March 20 Math 2306 sec. 51 Spring 2023

Section 10: Variation of Parameters

Variation of Parameters

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$
\begin{gathered}
y=y_{c}+y_{p} \text { where } \\
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \text { and } y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
\end{gathered}
$$

Letting W denote the Wronskian of y_{1} and y_{2}, the functions u_{1} and u_{2} are given by the formulas

$$
u_{1}=\int \frac{-y_{2} g}{W} d x, \quad \text { and } \quad u_{2}=\int \frac{y_{1} g}{W} d x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=8 x^{2}, \quad y(1)=0, \quad y^{\prime}(1)=0
$$

The complementary solution of the ODE is $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$.
We put the ODE in standard form and found that $g(x)=8$. From the given y_{C}, we had $y_{1}=x^{2}, y_{2}=x^{-2}$, and we computed the Wronskian $W=-\frac{4}{x}$. We set up the integrals and got

$$
u_{1}=2 \ln (x) \quad \text { and } \quad u_{2}=-\frac{1}{2} x^{4}
$$

This gave us

$$
y_{p}=2 x^{2} \ln (x)-\frac{1}{2} x^{2}
$$

Now, we can finish the problem.

The genera solution $y=y c+y_{p}$

$$
y=c_{1} x^{2}+c_{2} x^{-2}+2 x^{2} \ln x-\frac{1}{2} x^{2}
$$

we can combine $C, x^{2}-\frac{1}{2} x^{2}$ and take

$$
y=k_{1} x^{2}+k_{2} \dot{x}^{2}+2 x^{2} \ln x
$$

This means we con take $y_{p}=2 x^{2} \ln x$

$$
\begin{aligned}
& y(1)=0, \quad y^{\prime}(1)=0 \\
& y=k_{1} x^{2}+k_{2} x^{-2}+2 x^{2} \ln x \\
& y^{\prime}=2 k_{1} x-2 k_{2} x^{-3}+4 x \ln x+2 x^{2}\left(\frac{1}{x}\right)
\end{aligned}
$$

$$
\begin{gathered}
y(1)=k_{1}\left(1^{2}\right)+k_{2}\left(1^{2}\right)+2\left(1^{2}\right) \ln 1=0 \\
k_{1}+k_{2}=0 \\
y^{\prime}(1)=2 k_{1}(1)-2 k_{2}\left(1^{-3}\right)+4(1) \ln 1+2(1)=0 \\
2 k_{1}-2 k_{2}=-2
\end{gathered}
$$

Solve

$$
\begin{aligned}
& k_{1}+k_{2}=0 \\
& k_{1}-k_{2}=-1
\end{aligned}
$$

add

$$
2 k_{1}=-1 \quad \Rightarrow \quad k_{1}=-\frac{1}{2}
$$

subtract

$$
2 k_{2}=1 \Rightarrow k_{2}=\frac{1}{2}
$$

The solution to the $I V P$ is

$$
y=\frac{-1}{2} x^{2}+\frac{1}{2} x^{-2}+2 x^{2} \ln x
$$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.
The solution $y=y c+y p$
Find y_{c} : y_{c} solves $y^{\prime \prime}+y=0$
Charact. eq $m^{2}+1=0$

$$
m^{2}=-1 \Rightarrow m= \pm \sqrt{-1}= \pm i
$$

Complese $w \mid \alpha=0, \beta=1$

$$
\begin{array}{r}
y_{1}=e^{0 x} \cos x, \quad y_{2}=e^{0 x} \sin x \\
y_{c}=c_{1} \cos x+c_{2} \sin x
\end{array}
$$

Le'll use Variation of parameters.

$$
\begin{gathered}
y_{1}=\cos x ; y_{2}=\sin x, g(x)=\tan x \\
w=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1 \\
y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
u_{1}=\int \frac{-g y_{2}}{w} d x=-\int \tan x \sin x d x \\
=-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{1-\cos ^{2} x}{\cos x} d x \\
=\int \cos x-\sec x d x=\sin x-\ln |\sec x+\tan x|
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
u_{2}=\int \frac{g y_{1}}{w} d x=\int \tan x \cos x d x=\int \sin x d x \\
=-\cos x \\
y_{1}=\cos x, \quad y_{2}=\sin x \\
y_{p}=(\sin x-\ln |\sec x+\tan x|) \cos x+(-\cos x) \sin x \\
y_{p}=-\cos x \ln |\sec x+\tan x|
\end{array}
\end{aligned}
$$

The geverd solution

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

