Math 2306 Lecture 33

Dr. Lihong Zhao

lzhao12@kennesaw.edu

Friday, November 7, 2025

Outline

Section 5.8 Nonhomogeneous Linear Systems

Superposition Principle and Solution Matrix

Theorem (5.5)

Let $\mathbf{u}(t)$ be a solution of $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}_1(t)$, a < t < b, and let $\mathbf{v}(t)$ be a solution of $\mathbf{y}' = P(t)\mathbf{y} + \mathbf{g}_2(t)$, a < t < b. Let a_1 and a_2 be any constants. Then the vector function $\mathbf{y}_p(t) = a_1\mathbf{u}(t) + a_2\mathbf{v}(t)$ is a particular solution of $\mathbf{y}' = P(t)\mathbf{y} + a_1\mathbf{g}_1(t) + a_2\mathbf{g}_2(t)$, a < t < b.

Definition

Let $\{y_1(t), y_2(t), \dots, y_n(t)\}$ be a set of solutions of a homogeneous first order linear system y' = P(t)y. The $n \times n$ matrix whose columns consist of solutions $\Psi(t) = [y_1(t), y_2(t), \dots, y_n(t)]$ is a solution matrix.

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem

1 If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem

3 If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$.

If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an n × n constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$. Moreover, if the constant matrix Ψ_0 is invertible (i.e., has nonzero determinant), then the matrix $\Psi(t)$ is a fundamental matrix of Eq. (1).
- If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an n × n constant matrix C such that

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$. Moreover, if the constant matrix Ψ_0 is invertible (i.e., has nonzero determinant), then the matrix $\Psi(t)$ is a fundamental matrix of Eq. (1).
- **3** If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$, a < t < b.

Theorem (5.6)

Consider the homogeneous linear first order system

$$\mathbf{y}' = P(t)\mathbf{y}, \quad a < t < b. \tag{1}$$

- Let $\Psi(t)$ be any solution matrix of Eq. (1). Then $\Psi(t)$ satisfies the matrix differential equation $\Psi'(t) = P(t)\Psi(t)$, a < t < b.
- ② Let Ψ_0 represent any given constant $n \times n$ matrix, and let t_0 be any fixed point in the interval (a,b). Then there is a unique solution $n \times n$ matrix $\Psi(t)$ that solves the initial value problem $\Psi'(t) = P(t)\Psi(t), \ \Psi(t_0) = \Psi_0, \ a < t < b$. Moreover, if the constant matrix Ψ_0 is invertible (i.e., has nonzero determinant), then the matrix $\Psi(t)$ is a fundamental matrix of Eq. (1).
- If $\Psi(t)$ is any fundamental matrix and $\hat{\Psi}(t)$ is any solution matrix of Eq. (1), then there exists an $n \times n$ constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$, a < t < b. Moreover, the matrix $\hat{\Psi}(t)$ is also a fundamental matrix if and only if $\det(C) \neq 0$.

Find the solution matrix that satisfies the following initial value problem $\mathbf{y}'(t) = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{y}(t), \ \mathbf{y}(0) = \mathbf{y}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$ and the given eigenpairs $\left(3, \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right)$ and $\left(-1, \begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$.

Find the solution matrix that satisfies the following initial value problem $\mathbf{y}'(t) = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{y}(t), \ \mathbf{y}(0) = \mathbf{y}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$ and the given eigenpairs $\begin{pmatrix} 3, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \end{pmatrix}$ and $\begin{pmatrix} -1, \begin{pmatrix} 1 \\ -2 \end{pmatrix} \end{pmatrix}$. Solution: Given the eigenpairs, we obtain two solutions of the linear system $\mathbf{y}_1(t) = \mathrm{e}^{3t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{y}_2(t) = \mathrm{e}^{-t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$,

Find the solution matrix that satisfies the following initial value problem $\mathbf{y}'(t)=\begin{pmatrix}1&1\\4&1\end{pmatrix}\mathbf{y}(t),\ \mathbf{y}(0)=\mathbf{y}_0=\begin{pmatrix}1&0\\0&1\end{pmatrix},$ and the given eigenpairs $\left(3, \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right)$ and $\left(-1, \begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$. Solution: Given the eigenpairs, we obtain two solutions of the linear system $\mathbf{y}_1(t)=e^{3t}\begin{pmatrix}1\\2\end{pmatrix}$ and $\mathbf{y}_2(t)=e^{-t}\begin{pmatrix}1\\-2\end{pmatrix}$, thus $\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$. This is also a fundamental matrix since eigenvalues are real and distinct (Theorem 5.4).

Find the solution matrix that satisfies the following initial value problem $\mathbf{y}'(t) = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{y}(t), \ \mathbf{y}(0) = \mathbf{y}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$ and the given eigenpairs $\begin{pmatrix} 3, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \end{pmatrix}$ and $\begin{pmatrix} -1, \begin{pmatrix} 1 \\ -2 \end{pmatrix} \end{pmatrix}$.

<u>Solution</u>: Given the eigenpairs, we obtain two solutions of the linear system $\mathbf{y}_1(t) = e^{3t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{y}_2(t) = e^{-t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, thus

 $\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$. This is also a fundamental matrix since

eigenvalues are real and distinct (Theorem 5.4).

Note that $\Psi(t)$ does not satisfy the initial value problem because

$$\Psi(0) = egin{pmatrix} 1 & 1 \ 2 & -2 \end{pmatrix}
eq egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = \Psi_0$$

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that

$$\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that $\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$.

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that $\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$. $\hat{\Psi}(0) = \Psi(0) \cdot C$

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that $\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$. $\hat{\Psi}(0) = \Psi(0) \cdot C \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \cdot C$

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that $\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$. $\hat{\Psi}(0) = \Psi(0) \cdot C \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \cdot C$

$$\Rightarrow C = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that $\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$. $\hat{\Psi}(0) = \Psi(0) \cdot C \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \cdot C$

$$\Rightarrow C = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \end{pmatrix} \cdot C$$

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that $\hat{\Psi}(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t) = \Psi(t) \cdot C$.

$$\hat{\Psi}(0) = \Psi(0) \cdot C \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \cdot C$$

$$\Rightarrow C = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -\frac{1}{4} \begin{pmatrix} -2 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix}$$

However, using Theorem 5.6, we can find a matrix $\hat{\Psi}(t)$ such that

$$\hat{\Psi}(0)=egin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 . We need to identify a 2×2 constant matrix C such that $\hat{\Psi}(t)=\Psi(t)\cdot C$.

$$\hat{\Psi}(0) = \Psi(0) \cdot C \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \cdot C$$

$$\Rightarrow C = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -\frac{1}{4} \begin{pmatrix} -2 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix}$$

Thus, the solution matrix of the initial value problem is

$$\hat{\Psi}(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix} \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix} \\
= \begin{pmatrix} \frac{1}{2} (e^{3t} + e^{-t}) & \frac{1}{4} (e^{3t} - e^{-t}) \\ e^{3t} - e^{-t} & -\frac{1}{2} (e^{3t} + e^{-t}) \end{pmatrix}$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\boldsymbol{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is $\boldsymbol{y}_c(t) = \Psi(t)\boldsymbol{c}$ where \boldsymbol{c} is an arbitrary $n \times 1$ vector.

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is $\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$ where \mathbf{c} is an arbitrary $n \times 1$ vector. We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined.

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$. Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is $\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$ where \mathbf{c} is an arbitrary $n \times 1$ vector. We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\boldsymbol{u}(t)]' = P(t)[\Psi(t)\boldsymbol{u}(t)] + \boldsymbol{g}(t)$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that $\Psi'(t) = P(t)\Psi(t), \ a < t < b$. The complementary solution is

$$\mathbf{y}_{c}(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that

$$\Psi'(t) = P(t)\Psi(t), \ a < t < b.$$
 The complementary solution is

$$\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi(t)\mathbf{u}'(t) = \mathbf{g}(t)$$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that

$$\Psi'(t) = P(t)\Psi(t), \ a < t < b.$$
 The complementary solution is

$$\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \quad \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

$$\Rightarrow \Psi(t)\mathbf{u}'(t) = \mathbf{g}(t)$$

$$\Rightarrow$$
 $\boldsymbol{u}'(t) = \Psi^{-1}(t)\boldsymbol{g}(t)$

Consider the non-homogeneous initial value problem

$$y'(t) = P(t)y(t) + g(t), y(t_0) = y_0, a < t < b,$$
 (2)

where the $n \times n$ coefficient matrix P(t) and the $n \times 1$ vector function $\mathbf{g}(t)$ are continuous on (a,b), and $t_0 \in (a,b)$.

Assume that we know a fundamental matrix $\Psi(t)$ such that

$$\Psi'(t) = P(t)\Psi(t), \ a < t < b.$$
 The complementary solution is

$$\mathbf{y}_c(t) = \Psi(t)\mathbf{c}$$
 where \mathbf{c} is an arbitrary $n \times 1$ vector.

We "vary the parameter" and look for particular solution of the form $\mathbf{y}_p(t) = \Psi(t)\mathbf{u}(t)$ where $\mathbf{u}(t)$ is an unknown $n \times 1$ matrix function to be determined. Substituting it into Eq. (2) leads to

$$[\Psi(t)\mathbf{u}(t)]' = P(t)[\Psi(t)\mathbf{u}(t)] + \mathbf{g}(t)$$

$$\Rightarrow \Psi'(t)\mathbf{u}(t) + \Psi(t)\mathbf{u}'(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t)$$

$$\Rightarrow \Psi(t)\boldsymbol{u}'(t) = \boldsymbol{g}(t)$$

 \Rightarrow $m{u}'(t) = \Psi^{-1}(t)m{g}(t)$ as the fundamental matrix $\Psi(t)$ is invertible

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
 Solution: First find the complimentary solution.

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3$$

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3$$

For
$$\lambda_1 = -1$$
,
$$\begin{pmatrix} 1 - (-1) & 2 \\ 2 & 1 - (-1) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3$$

For
$$\lambda_1 = -1$$
,
$$\begin{pmatrix} 1 - (-1) & 2 \\ 2 & 1 - (-1) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_1 = -v_2$$

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3$$

For
$$\lambda_1 = -1$$
,
$$\begin{pmatrix} 1 - (-1) & 2 \\ 2 & 1 - (-1) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_1 = -v_2$$

For
$$\lambda_2=3$$
,
$$\begin{pmatrix}1-3 & 2\\ 2 & 1-3\end{pmatrix}\begin{pmatrix}v_1\\ v_2\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$$

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

<u>Solution</u>: First find the complimentary solution.

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3$$

For
$$\lambda_1 = -1$$
,
$$\begin{pmatrix} 1 - (-1) & 2 \\ 2 & 1 - (-1) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_1 = -v_2$$

For
$$\lambda_2=3$$
,
$$\begin{pmatrix}1-3&2\\2&1-3\end{pmatrix}\begin{pmatrix}v_1\\v_2\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix} \Rightarrow v_1=v_2$$

Solve the IVP
$$\mathbf{y}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{y} + \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix}, \quad \mathbf{y}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Solution: First find the complimentary solution.

$$\begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3$$

For
$$\lambda_1 = -1$$
,
$$\begin{pmatrix} 1 - (-1) & 2 \\ 2 & 1 - (-1) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_1 = -v_2$$

For
$$\lambda_2=3$$
,
$$\begin{pmatrix}1-3&2\\2&1-3\end{pmatrix}\begin{pmatrix}v_1\\v_2\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}\Rightarrow v_1=v_2$$

Pick $v_1 = 1$ for both eigenvalues, we obtain the eigenpairs $\begin{pmatrix} -1, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix}$ and $\begin{pmatrix} 3, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$.

The complimentary solution is
$$\mathbf{y}_c(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
.

The complimentary solution is $\mathbf{y}_c(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$. To find the particular solution, we need to solve $\Psi(t)\mathbf{u}'(t) = \mathbf{g}(t)$.

The complimentary solution is $\mathbf{y}_c(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$.

To find the particular solution, we need to solve $\Psi(t)\mathbf{u}'(t) = \mathbf{g}(t)$.

Take the inverse of Ψ we have

$$\Psi^{-1}(t) = \frac{1}{2e^{2t}} \begin{pmatrix} e^{3t} & -e^{3t} \\ e^{-t} & e^{-t} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{t} & -e^{t} \\ e^{-3t} & e^{-3t} \end{pmatrix}.$$

The complimentary solution is $\mathbf{y}_c(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$.

To find the particular solution, we need to solve $\Psi(t) \mathbf{u}'(t) = \mathbf{g}(t)$.

Take the inverse of Ψ we have

$$\Psi^{-1}(t) = \frac{1}{2e^{2t}} \begin{pmatrix} e^{3t} & -e^{3t} \\ e^{-t} & e^{-t} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{t} & -e^{t} \\ e^{-3t} & e^{-3t} \end{pmatrix}.$$

Then

$$\mathbf{u}'(t) = \Psi^{-1}(t)\mathbf{g}(t) = \frac{1}{2} \begin{pmatrix} e^t & -e^t \\ e^{-3t} & e^{-3t} \end{pmatrix} \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix} = \begin{pmatrix} \frac{1}{2}e^{3t} + te^t \\ \frac{1}{2}e^{-t} - te^{-3t} \end{pmatrix}.$$

The complimentary solution is $\mathbf{y}_c(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$.

To find the particular solution, we need to solve $\Psi(t) \mathbf{u}'(t) = \mathbf{g}(t)$.

Take the inverse of Ψ we have

$$\Psi^{-1}(t) = \frac{1}{2e^{2t}} \begin{pmatrix} e^{3t} & -e^{3t} \\ e^{-t} & e^{-t} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{t} & -e^{t} \\ e^{-3t} & e^{-3t} \end{pmatrix}.$$

Then

$$\mathbf{u}'(t) = \Psi^{-1}(t)\mathbf{g}(t) = \frac{1}{2} \begin{pmatrix} e^t & -e^t \\ e^{-3t} & e^{-3t} \end{pmatrix} \begin{pmatrix} e^{2t} \\ -2t \end{pmatrix} = \begin{pmatrix} \frac{1}{2}e^{3t} + te^t \\ \frac{1}{2}e^{-t} - te^{-3t} \end{pmatrix}.$$

Integrating

$$\int_{t_0}^t \boldsymbol{u}'(s) \, \mathrm{d}s = \begin{pmatrix} \int_{t_0}^t \frac{1}{2} e^{3s} + s e^{s} \, \mathrm{d}s \\ \int_{t_0}^t \frac{1}{2} e^{-s} - s e^{-3s} \, \mathrm{d}s \end{pmatrix} = \begin{pmatrix} \frac{e^{3t}}{6} - e^{t} + t e^{t} \\ -\frac{e^{-t}}{2} + \frac{e^{-3t}}{9} + \frac{t e^{-3t}}{3} \end{pmatrix}.$$

Thus we obtain the particular solution

$$\begin{aligned} \mathbf{y}_p(t) &= \Psi(t)\mathbf{u}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} \frac{e^{3t}}{6} - e^t + te^t \\ -\frac{e^{-t}}{2} + \frac{e^{-3t}}{9} + \frac{te^{-3t}}{3} \end{pmatrix} \\ &= \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{3t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}. \end{aligned}$$

Thus we obtain the particular solution

$$\begin{aligned} \mathbf{y}_p(t) &= \Psi(t) \mathbf{u}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} \frac{e^{3t}}{6} - e^t + te^t \\ -\frac{e^{-t}}{2} + \frac{e^{-3t}}{9} + \frac{te^{-3t}}{3} \end{pmatrix} \\ &= \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{3t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}. \end{aligned}$$

The general solution is

$$\mathbf{y}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{2t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}.$$

Thus we obtain the particular solution

$$\begin{aligned} \mathbf{y}_p(t) &= \Psi(t)\mathbf{u}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} \frac{e^{3t}}{6} - e^t + te^t \\ -\frac{e^{-t}}{2} + \frac{e^{-3t}}{9} + \frac{te^{-3t}}{3} \end{pmatrix} \\ &= \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{3t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}. \end{aligned}$$

The general solution is

$$\mathbf{y}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{2t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}.$$

Imposing the initial condition to find c_1 and c_2 ,

$$\mathbf{y}(0) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} -\frac{11}{9} \\ \frac{4}{9} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Thus we obtain the particular solution

$$\begin{aligned} \mathbf{y}_p(t) &= \Psi(t) \mathbf{u}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} \frac{e^{3t}}{6} - e^t + te^t \\ -\frac{e^{-t}}{2} + \frac{e^{-3t}}{9} + \frac{te^{-3t}}{3} \end{pmatrix} \\ &= \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{3t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}. \end{aligned}$$

The general solution is

$$\mathbf{y}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{2t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}.$$

Imposing the initial condition to find c_1 and c_2 ,

$$\mathbf{y}(0) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} -\frac{11}{9} \\ \frac{4}{9} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} c_1 = \frac{5}{6} \\ c_2 = \frac{7}{18} \end{cases}$$

The solution to the initial value problem is

$$\mathbf{y}(t) = \begin{pmatrix} e^{-t} & e^{3t} \\ -e^{-t} & e^{3t} \end{pmatrix} \begin{pmatrix} 5/6 \\ 7/18 \end{pmatrix} + \begin{pmatrix} -\frac{e^{2t}}{3} + \frac{4t}{3} - \frac{8}{9} \\ -\frac{2e^{2t}}{3} - \frac{2t}{3} + \frac{10}{9} \end{pmatrix}.$$

Consider the system
$$\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y} + \begin{pmatrix} t \\ -1 \end{pmatrix}, \ \mathbf{y}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 with the particular solution $\mathbf{y}_p(t) = t\mathbf{a} + \mathbf{b}$, where \mathbf{a} , \mathbf{b} are column vectors. Solve the initial value problem given the eigenpairs $\begin{pmatrix} 1, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$ and $\begin{pmatrix} -1, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix}$.

Consider the system $\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y} + \begin{pmatrix} t \\ -1 \end{pmatrix}, \ \mathbf{y}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ with the particular solution $\mathbf{y}_p(t) = t\mathbf{a} + \mathbf{b}$, where \mathbf{a} , \mathbf{b} are column vectors. Solve the initial value problem given the eigenpairs $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Solution: Observe that the complementary solution is $\mathbf{y}_c(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

We're given $\mathbf{y}_{p}(t) = t\mathbf{a} + \mathbf{b}$, so $\mathbf{y}_{p}'(t) = \mathbf{a}$.

Example 5.26

Consider the system $\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y} + \begin{pmatrix} t \\ -1 \end{pmatrix}, \ \mathbf{y}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ with the particular solution $\mathbf{y}_p(t) = t\mathbf{a} + \mathbf{b}$, where \mathbf{a} , \mathbf{b} are column vectors. Solve the initial value problem given the eigenpairs $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Solution: Observe that the complementary solution is $\mathbf{y}_c(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Consider the system
$$\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y} + \begin{pmatrix} t \\ -1 \end{pmatrix}, \ \mathbf{y}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 with

the particular solution $y_p(t) = ta + b$, where a, b are column vectors. Solve the initial value problem given the eigenpairs

$$\left(1,\begin{pmatrix}1\\1\end{pmatrix}\right) \text{ and } \left(-1,\begin{pmatrix}1\\-1\end{pmatrix}\right).$$

<u>Solution</u>: Observe that the complementary solution is

$$\mathbf{y}_c(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

We're given $\mathbf{y}_p(t) = t\mathbf{a} + \mathbf{b}$, so $\mathbf{y}_p'(t) = \mathbf{a}$. Plugging into the system:

$$egin{aligned} oldsymbol{y}_{
ho}'(t) &= egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} oldsymbol{y}_{
ho} + egin{pmatrix} t \ -1 \end{pmatrix} \ &\Rightarrow & oldsymbol{a} &= egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} (toldsymbol{a} + oldsymbol{b}) + egin{pmatrix} t \ -1 \end{pmatrix} \end{aligned}$$

$$t \begin{pmatrix} 0 \\ 0 \end{pmatrix} + oldsymbol{a} = t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} oldsymbol{a} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} oldsymbol{b} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$t \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \boldsymbol{a} = t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
$$= t \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{bmatrix}$$

$$t \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \boldsymbol{a} = t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
$$= t \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{bmatrix}$$

which leads to

$$\begin{cases} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \boldsymbol{a} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$t \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \boldsymbol{a} = t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
$$= t \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{bmatrix}$$

which leads to

$$\begin{cases} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \boldsymbol{a} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{cases} \Rightarrow \begin{cases} \boldsymbol{a} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \\ \boldsymbol{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

$$t \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \boldsymbol{a} = t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
$$= t \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{bmatrix}$$

which leads to

$$\begin{cases} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{a} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \boldsymbol{a} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{b} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{cases} \Rightarrow \begin{cases} \boldsymbol{a} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \\ \boldsymbol{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

Hence, the particular solution is ${m y}_p(t)=t{m a}+{m b}=egin{pmatrix}0\\-t\end{pmatrix}$, and the

general solution is
$$\mathbf{y}(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ -t \end{pmatrix}$$

$$oldsymbol{y}(t) = c_1 e^t egin{pmatrix} 1 \ 1 \end{pmatrix} + c_2 e^{-t} egin{pmatrix} 1 \ -1 \end{pmatrix} + egin{pmatrix} 0 \ -t \end{pmatrix}$$

Imposing the initial condition $y(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, we have

$$\begin{cases} c_1 + c_2 = 2 \\ c_1 - c_2 = -1 \end{cases} \Rightarrow \begin{cases} c_1 = 1/2 \\ c_2 = 3/2 \end{cases}$$

Therefore, the solution to the IVP is

$$\mathbf{y}(t) = \frac{1}{2}e^{t}\begin{pmatrix}1\\1\end{pmatrix} + \frac{3}{2}e^{-t}\begin{pmatrix}1\\-1\end{pmatrix} + \begin{pmatrix}0\\-t\end{pmatrix}.$$

 REMARK : this method is known as the method of undetermined coefficients.

Summary

Today we learned/reviewed

- more on nonhomogeneous linear systems
 - superposition principle and solution matrix
 - fundamental matrix
 - the method of variation of parameters
 - the method of undetermined coefficients

next time, we will learn

Euler's method