March 14 Math 3260 sec. 52 Spring 2022

Section 3.1: Introduction to Determinants

For an $n \times n$ matrix A, we defined a number $\operatorname{det}(A)$ called the determinant of the matrix. This number is a function of the entries in the matrix and it was defined so that

- if $\operatorname{det}(A) \neq 0$, then A is nonsingular (a.k.a invertible), and
- if $\operatorname{det}(A)=0$, then A is singular.

2×2 and 3×3 Cases

$2 \times 2 \quad \operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}$.
$3 \times 3 \quad \operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=$
$=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Minors \& Cofactors

Definition: Let $n \geq 2$ and let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The $i, j^{\text {th }}$ minor of A is

$$
M_{i j}=\operatorname{det}\left(A_{i j}\right),
$$

where $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from A by removing the $i^{\text {th }}$ row and the $j^{\text {th }}$ column.

The $i, j^{\text {th }}$ cofactor of A is $C_{i j}=(-1)^{i+j} M_{i j}$.

Using the notation of cofactor and minors, the determinant of a 3×3 matrix A has the simple formula

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13} \\
& =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}
\end{aligned}
$$

The Determinant Defined

Definition: For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the number

$$
\begin{align*}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \tag{1}\\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} M_{1 j}
\end{align*}
$$

The expression in equation (1) is called a cofactor expansion.

Example
Find all values of x such that A is singular where

$$
A=\left[\begin{array}{ccc}
3-x & 2 & 1 \\
0 & 2-x & 4 \\
0 & 3 & 1-x
\end{array}\right] \quad \text { wince } \operatorname{con} \operatorname{det}(A)=0 \text { when }
$$ A is singular.

$$
\begin{aligned}
\operatorname{det}(A) & =(3-x) \operatorname{det}\left[\begin{array}{cc}
2-x & 4 \\
3 & 1-x
\end{array}\right]-2 \operatorname{dtt}\left[\begin{array}{cc}
0 & 4 \\
0 & 1-x
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{cc}
0 & 2-x \\
0 & 3
\end{array}\right] \\
0 & 0^{\prime \prime} \\
& =(3-x)[(2-x)(1-x)-12] \\
& =(3-x)\left(2-3 x+x^{2}-12\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(3-x)\left(x^{2}-3 x-10\right) \\
& =(3-x)(x-5)(x+2)
\end{aligned}
$$

A is singular when $\operatorname{det}(A)=0$. Set $\operatorname{det}(A)=0$

$$
0=(3-x)(x-5)(x+2) \Rightarrow x=3, x=5 \text {, or } x=-2
$$

Hence A is $\operatorname{singulas}$ if $x=3, x=5$, or if $\quad x=-2$.

Theorem:

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

We can fix any row i of a matrix A and then

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Or, we can fix any column j of a matrix A and then

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Triangular Matrices

Definition: The $n \times n$ matrix $A=\left[a_{i j}\right]$ is said to be upper triangular if $a_{i j}=0$ for all $i>j$.

It is said to be lower triangular if $a_{i j}=0$ for all $j>i$. A matrix that is both upper and lower triangular is a diagonal matrix.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right] \quad\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]
$$

Upper Triangular

Determinants of Triangular ${ }^{1}$ Matrices

Theorem: For $n \geq 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries.

That is, if $A=\left[a_{i j}\right]$ is a triangular matrix, then

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33} \cdots a_{n n}
$$

[^0]Example: Compute $\operatorname{det}(A)$
(i) $A=\left[\begin{array}{rrrrr}-1 & 3 & 4 & 0 & 2 \\ 0 & 2 & -3 & 0 & -4 \\ 0 & 0 & 3 & 7 & 5 \\ 0 & 0 & 0 & -4 & 6 \\ 0 & 0 & 0 & 0 & 6\end{array}\right] \quad \begin{aligned} \quad \operatorname{det}(A) & =(-1)(2)(3)(-4)(6) \\ & =144\end{aligned}$
upper triangular
(ii) $\quad A=\left[\begin{array}{rrrr}7 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 4 & 2 & 2 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A)= & 7(6)(2)(2) \\
= & 168
\end{aligned}
$$

lower triangular

Section 3.2: Properties of Determinants

Theorem: Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{2}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A)
$$

[^1]Example: Using Row Operations
Use row operations to obtain a triangular matrix, and then find the determinant.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
2 & 5 & -7 & 3 \\
0 & 2 & 4 & -2 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right]=A} \\
& R_{1}+R_{4} \rightarrow R_{4} \\
& {\left[\begin{array}{rrrr}
2 & 5 & -7 & 3 \\
0 & 2 & 4 & -2 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
& \frac{1}{2} R_{2} \rightarrow R_{2}
\end{aligned}
$$

Lets get on ref and use its determinant. to find $\operatorname{det}(A)$.
no
(1) Change
(2) factor $\frac{1}{2}$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
& -3 R_{2}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
& R_{3} \leftrightarrow
\end{aligned} R_{4} \text { (}
$$

(3)
(4) factor -

Call this matrix B.

$$
\operatorname{det}(\mathbb{B})=2(1)(-3)(5)=-30
$$

From our row OPS

$$
\begin{aligned}
& \operatorname{det}(B)=\frac{1}{2}(-1) \operatorname{det}(A) \\
& \Rightarrow \operatorname{det}(A)=-2 \operatorname{det}(B)=-2(-30)=60
\end{aligned}
$$

Some Theorems:

Theorem: The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem: For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem: For $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example
Show that if A is an $n \times n$ invertible matrix, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

If A is invertible, then $\operatorname{det}(A) \neq 0$. Also

$$
A^{-1} A=I \text {. Hence } \operatorname{det}\left(A^{-1} A\right)=\operatorname{det}(I)=1
$$

Using the last theorem on the previous slide,

$$
\begin{aligned}
& \operatorname{det}\left(A^{-1} A\right)=\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=1 \cdot \\
& \Rightarrow \quad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \cdot \sqrt[x^{2}]{\alpha^{2}} s^{\sigma^{\sigma^{2}}}
\end{aligned}
$$

Example
Let A be an $n \times n$ matrix, and suppose there exists invertible matrix P such that

$$
B=P^{-1} A P
$$

Show that

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(P^{-1} A P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P) \text { war } s c^{200}{ }^{1} \text { s } \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \operatorname{det}(A) \\
& =\frac{1}{\operatorname{det}(P)} \operatorname{det}(P) \operatorname{det}(A) \\
& =\operatorname{det}(A) .
\end{aligned}
$$

[^0]: ${ }^{1}$ We'll use the catch-all name triangular matrix to refer to a matrix that is either uppper triangular or lower triangular.

[^1]: "If "row" is replaced by "column" in any of the operations, the conclusions still follow.

