March 15 Math 2306 sec. 52 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Method Basics: $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)$

- Classify g as a certain type, and assume y_{p} is of this same type ${ }^{1}$ with unspecified coefficients, A, B, C, etc.
- Compare y_{p} to y_{c} and modify as needed.
- Substitute the assumed y_{p} into the ODE and collect like terms
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_{p}.

[^0]
Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case I: The guess for $y_{p_{i}}$ DOES NOT have any like terms in common with y_{c}.

Then our guess for $y_{p_{i}}$ will work as written. We do the substitution to find the A, B, etc.

Cases: Comparing y_{p} to y_{c}

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+\ldots+g_{k}(x)
$$

Consider one of the g 's, say $g_{i}(x)$. We write out the guess for $y_{p_{i}}$ and compare it to $y_{c}(x)$.

Case II: The guess for $y_{p_{i}}$ DOES have a like term in common with y_{c}.
Then we multiply our guess at $y_{p_{i}}$ by x^{n} where n is the smallest positive integer such that our new guess $x^{n} y_{p_{i}}$ does not have any like terms in common with y_{c}. Then we take this new guess and substitute to find the A, B, etc.

Find the form of the particular solution.
This is a set up only problem. Don't bother solving for the A, B, etc.

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find y_{c} : y_{c} solves $y^{\prime \prime}-4 y^{\prime}+4 y=0$
Characteristic eau. $\quad m^{2}-4 m+4=0$

$$
\begin{aligned}
&(m-2)^{2}=0 \Rightarrow m=2 \operatorname{dov}_{\text {foo }}^{n d e} \\
& y_{1}=e^{2 x}, y_{2} \\
&=x e^{2 x} \\
& y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{aligned}
$$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x} \quad y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

Let y_{p}, solve $y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)$ and $y_{p_{2}}$ solve $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$

For $y_{e,}, g_{1}(x)=\sin (4 x)$

$$
\begin{aligned}
& z_{1}(x)=\sin (4 x) \\
& y_{p_{1}}=A \sin (4 x)+B \cos (4 x) \sqrt{r^{0}} y^{2 l} y^{l}
\end{aligned}
$$

yo

For $y_{p_{2}}, g_{2}(x)=x e^{2 x}$

$$
\begin{aligned}
& x \quad y_{p_{2}}=(C x+D) e^{2 x}=C x e^{2 x}+D e^{2 x} \operatorname{Dre}^{\text {ac }} y^{c} \\
& x \quad y_{p_{2}}=x(C x+D) e^{2 x}=C x^{2} e^{2 x}+D x e^{2 x}+\text { arp.cat }
\end{aligned}
$$

March 13,2023
$6 / 14$

$$
\begin{aligned}
y_{c}=c_{1} e^{2 x} & +c_{2} x e^{2 x} \\
& V y_{p_{2}}=x^{2}(C x+D) e^{2 x}=C x^{3} e^{2 x}+D x^{2} e^{2 x}
\end{aligned}
$$

Finally, yo has the form

$$
y_{p}=A \sin (4 x)+B \cos (4 x)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
$$

Find the form of the particular solution.

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find y_{c} : y_{c} solves $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$
Characterist. C equ $\quad m^{3}-m^{2}+m-1=0$
factor by grouping $m^{2}(m-1)+(m-1)=0$

$$
\begin{array}{rl}
& (m-1)\left(m^{2}+1\right)=0 \\
m-1=0 \Rightarrow m=1, & m^{2}+1=0 \Rightarrow m^{2}=-1 \\
y_{1}=e^{x} & m= \pm \sqrt{-1}= \pm i \\
\alpha=0 \quad \beta=1
\end{array}
$$

March 13, $2023 \quad 8 / 14$

$$
\begin{aligned}
& y_{2}=e^{0 x} \cos (1 x)=\cos x \\
& y_{3}=e^{0 x} \sin (1 x)=\sin x \\
& y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x \\
& \quad y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
\end{aligned}
$$

Let y_{p} solve $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x$ and $y_{p_{2}}$ solve $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=x^{4}$

For $y_{p_{1}}, g_{1}(x)=\cos x$

$$
\begin{aligned}
& g_{1}(x)=\cos x \\
& y_{p_{1}}=A \cos x+B \sin x \\
& y_{p_{1}}=x(A \cos x+B \sin x)
\end{aligned}
$$

$$
\begin{aligned}
& \int y_{p_{1}}=A x \cos x+B x \sin x \text { correct } \\
& y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x
\end{aligned}
$$

For $y_{p_{2}}, g_{2}(x)=x^{4}$

$$
\begin{aligned}
& g_{2}(x)=x^{4} \\
& y_{p_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G \int_{\text {no like }} \int_{\text {vi }} \text { sc }
\end{aligned}
$$

Finally

$$
\begin{aligned}
& \text { Finally } \\
& y_{e}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G
\end{aligned}
$$

Solve the IVP

$$
y^{\prime \prime}-y=4 e^{-x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

Find the senesd solution $y=y_{c}+y_{p}$
Find $y c$ that solves $y^{\prime \prime}-y=0$
Charac. eqn $m^{2}-1=0$

$$
\begin{gathered}
(m-1)(m+1)=0 \\
m=1 \text { or } m=-1 \\
y_{1}=e^{x}, y_{2}=e^{-x} \\
y_{c}=c_{1} e^{x}+c_{2} e^{-x}
\end{gathered}
$$

$$
y^{\prime \prime}-y=4 e^{-x}
$$

Find y_{p} using undetermined coef.

$$
\begin{aligned}
& g(x)=4 e^{-x} \\
& y_{p}=A e^{-x} \times \text { duplicates part of ye } \\
& y_{p}=x\left(A e^{-x}\right)=A x e^{-x} \int
\end{aligned}
$$

Substitute

$$
\begin{aligned}
& y_{p}=A x e^{-x} \\
& y_{p}^{\prime}=A e^{-x}-A x e^{-x} \\
& y_{p}^{\prime \prime}=-A e^{-x}-A e^{-x}+A x e^{-x}=-2 A e^{-x}+A x e^{-x} \\
& y_{p}^{\prime \prime}-y_{p}=4 e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
&-2 A e^{-x}+A x e^{-x}-A x e^{-x}=4 e^{-x} \\
& e^{-x}(-2 A)+x e^{-x}(A-A)=4 e^{-x} \\
&-2 A e^{-x}=4 e^{-x} \\
&-2 A=4 \Rightarrow A=-2 \\
& y_{p}=A x e^{-x} \Rightarrow y_{p}=-2 x e^{-x}
\end{aligned}
$$

The general solution to the ODE is

$$
y=c_{1} e^{x}+c_{2} e^{-x}-2 x e^{-x}
$$

Now, apply $y(0)=-1$ and $y^{\prime}(0)=1$

$$
y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}-2 e^{-x}+2 x e^{-x}
$$

$$
\begin{array}{r}
y(0)=c_{1} e^{0}+c_{2} e^{0}-2(0) e^{0}=-1 \Rightarrow c_{1}+c_{2}=-1 \\
y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{0}-2 e^{0}+2(0) e^{0}=1 \Rightarrow c_{1}-c_{2}-2=1
\end{array}
$$

Solve

$$
\begin{aligned}
& c_{1}+c_{2}=-1 \\
& c_{1}-c_{2}=3
\end{aligned}
$$

and

$$
\begin{aligned}
& 2 c_{1}=2 \quad \Rightarrow \quad c_{1}=1 \\
& 2 c_{2}=-4 \quad \Rightarrow \quad c_{2}=-2
\end{aligned}
$$

subtract

The solution to the IVP is

$$
y=e^{x}-2 e^{-x}-2 x e^{-x}
$$

[^0]: ${ }^{1}$ We will see shortly that our final conclusion on the format of y_{p} can depend on y_{c}

