March 1 Math 2335 sec 51 Spring 2016

Section 4.1: Polynomial Interpolation

Context: We consider a set of distinct data points
{(x;,¥))|i=0,...,n} that we wish to fit with a polynomial curve.

» For a set of n+ 1 points, we can fit a polynomial P,(x) of degree
at most n.

» We assume that the points are distinct in the sense that x; # x;
when j # j.

» We will have two formulations, a Lagrange formulation and a
Newton divided difference formulation.
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Lagrange Interpolation Formula

Suppose we have n + 1 distinct points (xo, o), (X1, ¥1), - - -, (Xn, ¥n). We
define the n+ 1 Lagrange interpolation basis functions Ly, Ly,..., L, by

(X = X0)(Xx = x1) -+ - (X = Xi_1)(X = Xi11) -~ (X — Xn)
(Xi = X0)(Xi — x1) - - - (Xi = Xi—1)(Xi — Xig1) - - (Xi — Xn)

n

Compactly: Li(x)= ][] <X_Xk>, i

X — X
k=0.kzi N 7K

0,...,n

Lagrange’s Formula The unique polynomial of degree < n passing
through these n + 1 points is

Pn(x) = yoLo(x) + y1L1(X) + - - - 4 ynLn(X).
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Newton Divided Differences

Definition: Let f be a function whose domain contains the two distinct
numbers xp and x;. We define the first-order divided difference of f(x)

by
f(x1) — f(x0)

flxo0, x1] = X1 — Xo

Notation: We’ll use the square brackets "[ ]” with commas between
the numbers to denote the divided difference.

ZC{"H" A\\l.‘élé J“G&‘“u I‘:D‘A‘ 'F(xo)
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Higher Order Divided Differences

Suppose we start with three distinct values xp, X1, Xo in our domain.
We can compute two first order divided differences

fx) = fx0) 4 f[X1,X2]:f(X2)_f(X1).

f[xo, X1] =
[X0, X4] X — X0 o Xi

Definition: The second-order divided difference of f(x) at the points
Xo, X1, and xo is

flx1, xo] — f[xo, X1]

f[x0, X1, X2] = Yo — Xo
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Higher Order Divided Differences

Let xg, X1, ..., Xp be distinct numbers in the domain of the function f.

Definition: The third-order divided difference of f(x) at the points
Xo, X1, X2, and x3 is

f[X17X27X3] B f[XO7X17X2]
X3 — Xp ’

flXo, X1, X2, X3] =

Definition: The n'-order divided difference of f(x) at the points
X0, - -+, Xn IS

f[X1,...,Xn] — f[Xo, -, Xn_1]
Xn — Xo .

flxo, ..., Xn] =
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Properties of Newton Divided Differences

Symmetry: Let {x;,x;,..., X} be any permutation (rearrangement)
of the numbers {xp, X1,...,Xn}. Then
X, Xiys - Xi,] = fX0, X1, ..., Xn].

(That is, the order of the x-values doesn’t affect the value of the
divided difference!)
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Properties of Newton Divided Differences
Relation to Derivatives:

Theorem: Suppose f is n times continuously differentiable on an
interval o < x < 3, and that xg, .. ., X, are distinct numbers in this
interval. Then

1
flX0, X1, .., Xn] = Ff(”)(c)

for some number ¢ between the smallest and the largest of the
numbers X, . .., Xp.

For example,
/ 1 /! 1 11
flxo, x1] = f(c), flxo0, x1,X2] = gf (c), flxo, Xy, X2, X3] = gf (c)

where in each case, ¢ is some number between the least and greatest
of the x; values.
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Interpolating Polynomial: Newton Divided Difference

Suppose we have n+ 1 distinct data points (xp, f(Xxp)),
(x1,f(x1)), - -, (Xn, F(Xn)).

Linear Interpolation: The linear interpolating polynomial through
(X0, f(x0)) and (x1, f(x1)) can be written as

P1(x) = f(x0) + (x — X0)f[x0, x1].
Quadratic Interpolation: The quadratic interpolating polynomial
through (xo, f(X0)), (X1, f(X1)), and (xz, f(x2)) can be written as

Pa(x) = f(x0) + (x — X0)f[x0, X1] + (X — x0)(Xx — X1)f[X0, X1, Xe]
= P1(x) + (x — x0)(x — x1)f[x0, X1, X2]
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Interpolating Polynomial: Newton Divided Difference

Higher degree polynomials are defined recursively

Cubic Interpolation: The cubic interpolating polynomial through
(X0, f(X0)), (X1, f(x1)), (x2, f(x2)), and (xs, f(x3)) can be written as

Ps(x) = f(x0) + (x — xo)f[x0. X1] + (X — Xo)(X — X1)f[X0, X1, Xo] +
+ (X = X0)(x — x1)(X — x2)f[X0, X1, X2, X3]

= Pa(x)+ (X = x0)(x — x1)(x — X2)f[x0, X1, Xe, X3]
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Interpolating Polynomial: Newton Divided Difference
Formula

k' Degree Interpolation: For k > 2, the polynomial of degree at most

k through the points (xg, f(xp)), - - - (Xk, f(Xk)) is

Pi(x) = Pi—1(x) + (X = Xo)(X = X1) - - (X = Xi—1)f[X0, - . -, Xi]
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Example

Consider the function f(x) = 1/(1 + x) and let x; = 0, x; = 1 and
Xo = 2.

(a) Compute the divided differences f[xg, x1] and f[xp, X1, Xz].

!
g(x.)-_ flor: m:\) Flxy= £(n: I‘~r\ > \E ) o3

-C(y ) * ‘F(Z) l‘fl :—'f

- A
g[xu)yj ‘F(‘) \c(‘ﬁ < l-.’: 3

-0 \
$Ix, Yol ﬁ(zz\'\‘c“) .3 ‘7 -
]. £lx, %] - F1x,%] _z- (%) L

X, X X
Pl Xe ~Xo
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Example Continued...

> -)
S ‘FfXO)w‘FB = E

AV\; —L—
‘F[XD)XIJX-”3 - Q
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Example Continued...

(b) Find the first and second degree interpolating polynomials P; and

P> using the Newton divided difference formula.

P £« (x=xe> £ 0¥,
-\ - -\ X + ‘l
Pz |+ (-0 (F)* 3

er ()= ?\ 6O + (X"XO (x=%) :F[.'X“' X\))(z-_)

\
Pro: gt ) + X1 (_C)
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Figure: The function f(x) = 1/(1 + x) together with interpolating polynomials
Py and Py using xo =0, xy =1, and x = 2.
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Figure: Error in the linear interpolation.
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Figure: Error in the quadratic interpolation.
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Figure: Comparison of errors when using P; versus P» to approximate f.
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Section 4.2: Error in Polynomial Interpolation

The last example suggests that a higher degree polynomial results in
less error. We'd like to characterize the error. It depends on the nature
of the data (both the x and y-values).

Recall that we are interpolating data (xo, o), - - -, (Xn, Yn)—a.k.a.

(X0, F(X0)), - - - , (Xn, f(xn))'—with the polynomial P, of degree at most n
given by

Pa(x) = f(x)Li(x).
j=0

We’'ll often call the numbers xj, ..., x, nodes.

Wik = f(xx)
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Theorem

Theorem: For n > 0, suppose f has n+ 1 continuous derivatives on
[a, b] and let xo, . . ., X, be distinct nodes in [a, b]. Then

f(n+1)(CX)
(n+1)!

where ¢y is some number between the smallest and largest values of
Xo, - .., Xp and Xx.

f(Xx) — Pn(x) = (x — x0)(X — X1) -+ - (X — Xpn)

Note what this says: It says that

f(n+1)(cx)

Err(Pn(x)) = (x = X0)(X — Xq) -+ (X — Xn)m

(The number ¢y isn’t known, but we can use this result to bound the
error.)
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Remark about the error formula

The error can be restated as

f(n+1)(CX)

Err(Pn(x)) = Wp(x) W

where W, is the n + 1 degree monic polynomial®

Wn(x) = (X — X0) - - (X — Xn) = x"*1 4 terms with smaller powers

The coefficients of those smaller powers depend on X, .. ., Xn.

The error depends on the y’s due to /(™1)(¢,), and on the x’s due
to W, (x).

2A monic polynomial is one whose leading coefficient is-1
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Example
Take f(x) = sin x on the interval [0, 7]. Let 0 < xp < x4 < 5 and
consider the linear interpolation P;(x). For xp < x < xy, show that

2

h
[f(x) — P1(x)| < 5 where h=x3 — X

[ s c \,..);..,l.en
'f(x)- P, L) = (x=xu) (x-X,) F_(L) For Somt

2! Xo)X, |, ane X
Fea=Siax
e Coux For o0¢ce¢ Th
y)= Co¢
£l = S | -sinc] € L
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Figure: The maximum value of (x — xp)(x; — X) occurs at the vertex 2.
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Example

Again take f(x) = sinx on the interval [0, 5]. Let0 < Xxp < x; < X2 < §

=3
and consider the quadratic interpolation P(x). For xg < x < X2, show
that

3
[f(x) — Pa(x)| < s where h=x4 —Xo = X2 — X4

V3
_\(_\'“(c Foe sema d
'\F(x) ?()()' (Y Xb)(x X, )(X‘Xh) . bv\'weev‘
Xo ow—é XL
.pm(y)‘— _ CoS'X
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R y = (t— h)t(t + h)
5 —k B
kb = e E

Figure: The maximum value of |(t + h)t(t — h)| occurs at i%.
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Example

Take f(x) = In(x + 4) on the interval [-1,1]. Let xo = —1, x;y =0,

x> = 1 and consider the quadratic interpolation P>(x). For -1 < x < 1,
show that

(%) = Pa(x)] < <227> (9%)

Newe  Xo X, Yo quals spaced .
Y ox- O-(nL et g, - 10+
e W=l
201y

> H)zb@\f 313
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