March 20 Math 2306 sec. 51 Spring 2023 Section 10: Variation of Parameters

Variation of Parameters

$$y'' + P(x)y' + Q(x)y = g(x)$$

If $\{y_1, y_2\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$y = y_c + y_p$$
 where

 $y_c = c_1 y_1(x) + c_2 y_2(x)$, and $y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$.

Letting *W* denote the Wronskian of y_1 and y_2 , the functions u_1 and u_2 are given by the formulas

$$u_1 = \int \frac{-y_2g}{W} dx$$
, and $u_2 = \int \frac{y_1g}{W} dx$.

Solve the IVP

$$x^{2}y'' + xy' - 4y = 8x^{2}, \quad y(1) = 0, \quad y'(1) = 0$$

The complementary solution of the ODE is $y_c = c_1 x^2 + c_2 x^{-2}$.

We put the ODE in standard form and found that g(x) = 8. From the given y_c , we had $y_1 = x^2$, $y_2 = x^{-2}$, and we computed the Wronskian $W = -\frac{4}{x}$. We set up the integrals and got

$$u_1 = 2\ln(x)$$
 and $u_2 = -\frac{1}{2}x^4$.

This gave us

$$y_p = 2x^2 \ln(x) - \frac{1}{2}x^2.$$

Now, we can finish the problem.

The general solution y= yct yp y= c, x2 + c2 x2 + 2x2 lnx - = x2 we can combine Cix² - t x² and take y= k, X² + k2 X² + 2x² lnx This means we can take yo= 2x2lmx $y(1) = 0, \quad y'(1) = 0$ y= k, x2 + k2x2 + 2x2 Jnx $y' = 2k_1 \times - 2k_2 \times^3 + 4 \times \ln \times + 2x^2 (\frac{1}{x})$ March 17, 2023 3/13

 $\lambda(1) = k'(1_{5}) + k^{5}(1_{5}) + S(1_{5}) \eta T = 0$ $k' + r^{5} = 0$

 $y'(1) = 2k_1(1) - 2k_2(1^{-3}) + Y(1) ln 1 + 2(1) = 0$

 $Zk_1 - Zk_2 = -2$

Solve $k_1 + k_2 = 0$ $k_1 - k_2 = -1$ add $Zk_1 = -1 \implies k_1 = -\frac{1}{2}$ subtract $2k_2 = 1 \implies k_2 = \frac{1}{2}$

March 17, 2023 4/13

The solution to the IVP is y= = = x2+ = x2+ = 2x2 Jub

< □ → < □ → < 重 → < 重 → 重 の Q @ March 17, 2023 5/13

Example: Solve the ODE $y'' + y = \tan x$.

The solution
$$y=y_{c}+y_{p}$$

Find y_{c} : y_{c} solves $y''+y=0$
Charact. eqn $m^{2}+1=0$
 $m^{2}=-1 \implies m=\pm J-1=\pm i$
Gampless $w| q=0, g=1$
 $y_{i}=e^{x}Cosx, y_{2}=e^{x}Smx$
 $y_{c}=C_{i}Cosx+C_{2}Sinx$

March 17, 2023 8/13

Let II use Variation of parameters.

$$y_1 = cos x$$
, $y_2 = Sin x$, $g(x) = tan x$
 $W = \begin{vmatrix} cos x & Sin x \\ -Sin x & Gs x \end{vmatrix} = cos^2 x + Sin^2 x = 1$

$$u_{1} = \int -\frac{9y_{2}}{W} dx = -\int t_{2m} x \sin x dx$$

$$= -\int \frac{\sin^{2}x}{\cos x} dx = -\int \frac{1 - Gx^{2}x}{\cos x} dx$$

$$= \int Cocx - Secx dx = Sinx - Ju | Secx + t_{2m} x |$$

$$= \int Cocx - Secx dx = Sinx - Ju | Secx + t_{2m} x |$$

March 17, 2023 9/13

$$u_{ze} \int \frac{9y_{1}}{w} dx = \int \tan x \ Gxx \ dx = \int \sin x \ dx$$

$$= -Gxx$$

$$y_{1} = Gosx, \quad y_{2} = \sin x$$

$$y_{p} = (S.nx - Du|Secx + tax) \int Cosx + (-Gosx) Sinx$$

$$y_{p} = -Gosx \ Du|Secx + tanx)$$

$$The general solution$$

$$y_{1} = C_{1}Gsx + C_{2}Sinx - Gosx \ Du|Secx + tanx|$$

$$u_{1} = C_{1}Gsx + C_{2}Sinx - Gosx \ Du|Secx + tanx|$$

$$u_{1} = C_{1}Gsx + C_{2}Sinx - Gosx \ Du|Secx + tanx|$$