March 13 Math 2306 sec. 51 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, $e^{k x}$

- sines and/or cosines, $\sin (k x), \cos (k x)$
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Method Basics: $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)$

- Classify g as a certain type, and assume y_{p} is of this same type ${ }^{1}$ with unspecified coefficients, A, B, C, etc.
- Substitute the assumed y_{p} into the ODE and collect like terms
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_{p}.

[^0]
Some Rules \& Caveats

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the " 2 " in $e^{2 x}$ or the " π " in $\sin (\pi x)$) are not undetermined. We don't change those.

Caution

- The method is self correcting, but it's best to get the set up correct.
- The form of y_{p} can depend on y_{c}. (More about this later.)

Initial Guesses

Let's go through several examples to determine what the form of y_{p} should be based on the right hand side $g(x)$.

At the moment, we're ignoring y_{c}. While we can't do that in general, we can always use these examples as the starting point for our set up.

We'll go through ten examples. Assume that we are dealing with an ODE that looks like

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)

(a) $g(x)=1 \quad$ (or really any nonzero constant)

$$
y_{p}=A
$$

(b) $g(x)=x-7 \quad\left(1^{\text {st }}\right.$ degree polynomial)

$$
y_{p}=A x+B
$$

Examples of Forms of y_{p} based on g (Trial Guesses)

(c) $g(x)=5 x^{2} \quad\left(2^{n d}\right.$ degree polynomial)

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5 \quad$ (3 $3^{\text {rd }}$ degree polynomial)

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(e) $g(x)=x e^{3 x} \quad$ ($1^{s t}$ degree polynomial times $\left.e^{3 x}\right)$

$$
y_{p}=(A x+B) e^{3 x}=A x e^{3 x}+B e^{3 x}
$$

(f) $g(x)=\cos (7 x) \quad$ (linear combo of cosine and sine of $7 x$)

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x) \quad$ (two linear combos of sine/cosine)

$$
y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)
$$

(h) $g(x)=x^{2} \sin (3 x) \quad$ (linear combo $2^{\text {nd }}$ degree polynomial time sine and $2^{\text {nd }}$ degree poly times cosine)

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(i) $g(x)=e^{x} \cos (2 x) \quad$ (linear combo of $e^{x} \operatorname{cosine}$ and e^{x} sine of $\left.2 x\right)$

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

(j) $g(x)=x e^{-x} \sin (\pi x) \quad$ (linear combo of $1^{\text {st }}$ poly times e^{-x} sine and $1^{\text {st }}$ poly times e^{-x} cosine)

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

The Superposition Principle

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_{p} by considering separate problems

$$
\begin{aligned}
& y_{p_{1}} \text { solves } a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x) \\
& y_{p_{2}} \text { solves } a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{2}(x)
\end{aligned}
$$

and so forth.
Then $y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}$.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

The principle of superposition says that we can consider the problem in parts.

1) Find $y_{p_{1}}$ solving $y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}$

$$
y_{p_{1}}=A e^{-3 x}
$$

2) Find $y_{p_{2}}$ solving $y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}$

$$
y_{p_{2}}=B x^{2}+C x+D
$$

$$
y_{p}=y_{p_{1}}+y_{p_{2}} \quad \Longrightarrow \quad y_{p}=A e^{-3 x}+B x^{2}+C x+D
$$

A Glitch!

What happens if the assumed form for y_{p} is part ${ }^{2}$ of y_{c} ? Consider applying the process to find a particular solution to the ODE

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime} & =3 e^{x} \\
g(x) & =3 e^{x} \\
\text { Set } y_{p} & =A e^{x} \quad \text { substitute } \\
y_{p}^{\prime} & =A e^{x} \\
y_{p}^{\prime \prime} & =A e^{x} \quad \begin{aligned}
y_{p}^{\prime \prime}-y_{p}^{\prime} & =3 e^{x} \\
A e^{x}-A e^{x} & =3 e^{x} \\
0 & =3 e^{x}
\end{aligned}
\end{aligned}
$$

${ }^{2}$ A term in $g(x)$ is contained in a fundamental solution set of the associated homogeneous equation.

This is always false.
we hove to consider yo.
$y c$ solves $y^{\prime \prime}-y^{\prime}=0$
Characteristic poly: $m^{2}-m=0$

$$
\begin{gathered}
m(m-1)=0 \\
m=0 \quad \text { or } \quad m=1 \\
y_{1}=e^{0 x}=1 \quad, \quad y_{2}=e^{1 x}=e^{x}
\end{gathered}
$$

$y_{p}=A e^{x}$ is just part of

$$
y_{c}
$$

The method can still be used. However, we need to know how to treat our guess for y_{p} in this case.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Case II Examples
Find the general solution of the ODE.

$$
\begin{gathered}
y^{\prime \prime}-y^{\prime}=3 e^{x} \\
y=y_{c}+y_{p}
\end{gathered}
$$

From before $y_{1}=1, y_{2}=e^{x}$ so

$$
y_{c}=c_{1}+c_{2} e^{x}
$$

Find y_{p} : $g(x)=3 e^{x}$

$$
\begin{aligned}
& g(x)=3 e^{\prime} \quad \text { in dater of } y c \\
& y_{p}=A e^{x} \text { amp pax or is } \\
& y_{p}=\left(A e^{x}\right) x=A x e^{x} \text { This correct }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=3 e^{x} \\
& y_{p}=A x e^{x} \quad \text { substitute } \\
& y_{p}^{\prime}=A e^{x}+A x e^{x} \\
& y_{p}^{\prime \prime}=A e^{x}+A e^{x}+A x e^{x} \\
& y_{p}^{\prime \prime}-y_{p}^{\prime}=3 e^{\prime} \\
& 2 A e^{x}+A x e^{x}-\left(A e^{x}+A x e^{x}\right)=3 e^{x} \\
& e^{x}(2 A-A)+x e^{x}(A-A)=3 e^{x} \\
& \Rightarrow A e^{x}=3 e^{x} \\
& \Rightarrow A
\end{aligned} \quad \begin{aligned}
& \Rightarrow \quad A
\end{aligned}
$$

$$
\text { March 3, } 2023 \quad 18 / 30
$$

$$
y_{p}=A x e^{x} \Rightarrow y_{p}=3 x e^{x}
$$

The general solution

$$
y=c_{1}+c_{2} e^{x}+3 x e^{x}
$$

[^0]: ${ }^{1}$ We will see shortly that our final conclusion on the format of y_{p} can depend on y_{c}

