March 13 Math 2306 sec. 52 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- ► exponentials, e^{kx}
- ▶ sines and/or cosines, ≤in(kx), Gs(kx)

and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

K- Gnstont

Method Basics: $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$

- ► Classify g as a certain type, and assume y_p is of this same type¹ with unspecified coefficients, A, B, C, etc.
- \triangleright Substitute the assumed y_p into the ODE and collect like terms
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_p .

¹We will see shortly that our final conclusion on the format of y_0 can depend on y_0 and

Some Rules & Caveats

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.
- Constants inside of sines, cosines, and exponentials (e.g., the "2" in e^{2x} or the " π " in $\sin(\pi x)$) are not undetermined. We don't change those.

Caution

- ➤ The method is self correcting, but it's best to get the set up correct.
- ▶ The form of y_p can depend on y_c . (More about this later.)

Initial Guesses

Let's go through several examples to determine what the form of y_p should be based on the right hand side g(x).

At the moment, we're ignoring y_c . While **we can't do that in general**, we can always use these examples as the starting point for our set up.

We'll go through ten examples. Assume that we are dealing with an ODE that looks like

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

4/30

(a)
$$g(x) = 1$$
 (or really any nonzero constant)
$$y_e = A$$

(b)
$$g(x) = x - 7$$
 (1st degree polynomial)

(c)
$$g(x) = 5x^2$$
 (2nd degree polynomial)

(d)
$$g(x) = 3x^3 - 5$$
 (3rd degree polynomial)

(e)
$$g(x) = xe^{3x}$$
 (1st degree polynomial times e^{3x})

$$y_{p} = (A \times + B) e^{3x} = A \times e^{3x} + B e^{3x}$$

(f)
$$g(x) = \cos(7x)$$
 (linear combo of cosine and sine of $7x$)

(g) $g(x) = \sin(2x) - \cos(4x)$ (two linear combos of sine/cosine)

(h) $g(x) = x^2 \sin(3x)$ (linear combo 2^{nd} degree polynomial time sine and 2^{nd} degree poly times cosine)

(i) $g(x) = e^x \cos(2x)$ (linear combo of e^x cosine and e^x sine of 2x)

(j) $g(x) = xe^{-x}\sin(\pi x)$ (linear combo of 1st poly times e^{-x} sine and 1st poly times e^{-x} cosine)

The Superposition Principle

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

The principle of superposition for nonhomogeneous equations tells us that we can find y_p by considering separate problems

$$y_{p_1}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x)$

$$y_{p_2}$$
 solves $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_2(x),$

and so forth.

Then
$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$
.

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

The principle of superposition says that we can consider the problem in parts.

1) Find
$$y_{p_1}$$
 solving $y'' - 4y' + 4y = 6e^{-3x}$

$$y_{p_1} = Ae^{-3x}$$

2) Find
$$y_{p_2}$$
 solving $y'' - 4y' + 4y = 16x^2$ $y_{p_2} = Bx^2 + Cx + D$

$$y_{p_2} = Bx^2 + Cx + D$$

$$y_p = y_{p_1} + y_{p_2} \implies y_p = Ae^{-3x} + Bx^2 + Cx + D$$

A Glitch!

What happens if the assumed form for y_p is part² of y_c ? Consider applying the process to find a particular solution to the ODE

$$y'' - y' = 3e^{x}$$

 $g(x) = 3e^{x}$
Set $y_{p} = Ae^{x}$ substitute into one
 $y_{p}'' = Ae^{x}$
 $y_{p}'' = Ae^{x}$
 $y_{p}'' = Ae^{x}$
 $Ae^{x} - Ae^{x} = 3e^{x}$
 $0 = 3e^{x}$

²A term in g(x) is contained in a fundamental solution set of the associated homogeneous equation.

No value of A maker this true.

$$y'' - y' = 3e^x$$

Characteristic polynomial

$$W(w-1) = 0 \implies w = 0 \text{ or } w = 1$$

y = C, + (2 e

13/30

The method can still be used. But we need to know how to modify our y_p to make the process work.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case I: The guess for y_{p_i} **DOES NOT** have any like terms in common with y_c .

Then our guess for y_{p_i} will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_p to y_c

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + \ldots + g_k(x)$$

Consider one of the g's, say $g_i(x)$. We write out the guess for y_{p_i} and compare it to $y_c(x)$.

Case II: The guess for y_{p_i} **DOES** have a like term in common with y_c .

Then we multiply our guess at y_{p_i} by x^n where n is the smallest positive integer such that our new guess $x^n y_{p_i}$ does not have any like terms in common with y_c . Then we take this new guess and substitute to find the A, B, etc.

Case II Examples

Find the general solution of the ODE.

Set yp= (Ae)x = Axe this correct

$$y''-y'=3e^x$$

$$Ae^{x} = 3e^{x}$$

The general solution
$$y = c_1 + c_2 e^{x} + 3xe^{x}$$