March 18 Math 3260 sec. 51 Spring 2024

Section 4.1: Vector Spaces and Subspaces

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all **u**, **v**, and **w** in *V*, and for any scalars *c* and *d*

1. The sum $\mathbf{u} + \mathbf{v}$ is in V.

2.
$$u + v = v + u$$
.

3.
$$(u + v) + w = u + (v + w)$$
.

- 4. There exists a **zero** vector **0** in *V* such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar *c*, *c***u** is in *V*.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9. c(du) = d(cu) = (cd)u.

Subspaces

Definition:

A subspace of a vector space V is a subset H of V for which

- a) The zero vector is $in^a H$
- b) *H* is closed under vector addition. (i.e. **u**, **v** in *H* implies **u** + **v** is in *H*)

c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

^aThis is sometimes replaced with the condition that H is nonempty.

Remark: A subspace is a vector space. If these three properties hold, it inherits the structure from its parent space.

March 8, 2024

2/14

.

Determine which of the following is a subspace of \mathbb{R}^2 .

1. The set {**0**} (the set containing just the zero vector). Let's call it It = { 0}. Clearly It contains 0. 0+0=0 and c0=0 for and is calar c. His closed under both operations It is a subspace of TR2.

イロト 不得 トイヨト イヨト ヨー ろくの

Determine which of the following is a subspace of \mathbb{R}^2 .

2. The set of all vectors of the form $\mathbf{u} = (1, u_2)$. Let's again cell it H. $\vec{o} = (0, 0) \neq (1, u_2)$ for any choice of u_2 . H doesn't contain the zero vector, honce it is not a subspace of \mathbb{R}^2 .

Let $S = \{ \mathbf{p} \in \mathbb{P}_2 \mid \mathbf{p}(0) = 0 \text{ and } \mathbf{p}(1) = 0 \}$. Show that S is a subspace un t=0 ton t== 0 of ₽₂. We need to show that S contains the zero vector and is closed under both operations, $0(t) = 0 + 0t + 0t^{2}$ Recall $\overline{O}(0) = 0 + O(0) + O(0^{-1}) = 0$ and Note $\vec{O}(1) = 0 + O(1) + O(1^2) = 0$ March 8, 2024 5/14

Hence des. Let p, g be in S. and let c be any scalar. Then p(0)=0, p(1)=0, g(0)=0 and \$ (1) = 0. Wote that $(\vec{p}+\vec{q})(\sigma) = \vec{p}(\sigma) + \vec{q}(\sigma) = 0 + 0 = 0$ $(\vec{p} + \vec{q})(1) = \vec{p}(1) + \vec{q}(1) = 0 + 0 = 0$ Idence p+q is in S which is closed under vector addition. イロト イ理ト イヨト イヨト ニヨー

Also, $(C\vec{p})(0) = C\vec{p}(0) = C(0) = 0$ and $(c\vec{p})(1) = c\vec{p}(1) = c(o) = 0$, Hence cp is in S which is closed under scalar multiplication. As required we've shown that S is a subspace of PZ.

Linear Combination and Span

Definition

Let *V* be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be a collection of vectors in *V*. A **linear combination** of these vectors is a vector **u** of the form

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

for some scalars c_1, c_2, \ldots, c_p .

Definition

The **span**, Span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ }, is the subset of *V* consisting of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

Span as Subspace

Theorem:

Let *V* be a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a nonempty set of vectors in *V*. Then $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a subspace of *V*.

Remarks

- The set Span{v₁,..., v_p} is the subspace of V generated (or spanned) by the set {v₁,..., v_p}
- If *H* is any subspace of *V*, then a **spanning set** for *H* is any set of vectors {**v**₁,...,**v**_p} such that *H* = Span{**v**₁,...,**v**_p}.

 $M_{2\times 2}$ denotes the set of all 2 × 2 matrices with real entries with regular matrix addition and scalar multiplication. Consider the subset *H* of $M_{2\times 2}$

$$H = \left\{ \left[egin{array}{cc} a & 0 \ 0 & b \end{array}
ight] \left| egin{array}{cc} a, \ b \in \mathbb{R}
ight\}.
ight.$$

Show that *H* is a subspace of $M_{2\times 2}$ by finding a spanning set. That is, show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ for some appropriate vectors \mathbf{v}_1 and \mathbf{v}_2 .

we want to write an arbitrary
element of H as a linear
combination of fixed vectors.
$$\begin{bmatrix} a & o \\ o & b \end{bmatrix} = \begin{bmatrix} a & o \\ o & o \end{bmatrix} + \begin{bmatrix} o & o \\ o & b \end{bmatrix}$$

$$= a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

This is a linear and of $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} a d$
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
So $H = Span \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.
As a spon, H is a subspace of $M_{2\times 2}$.

March 8, 2024 11/14

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Recall the set $S = \{ \mathbf{p} \in \mathbb{P}_2 \mid \mathbf{p}(0) = 0 \text{ and } \mathbf{p}(1) = 0 \}$. Argue that

$$S = \text{Span}\{t - t^2\}.$$
Let $\vec{p}(t) = p_{0} + p_{1}t + p_{2}t^{2}$ be any element
of S. We can find conditions on
 p_{0}, p_{1} and p_{2} .

$$\vec{p}(0) = p_{0} + p_{1}(0) + p_{2}(0^{2}) = p_{0} = 0$$

$$\implies p_{0} = 0$$

$$\implies p_{0} = 0$$

$$\text{March 8, 2024} 12/14$$

$$\Rightarrow p_{i}+p_{z}=0$$

$$\Rightarrow p_{z}=-p_{i}$$

So p in S has the form

$$p(t)=0+p_{i}t+(-p_{i})t^{2}$$

$$= p_{i}(t-t^{2})$$

That is, p is a linear combination
of $t-t^{2}$. So $S=Spon\{t-t^{2}\}$.

March 8, 2024 13/14

・ロト・西ト・ヨト・ヨー つくぐ

 $\text{Span}\{t - t^2\}$

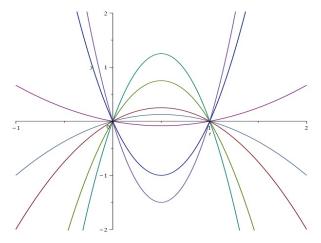


Figure: The graphs of various elements of Span{ $t - t^2$ }

March 8, 2024 14/14

э

イロト イポト イヨト イヨト