March 1 Math 2306 sec. 51 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Examples (from last time)

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1, \quad g(x)=8 x+1
$$

We guessed that $y_{p}=A x+B$ and found that $A=2$ and $B=\frac{9}{4}$ worked. So a particular solution was

$$
y_{p}=2 x+\frac{9}{4} .
$$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}, \quad g(x)=6 e^{-3 x}
$$

We guessed that $y_{p}=A e^{-3 x}$ and found that $A=\frac{6}{25}$ worked. So a particular solution was

$$
y_{p}=\frac{6}{25} e^{-3 x}
$$

Classifying the RHS

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

Question: Is $g(x)=16 x^{2}$ a monomial or a polynomial?

- Setting $y_{p}=A x^{2}$ failed (led to conflicting conditions on A).
- We have to account for all like terms that can arise from taking derivatives.
- The proper classification for g in this context is as a $2^{n d}$ degree polynomial.
- The correct form for the particular solution is

$$
y_{p}=A x^{2}+B x+C
$$

Solve an Initial Value Problem

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

The gevered solution looks like $y=y_{c}+y_{p}$
Ic solves $y^{\prime \prime}-4 y^{\prime}+4 y=0$

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}
$$

Charact. egn $\quad m^{2}-4 m+4=0$

$$
\begin{aligned}
& \quad(m-2)^{2}=0 \Rightarrow m=2 \text { double root } \\
& y_{1}=e^{2 x}, y_{2}=x e^{2 x}
\end{aligned}
$$

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

Find Up using the method of undetermined coeff.

$$
\begin{aligned}
y_{p}^{\prime}= & 2 A x+B \\
y_{p}^{\prime \prime}= & 2 A \\
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=16 x^{2} \\
& 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}
\end{aligned}
$$

$$
4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
$$

Match like terns:

$$
\begin{aligned}
4 A & =16 \Rightarrow A=4 \\
-8 A+4 B & =0 \Rightarrow 4 B=8 A \Rightarrow B=2 A=8 \\
2 A-4 B+4 C & =0 \\
C \Rightarrow 4 C & =-2 A+4 B=-2(4)+4(8)=24 \\
C & =6
\end{aligned}
$$

$y_{p}=A x^{2}+B x+C$

$$
y_{p}=4 x^{2}+8 x+C
$$

we found

$$
A=4, B=8, C=6
$$

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

The general solution to the $\triangle D E$ is

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+4 x^{2}+8 x+6
$$

Apply $y(0)=0, y^{\prime}(0)=0$

$$
\begin{gathered}
y^{\prime}=2 c_{1} e^{2 x}+c_{2} e^{2 x}+2 c_{2} x e^{2 x}+8 x+8 \\
y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}+4(0)^{2}+8(0)+6=0 \\
c_{1}+6=0
\end{gathered}
$$

February 27, $2023 \quad 7 / 36$

$$
c_{1}=-6
$$

$$
\begin{gathered}
y^{\prime}(0)=2 c_{1} \dot{e}^{\circ}+c_{2} e^{0}+2 c_{2} \cdot 0 \cdot 0+8(0)+8=0 \\
2 c_{1}+c_{2}+8=0 \\
c_{2}=-8-2 c_{1} \\
=-8-2(-6)=4
\end{gathered}
$$

The solution to the IVP is

$$
y=4 x e^{2 x}-6 e^{2 x}+4 x^{2}+8 x+6
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \quad \text { and } \quad-2 A=0
$$

This is impossible as it would require $-5=0$!

General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for y_{p} is

$$
y_{p}=A \sin (2 x)+B \cos (2 x) .
$$

Two Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.

