March 17 Math 2306 sec. 51 Spring 2023

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} .
$$

The method of undetermined coefficients is not applicable to either of these.

- The first equation has constant coefficient left side, but the tangent is not the right kind of right hand side.
- The second equation has an exponential right side, but the left side isn't constant coefficient.

We need another approach.

Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}
$$

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$

$$
\begin{aligned}
y_{p}= & u_{1} y_{1}+u_{2} y_{2} \\
y_{p}^{\prime}= & u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} \\
& 2^{n d} \text { eqn: } \quad u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
\end{aligned}
$$

Remember that $y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

$$
\begin{aligned}
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
& y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
\end{aligned}
$$

Sub $\quad y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}=g(x)$

$$
\begin{aligned}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} & +P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right) \\
& +Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x)
\end{aligned}
$$

collect $u_{1}{ }^{\prime}, u_{2}{ }^{!}, u_{1}$ and u_{2}

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1}(\underbrace{y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}}_{0_{1}^{\prime \prime}}+Q(x) y_{1})+
$$

$$
u_{2}(\underbrace{y_{2}^{\prime \prime}+P(x) y_{z}^{\prime}}_{\ddot{\prime}}+Q(x) y_{2})=g(x)
$$

This reduces to

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
$$

we need to solve the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

we con state this using matrices

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
g
\end{array}\right]
$$

Using Comer's rule

$$
u_{1}^{\prime}=\frac{w_{1}}{w} \text { and } u_{2}^{\prime}=\frac{w_{2}}{w}
$$

where

$$
w_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=-g y_{2}, \quad w_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=y_{1} g
$$

and

$$
w=w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

$$
u_{1}=\int \frac{-g y_{2}}{w} d x \text { and } u_{2}=\int \frac{g y_{1}}{w} d x
$$

Variation of Parameters

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$
y=y_{c}+y_{p} \quad \text { where }
$$

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \text { and } \quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

Letting W denote the Wronskian of y_{1} and y_{2}, the functions u_{1} and u_{2} are given by the formulas

$$
u_{1}=\int \frac{-y_{2} g}{W} d x, \quad \text { and } \quad u_{2}=\int \frac{y_{1} g}{W} d x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=8 x^{2}, \quad y(1)=0, \quad y^{\prime}(1)=0
$$

The complementary solution of the ODE is $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$.
Use variation of perancters to find $y_{p} . \quad x>0$

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Standard form: $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=8$

$$
\begin{aligned}
& g(x)=8, \quad y_{1}=x^{2} \quad y_{2}=x^{-2} \\
& w=\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right|=x^{2}\left(-2 x^{-3}\right)-2 x\left(x^{-2}\right)=\frac{-2}{x}-\frac{2}{x}=\frac{-4}{x}
\end{aligned}
$$

$$
\begin{aligned}
u_{1} & =\int \frac{-g y_{2}}{w} d x=-\int \frac{\frac{8 x^{-2}}{-\frac{4}{x}} d x=2 \int x^{-1} \partial x=2 \ln x}{} \begin{aligned}
u_{2} & =\int \frac{g y_{1}}{w} d x=\int \frac{8 x^{2}}{-\frac{4}{x}} d x=-2 \int x^{3} d x=\frac{-2}{4} x^{4} \\
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =2 \ln x\left(x^{2}\right)-\frac{1}{2} x^{4}\left(x^{-2}\right) \\
& =2 x^{2} \ln x-\frac{1}{2} x^{2}
\end{aligned}
\end{aligned}
$$

well finish next time.

