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@ Section 5.8 Nonhomogeneous Linear Systems



Superposition Principle and Solution Matrix

Let u(t) be a solution of y' = P(t)y + gi(t), a <t < b, and let
v(t) be a solution of y' = P(t)y + g»(t), a<t < b. Let a; and
ap be any constants. Then the vector function

Yp(t) = a1u(t) + axv(t) is a particular solution of

y = P(t)y + a181(t) + axgo(t), a< t < b.

Definition

Let {yi(t), y2(t),...,yn(t)} be a set of solutions of a
homogeneous first order linear system y’ = P(t)y. The n x n
matrix whose columns consist of solutions

V(t) = [yi(t), y2(t), ..., ¥a(t)] is a solution matrix.




Fundamental Matrix

Theorem (5.6)

Consider the homogeneous linear first order system
y =P(t)y, a<t<b. (1)
Q Let V(t) be any solution matrix of Eq. (1). Then V(t) satisfies
the matrix differential equation

@ Let Vg represent any given constant n X n matrix, and let ty be
any fixed point in the interval (a, b). Then there is a unique
solution n x n matrix W(t) that solves the initial value problem

Q If(t) is any fundamental matrix and U(t) is any solution
matrix of Eq. (1), then there exists an n x n constant matrix C
such that
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Fundamental Matrix

Theorem (5.6)

Consider the homogeneous linear first order system
y =P(t)y, a<t<b. (1)
Q Let V(t) be any solution matrix of Eq. (1). Then V(t) satisfies
the matrix differential equation V'(t) = P(t)V¥(t), a< t < b.

@ Let Vg represent any given constant n X n matrix, and let ty be
any fixed point in the interval (a, b). Then there is a unique
solution n x n matrix W(t) that solves the initial value problem
V'(t) = P(t)W(t), V(ty) = Vo, a <t < b. Moreover, if the
constant matrix Wq is invertible (i.e., has nonzero determinant),
then the matrix W(t) is a fundamental matrix of Eq. (1).

Q If(t) is any fundamental matrix and U(t) is any solution
matrix of Eq. (1), then there exists an n x n constant matrix C
such that W(t) = W(t)-C, a<t < b. Moreover, the matrix
W(t) is also a fundamental matrix if and only if det(C) # 0.

—_—= S =



Example 5.24

Find the solution matrix that satisfies the following initial value

problem y'(t) = <i i) y(t), y(0) =y = ((1) (1)> , and the

s ) (23



Example 5.24

Find the solution matrix that satisfies the following initial value
11 10
/ — —
problem y'(t) = <4 1) y(t), y(0) =y = (o 1> , and the

s 4 (1)

Solution: Given the eigenpairs, we obtain two solutions of the

linear system y;(t) = €3 <;> and y(t) = e " <_12>



Example 5.24

Find the solution matrix that satisfies the following initial value

problem y'(t) = <i i) y(t), y(0) =y = ((1) (1)> , and the

s 4 (1)

Solution: Given the eigenpairs, we obtain two solutions of the

linear system y;(t) = €3 <;> and y»(t) = et (_12> thus

3t —t

e e
263t et

eigenvalues are real and distinct (Theorem 5.4).

V(t) = . This is also a fundamental matrix since
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Find the solution matrix that satisfies the following initial value

problem y'(t) = <i i) y(t), y(0) =y = ((1) (1)> , and the

s 4 (1)

Solution: Given the eigenpairs, we obtain two solutions of the

linear system y;(t) = €3 <;> and y»(t) = et (_12> thus

3t —t

e e
23t —2e7t
eigenvalues are real and distinct (Theorem 5.4).

Note that W(t) does not satisfy the initial value problem because

o= 1)+ (2 9)-w

. This is also a fundamental matrix since

V(t) =
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¥(0) = (é ‘i’)
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S

§(0) = w(0) - C
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However, using Theorem 5.6, we can find a matrix W(t) such that
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However, using Theorem 5.6, we can find a matrix W(t) such that

W(0) = <(1) ?) We need to identify a 2 x 2 constant matrix C

such that W(t) = W(t)- C.
¥(0) =w(0)-C = (3 g) = (; _12>-C

s )Y



Example 5.24 (cont'd)

However, using Theorem 5.6, we can find a matrix W(t) such that

W(0) = <(1) ?) We need to identify a 2 x 2 constant matrix C

such that W(t) = W(t)- C.
¥(0) =w(0)-C = (3 g) = (; _12>-C

1 1\ (10 1 /-2 -1 1/2 1/4
= C:<2 —2> (0 1) 7 (—2 1) :<1/2 —1/4>



Example 5.24 (cont'd)

However, using Theorem 5.6, we can find a matrix W(t) such that

W(0) = <(1) ?) We need to identify a 2 x 2 constant matrix C

such that W(t) = W(t)- C.
1 1

A 1
\IJ(O):W(O)~C:><O 5 _o
Lot ot 1oy 1(-2 -1\ _ (12 14
T \2 =2 0 1) 4\-2 1) \1/2 —-1/4
Thus, the solution matrix of the initial value problem is
- et et 1/2 1/4
v(r) _<2e3f —2e—f> <1/2 ~1/4
<1 (e3t+e—t) %(e3t_e—t) >

2
e3t _ et _% (e3t 4 e—t)

0
1) ¢



The Method of Variation of Parameters

Consider the non-homogeneous initial value problem
y'(t) = P(t)y(t) + g(t), y(to) =y, a<t<b,  (2)

where the n x n coefficient matrix P(t) and the n x 1 vector
function g(t) are continuous on (a, b), and ty € (a, b).
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yc(t) = V(t)c where c is an arbitrary n x 1 vector.
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Consider the non-homogeneous initial value problem
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The Method of Variation of Parameters

Consider the non-homogeneous initial value problem
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The Method of Variation of Parameters

Consider the non-homogeneous initial value problem
y'(t) = P(t)y(t) + g(t), y(to) =y, a<t<b,  (2)

where the n x n coefficient matrix P(t) and the n x 1 vector
function g(t) are continuous on (a, b), and ty € (a, b).
Assume that we know a fundamental matrix W(t) such that
V'(t) = P(t)W(t), a <t < b. The complementary solution is
yc(t) = V(t)c where c is an arbitrary n x 1 vector.

We “vary the parameter” and look for particular solution of the
form y,(t) = W(t)u(t) where u(t) is an unknown n x 1 matrix
function to be determined. Substituting it into Eq. (2) leads to

[‘U( Ju(t)]" = P(t)[W(t)u(t)] + g(t)
V'(t)u(t) + V(t)u'(t) = P()V(t)u(t) + g(t)
V(t)u'(t ) g(t)

u'(t) ~1(t)g(t) as the fundamental matrix W(t) is invertible

el
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, (12 et _ (0
SoIvetheIVPy-(2 1 y+ ot y(0) = 0/

Solution: First find the complimentary solution.

1-X 2
2 1-X
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, (12 et _ (0
SoIvetheIVPy-(2 1 y+ ot y(0) = 0/

Solution: First find the complimentary solution.

1-A 2
5 1_)\‘:()\—3)()\—1—1):0?)\1:—1, =3
For A\1 = —1,
1-(-1) 2 vi\ (0 _
( g 1—<—1>> () ) <0> e
For A\, = 3,

(222 ()= (@) -

Pick vi = 1 for both eigenvalues, we obtain the eigenpairs

() 5 0)



Example 5.25 (cont'd)
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—t e3t a
The complimentary solution is y.(t) = et o3t) gl
- 2



Example 5.25 (cont'd)

The complimentary solution is y.(t) = )

To find the particular solution, we need to soIve \IJ (t) ’(t) =



Example 5.25 (cont'd)

The complimentary solution is y.(t) = et er)fa
p M Yell) = _et @3t o)
To find the particular solution, we need to solve W(t)u'(t) = g(t)

Take the inverse of U we have

1 e3t _e3t 1 et —et
-1
\ (t) = 2e2t (e_t e_t> = 2 <e—3t e—3t> :
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The complimentary solution is y.(t) = et er)fa
p M Yell) = _et @3t o)
To find the particular solution, we need to solve W(t)u'(t) = g(t)

Take the inverse of U we have
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Example 5.25 (cont'd)

The complimentary solution is y.(t) = et er)fa
p M Yell) = _et @3t o)
To find the particular solution, we need to solve W(t)u'(t) = g(t)

Take the inverse of U we have
1 e3t _e3t 1 et —et
—17.\ _ _
v (t) ~ pe2t (e—t e—t> D) <e—3t e—3t> :

Then




Example 5.25 (cont'd)

Thus we obtain the particular solution




Example 5.25 (cont'd)

Thus we obtain the particular solution

et &3t € ot 4 et
yo(2) =w(t>u(t>=( t 3t) (_ TooreE

_ef

et 4t 8

( 27t +_ ; 1)
e t 0 :
3 3 9

The general solution is




Example 5.25 (cont'd)

Thus we obtain the particular solution

et &3t € ot 4 et
yp(t) =V(t)u(t) = ( t 3t> (_ 9 e=3 | e 3t

_ef

et 4t 8
( 27t+27 1)
e t 0 :
-3 — <4 2

The general solution is

et &3t (g et 48
vy = °_ +{SE 3% )
o=(55 5 (@) (et

Imposing the initial condition to find ¢; and ¢,
(1 1\ [a —3\ (o
=24 1)(2)(F)- 6




Example 5.25 (cont'd)

Thus we obtain the particular solution

et &3t € ot 4 et
yo(t) =w(t>u(t>=( t egt) (_ Tooke L

_ef

et 4t 8
~(LariTh)
e t :

3 T3 t9

The general solution is

et &3t (g et 48
vy = °_ +{SE 3% )
o=(55 5 (@) (et

Imposing the initial condition to find ¢; and ¢,

11 =35
o= (@) (F) - 6) - {523
2= 18




Example 5.25 (cont'd)

The solution to the initial value problem is

_ (et ) ([5/6 A T
y(t)_<_et e3t> (7/18>+<_2§t_23t+1$') ’
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Consider the system y’ = <(1) é) y+ (_tl) , ¥(0) = (_21> with

the particular solution y,(t) = ta+ b, where a, b are column
vectors. Solve the initial value problem given the eigenpairs

() (= (4)
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Example 5.26

Consider the system y’ = <(1) é) y+ (_tl) , ¥(0) = (_21> with

the particular solution y,(t) = ta+ b, where a, b are column
vectors. Solve the initial value problem given the eigenpairs

() (5 (1))

Solution: Observe that the complementary solution is

ye(t) = et G) + et (_11>

We're given y,(t) = ta+ b, so y,(t) = a. Plugging into the

system: / 0 1 "
yp(t): 1 0 yP+ -1
= o= (3 3] e ()
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Example 5.26 (cont'd)
0 01 01 1 0
t<0>+a :t<1 0)a+<1 O>b+t<0>+<_1>












Example 5.26 (cont'd)
0 01 01 1
t<0>+a :t<1 O)a+<1 0>b—|—t<0
{0 1 1 1
=til1 o)? " o 0

which leads to

0 01 1 0
= a + a=
0 10 0 -1
0 1 0 ~ 0
10 -1 0
. L 0
Hence, the particular solution is y,(t) = ta+ b = N ) and the

/_\+
I~
[y
~
+

1
general solution is y(t) = c1e’ <1> + et



Example 5.26 (cont'd)
(1 L1 0
y(t) = cie <1> + ce (_1> + (—t)

Imposing the initial condition y(0) = (_21> we have

{C1+C2=2 :>{c1:1/2

C1*C2:*1 C2:3/2

Therefore, the solution to the IVP is

o 1.,(1 3 (1 0
y(t)—ie 1 +§e 1 + )

REMARK: this method is known as the method of undetermined
coefficients.



Summary

Today we learned/reviewed

@ more on nonhomogeneous linear systems
superposition principle and solution matrix
fundamental matrix

the method of variation of parameters

the method of undetermined coefficients

next time, we will learn

@ Euler’'s method
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