March 18 Math 3260 sec. 52 Spring 2022

Section 3.3: Cramer's Rule, Volume, and Linear Transformations
Definition: For $n \times n$ matrix A and \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing the $i^{\text {th }}$ column with the vector \mathbf{b}. That is

$$
A_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_{n}\right]
$$

Theorem: Let A be an $n \times n$ nonsingular matrix. Then for any vector \mathbf{b} in \mathbb{R}^{n}, the unique solution of the system $A \mathbf{x}=\mathbf{b}$ is given by \mathbf{x} where

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

Application

In various engineering applications, electrical or mechanical components are often chosen to try to control the long term behavior of a system (e.g. adding a damper to kill off oscillatory behavior). Using Laplace Transforms, differential equations are converted into algebraic equations containing a parameter s. These give rise to systems of the form

$$
\begin{aligned}
3 s X-2 Y & =4 \\
-6 X+s Y & =1
\end{aligned}
$$

Determine the values of s for which the system is uniquely solvable. For such s, find the solution (X, Y) using Cramer's rule.

$$
\begin{aligned}
3 s X-2 Y & =4 \\
-6 X+s Y & =1
\end{aligned}
$$

Write this in matrix format

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 s & -2 \\
-6 & s
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\underset{\vec{x}}{\left[\begin{array}{l}
4 \\
1
\end{array}\right]}} \\
& A \\
& \operatorname{det}(A)=3 s(s)-(-2)(-6)=3 s^{2}-12=3\left(s^{2}-4\right)
\end{aligned}
$$

A is nonsingula when $\operatorname{det}(A) \neq 0$. The system has a unique solution for all $s \neq \pm 2$.

For $s \neq \pm z$

$$
\begin{array}{ll}
A_{1}(\vec{b})=\left[\begin{array}{cc}
4 & -2 \\
1 & s
\end{array}\right], A_{2}(\vec{b})=\left[\begin{array}{cc}
3 s & 4 \\
-6 & 1
\end{array}\right] \\
\operatorname{det}\left(A_{1}(\vec{b})\right)=4 s+2 & \operatorname{det}\left(A_{2}(\vec{b})\right)=3 s+24 \\
\operatorname{det}(A)=3\left(s^{2}-4\right) &
\end{array}
$$

The solution

$$
\begin{aligned}
& X=\frac{\operatorname{det}\left(A_{1}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{2(2 s+1)}{3\left(s^{2}-4\right)} \\
& Y=\frac{\operatorname{det}\left(A_{2}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{3(s+8)}{3\left(s^{2}-4\right)}=\frac{s+8}{s^{2}-4} \\
& X=\frac{2(2 s+1)}{3\left(s^{2}-4\right)}, \quad Y=\frac{s+8}{s^{2}-4}
\end{aligned}
$$

Area of a Parallelogram

Theorem: If \mathbf{u} and \mathbf{v} are nonzero, nonparallel vectors in \mathbb{R}^{2}, then the area of the parallelogram determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v}]$.

Example
Find the area of the parallelogram with vertices $(0,0),(-2,4),(4,-5)$, and $(2,-1)$.

Let $\vec{u}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ and $\vec{V} \cdot\left[\begin{array}{c}4 \\ -5\end{array}\right]$
set

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
\vec{u} & \vec{v}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 4 \\
4 & -5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { The area }=|\operatorname{det}(A)| \\
& =|(-2)(-5)-4 \cdot 4| \\
& =|10-16|=6
\end{aligned}
$$

Let $\vec{\omega}=\left[\begin{array}{c}2 \\ -1\end{array}\right] \quad \vec{u}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$

$$
\vec{w}-\vec{u}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\left[\begin{array}{c}
2+2 \\
-1-4
\end{array}\right]=\left[\begin{array}{c}
4 \\
-5
\end{array}\right]
$$

Volume of a Parallelopiped

Theorem: If \mathbf{u}, \mathbf{v}, and \mathbf{w} are nonzero, non-collinear vectors in \mathbb{R}^{3}, then the volume of the parallelopiped determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$.

Example
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(2,3,0),(-2,0,2)$ and $(-1,3,-1)$.
Let $\vec{\omega}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right], \vec{\omega}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ and set

$$
\begin{aligned}
& A=[\vec{u} \quad \vec{v} \vec{w}] \\
& =\left[\begin{array}{ccc}
2 & -2 & -1 \\
3 & 0 & 3 \\
0 & 2 & -1
\end{array}\right] \\
& \operatorname{det}(A)=a_{11} C_{11}+a_{2}, C_{21}+a_{31} C_{31} \text { Down Column } 1 \\
& (-1)^{2} M_{11} \quad 7(-1)^{3} \vec{m}_{21} \\
& (-1)^{4} m_{31}^{7}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=2\left|\begin{array}{cc}
0 & 3 \\
2 & -1
\end{array}\right|-3\left|\begin{array}{cc}
-2 & -1 \\
2 & -1
\end{array}\right|+0 \right\rvert\, \\
& =2(0-6)-3(2+2) \\
& =-12-12 \\
& =-24
\end{aligned}
$$

The volume $V=|\operatorname{det}(A)|=|-2 u|=24$

