matrix if and only if det(C) ̸= 0.
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Example 5.24
Find the solution matrix that satisfies the following initial value

problem y ′(t) =
(

1 1
4 1

)
y(t), y(0) = y0 =

(
1 0
0 1

)
, and the

given eigenpairs
(

3,

(
1
2

))
and

(
−1,

(
1

−2

))
.

Solution: Given the eigenpairs, we obtain two solutions of the

linear system y1(t) = e3t
(

1
2

)
and y2(t) = e−t

(
1

−2

)
, thus

Ψ(t) =
(

e3t e−t

2e3t −2e−t

)
. This is also a fundamental matrix since

eigenvalues are real and distinct (Theorem 5.4).
Note that Ψ(t) does not satisfy the initial value problem because

Ψ(0) =
(

1 1
2 −2

)
̸=
(

1 0
0 1

)
= Ψ0
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Example 5.24 (cont’d)

However, using Theorem 5.6, we can find a matrix Ψ̂(t) such that

Ψ̂(0) =
(

1 0
0 1

)
. We need to identify a 2 × 2 constant matrix C

such that Ψ̂(t) = Ψ(t) · C .

Ψ̂(0) = Ψ(0) · C ⇒
(

1 0
0 1

)
=
(

1 1
2 −2

)
· C

⇒ C =
(

1 1
2 −2

)−1(
1 0
0 1

)
= −1

4

(
−2 −1
−2 1

)
=
(

1/2 1/4
1/2 −1/4

)

Thus, the solution matrix of the initial value problem is

Ψ̂(t) =
(

e3t e−t

2e3t −2e−t

)(
1/2 1/4
1/2 −1/4

)

=
(

1
2
(
e3t + e−t) 1

4
(
e3t − e−t)

e3t − e−t −1
2
(
e3t + e−t)

)
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The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).

Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)
⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.

We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)
⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined.

Substituting it into Eq. (2) leads to
[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)

⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)

⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)
⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)

⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)
⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)

⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)
⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t)

as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

The Method of Variation of Parameters
Consider the non-homogeneous initial value problem

y ′(t) = P(t)y(t) + g(t), y(t0) = y0, a < t < b, (2)

where the n × n coefficient matrix P(t) and the n × 1 vector
function g(t) are continuous on (a, b), and t0 ∈ (a, b).
Assume that we know a fundamental matrix Ψ(t) such that
Ψ′(t) = P(t)Ψ(t), a < t < b. The complementary solution is
yc(t) = Ψ(t)c where c is an arbitrary n × 1 vector.
We “vary the parameter” and look for particular solution of the
form yp(t) = Ψ(t)u(t) where u(t) is an unknown n × 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[Ψ(t)u(t)]′ = P(t)[Ψ(t)u(t)] + g(t)
⇒ Ψ′(t)u(t) + Ψ(t)u′(t) = P(t)Ψ(t)u(t) + g(t)
⇒ Ψ(t)u′(t) = g(t)
⇒ u′(t) = Ψ−1(t)g(t) as the fundamental matrix Ψ(t) is invertible

6



Section 5.8 Nonhomogeneous Linear Systems

Example 5.25
Solve the IVP y ′ =

(
1 2
2 1

)
y +

(
e2t

−2t

)
, y(0) =

(
0
0

)
.

Solution: First find the complimentary solution.∣∣∣∣∣1 − λ 2
2 1 − λ

∣∣∣∣∣ = (λ − 3)(λ + 1) = 0 ⇒ λ1 = −1, λ2 = 3

For λ1 = −1,(
1 − (−1) 2

2 1 − (−1)

)(
v1
v2

)
=
(

0
0

)
⇒ v1 = −v2

For λ2 = 3, (
1 − 3 2

2 1 − 3

)(
v1
v2

)
=
(

0
0

)
⇒ v1 = v2

Pick v1 = 1 for both eigenvalues, we obtain the eigenpairs(
−1,

(
1

−1

))
and

(
3,

(
1
1

))
.
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Example 5.25 (cont’d)

The complimentary solution is yc(t) =
(

e−t e3t

−e−t e3t

)(
c1
c2

)
.

To find the particular solution, we need to solve Ψ(t)u′(t) = g(t).
Take the inverse of Ψ we have

Ψ−1(t) = 1
2e2t

(
e3t −e3t

e−t e−t

)
= 1

2

(
et −et

e−3t e−3t

)
.

Then

u′(t) = Ψ−1(t)g(t) = 1
2

(
et −et

e−3t e−3t

)(
e2t

−2t

)
=
(

1
2e3t + tet

1
2e−t − te−3t

)
.

Integrating

∫ t

t0
u′(s) ds =


∫ t

t0

1
2e3s + ses ds∫ t

t0

1
2e−s − se−3s ds

 =
(

e3t

6 − et + tet

− e−t

2 + e−3t

9 + te−3t

3

)
.
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Example 5.26

Consider the system y ′ =
(

0 1
1 0

)
y +

(
t

−1

)
, y(0) =

(
2

−1

)
with

the particular solution yp(t) = ta + b, where a, b are column
vectors. Solve the initial value problem given the eigenpairs(

1,

(
1
1

))
and

(
−1,

(
1

−1

))
.

Solution: Observe that the complementary solution is

yc(t) = c1et
(

1
1

)
+ c2e−t

(
1

−1

)
.

We’re given yp(t) = ta + b, so y ′
p(t) = a. Plugging into the

system:
y ′

p(t) =
(

0 1
1 0

)
yp +

(
t

−1

)

⇒ a =
(

0 1
1 0

)
(ta + b) +

(
t

−1

)
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Example 5.26 (cont’d)

t
(

0
0

)
+ a = t

(
0 1
1 0

)
a +

(
0 1
1 0

)
b + t

(
1
0

)
+
(

0
−1

)

= t
[(

0 1
1 0

)
a +

(
1
0

)]
+
[(

0 1
1 0

)
b +

(
0

−1

)]
which leads to

(
0
0

)
=
(

0 1
1 0

)
a +

(
1
0

)

a =
(

0 1
1 0

)
b +

(
0

−1

) ⇒


a =

(
0

−1

)

b =
(

0
0

)

Hence, the particular solution is yp(t) = ta + b =
(

0
−t

)
, and the

general solution is y(t) = c1et
(

1
1

)
+ c2e−t

(
1

−1

)
+
(

0
−t

)
.
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Summary

Today we learned/reviewed
more on nonhomogeneous linear systems

superposition principle and solution matrix
fundamental matrix
the method of variation of parameters
the method of undetermined coefficients

next time, we will learn
Euler’s method
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