March 14 Math 3260 sec. 51 Spring 2022

Section 3.1: Introduction to Determinants

For an n x n matrix A, we defined a number det(A) called the
determinant of the matrix. This number is a function of the entries in
the matrix and it was defined so that

> if det(A) # 0, then A is nonsingular (a.k.a invertible), and

> if det(A) = 0, then A is singular.
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2 x 2 and 3 x 3 Cases

a1 a

2x2 det [ o2 } = a1182—a21a12.
a1 a2
any a2 a3

3x3 det| a1 aw axn | =
a3y dz2 ass

axp a a1 a a1 4
= ay1 det [ 22 <23 } — arp det [ 21 923 ] + arg det [ 21 22 ]
asp ass az1 ass ast dasz
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Minors & Cofactors

Definition: Let n > 2 and let A = [g;] be an n x n matrix. The i, jth
minor of Ais

M,'j = det(A,-,-),

where Aj; is the (n — 1) x (n — 1) matrix obtained from A by removing
the i row and the j% column.

The i, /™ cofactor of Ais C; = (—1)/M;.

Using the notation of cofactor and minors, the determinant of a 3 x 3
matrix A has the simple formula

det(A) = aj1Myy — aioMy2 + aisMys
= a1 Ciy + a12C12 + a13Cy3
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The Determinant Defined

Definition: For n > 2, the determinant of the n x n matrix A = [a;] is
the number

det(A) = a11Cy1+ a2Ci2 +--- + ainCiy (1)

n

= D (-1)"ayMy

=

The expression in equation (1) is called a cofactor expansion.
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Example
Find all values of x such that A is singular where
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Theorem:

The determinant of an n x n matrix can be computed by cofactor
expansion across any row or down any column.

We can fix any row / of a matrix A and then

n

det(A) = Z(—1)’+/a,jM,j
j=1

Or, we can fix any column j of a matrix A and then

n

det(A) = Z(—1)’+/a,/-M,j
i=1
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Triangul

ar Matrices

Definition: The n x n matrix A = [a;] is said to be upper triangular if

a,-,- = 0 for

It is said to be lower triangular if a; = 0 for all j > i. A matrix that is

all i > j.

both upper and lower triangular is a diagonal matrix.
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Determinants of Triangular' Matrices

Theorem: For n > 2, the determinant of an n x ntriangular matrix is
the product of its diagonal entries.

That is, if A= [g;] is a triangular matrix, then

det(A) = a11822833 -+ - ann

"We'll use the catch-all name triangular matrix to refer to a matrix that is either
uppper triangular or lower triangular.
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Example: Compute det(A)
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Section 3.2: Properties of Determinants
Theorem: Let A be an n x n matrix, and suppose the matrix B is

obtained from A by performing a single elementary row operation?.
Then

(i) If Bis obtained by adding a multiple of a row of A to another row
of A (row replacement), then

det(B) = det(A).

(i) If Bis obtained from A by swapping any pair of rows (row swap) ,
then

det(B) = —det(A).

(iii) If B is obtained from A by scaling any row by the constant k
(scaling), then

det(B) = kdet(A).

2If "row” is replaced by “column” in any of the operations, the conclusions still follow.

March 3, 2022 12/34



Example: Using Row Operations

Use row operations to obtain a triangular matrix, and then find the
determinant.
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Some Theorems:

Theorem: The n x nmatrix A is invertible if and only if det(A) # 0.

Theorem: For n x n matrix A, det(AT) =det(A).

Theorem: For n x n matrices A and B, det(AB) =det(A) det(B).
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Example

Show that if A is an n x ninvertible matrix, then
_ 1

~ det(A)’

det(A™1)
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Example

Let A be an n x n matrix, and suppose there exists invertible matrix P

such that

B=PAP.
Show that

det(B) = det(A).

UE(RQ) - Lk(FAP)
= A (F') A WX T
oLk () asley AX(A)

%
= A (@) d&J(A)

v

= A (A
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