March 20 Math 3260 sec. 51 Spring 2024

Section 4.2: Null & Column Spaces, Row Space, Linear Transformations

In this section, we'll consider some subspaces (of \mathbb{R}^n or \mathbb{R}^m) associated with a matrix, and extend the notion of a linear transformation to functions between arbitrary vector spaces.

Definition

Definition: Let A be an $m \times n$ matrix. The **null space** of A, denoted by Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\mathsf{Nul}\, A = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

Express Nul(A) in terms of a spanning set, where $A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 7 \end{bmatrix}$.

(Note: a spanning set for Nul(A) is called an *explicit description* of it.)

we need to characterize the
$$\vec{x}$$
 vectors in \mathbb{R}^3 such that $A\vec{x}=\vec{0}$. Using a augmented matrix

$$\begin{bmatrix} A \overrightarrow{O} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 1 & 2 & 7 & 0 \end{bmatrix} \xrightarrow{\text{ret}} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}.$$

If
$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 then $\begin{cases} x_1 = -3x_3 \\ x_2 = -2x_3 \\ x_3 \text{ is from } \end{cases}$

$$\vec{X} = \begin{bmatrix} -3 \times 3 \\ -3 \times 3 \end{bmatrix} = \chi_3 \begin{bmatrix} -3 \\ -3 \end{bmatrix} -$$

Nul
$$(A) = Span \left\{ \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix} \right\}$$

The Null Space as a Subspace

Theorem:

If A is an $m \times n$ matrix, then Nul(A) is a subspace of \mathbb{R}^n .

Ax is only defined if \$ is in TR". Nul(A) is a spon, hence a subspace. or refer to worksheet 11.

Column Space

Definition:

The **column space** of an $m \times n$ matrix A, denoted Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}.$$

Theorem:

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Corollary

Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .

Find a matrix A such that W = Col A where

$$W = \left\{ \left[egin{array}{c} 6a - b \ a + b \ -7a \end{array}
ight] \quad \left| \begin{array}{c} a, b \in \mathbb{R} \end{array}
ight\}.$$

Take any element of Wand write it as a linear ambination of vectors and then as a matix times a vector.

$$\begin{bmatrix}
6a - b \\
a + b \\
-7a
\end{bmatrix} =
\begin{bmatrix}
6a \\
a \\
-7a
\end{bmatrix} +
\begin{bmatrix}
-b \\
b \\
0
\end{bmatrix}$$

$$= a \begin{bmatrix} 6 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 6 \\ -7 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$
Letting $A = \begin{bmatrix} 6 \\ -7 \end{bmatrix}$

$$W = Col(A)$$

Row Space

Definition:

The **row space**, denoted Row A, of an $m \times n$ matrix A is the subspace of \mathbb{R}^n spanned by the rows of A.

Theorem

If two matrices *A* and *B* are row equivalent, then their row spaces are the same.

Find two spanning sets for Row(A) given

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix} \qquad \xrightarrow{\text{rref}} \qquad \begin{bmatrix} 1 & 0 & 9 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A and its cref are now equivalent, so they have the same now space. Two spanning sets are the rows of each matrix,

$$Row(A) = Spon \left\{ \begin{bmatrix} z \\ 4 \\ -z \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ -5 \\ 7 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \\ -8 \\ 6 \end{bmatrix} \right\} = Spon \left\{ \begin{bmatrix} 1 \\ 0 \\ 9 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -5 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

Comparing Col(A) and Nul(A)

$$A = \left[\begin{array}{rrrr} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{array} \right]$$

(a) If Col A is a subspace of \mathbb{R}^k , what is k?

(b) If Nul A is a subspace of \mathbb{R}^k , what is k?

March 20, 2024 10/21

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

(c) Is **u** in Nul A? Could **u** be in Col A?

$$\ddot{u}$$
 is in Nul(A) if $A\ddot{u}=\ddot{0}$.

 $A\ddot{u}=\begin{bmatrix}0\\-3\\3\end{bmatrix}\neq\ddot{0}$ \ddot{u} is not in Nul(A).

 \ddot{u} is in R^{α} , it can't be in col(A) which is a subspace of R^{3} .

March 20, 2024 11/21

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(d) Is v in Col A? Could v be in Nul A?

$$\vec{V}$$
 is in Col(A) if $A\vec{X} = \vec{U}$ is consistent: We can use an augmented matrix $[A\vec{V}]$.

March 20, 2024 12/21

Fundamental Subspaces

People often refer to four fundamental subspaces associated with an $m \times n$ matrix. The fourth one is the null space of A^T .

Remark: Since the rows of A are the columns of A^T and vice versa, it's not surprising that

$$Col(A) = Row(A^T)$$
 and $Row(A) = Col(A^T)$.

Remark: We can summarize that for $m \times n$ matrix A

Col(A) and $Nul(A^T)$ are subspaces of \mathbb{R}^m ,

and

Row(A) and Nul(A) are subspaces of \mathbb{R}^n .

Linear Transformation

Definition:

Let V and W be vector spaces. A linear transformation $T:V\to W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in V, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Remark: The only difference between this definition and our previous one is that the domain and codomain spaces can be any vector spaces.

Let $C^1(\mathbb{R})$ denote¹ the set of all real valued functions that are differentiable and $C^0(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

satisfies the two conditions in the previous definition.

We know from calculus that if f and g are differentiable and c is a scalar, then

$$\frac{d}{dx}(f(x)+g(x))=f'(x)+g'(x)$$
 and $\frac{d}{dx}(cf(x))=cf'(x)$.

Using the current notation, we can write these statements like

$$D(f+g) = D(f) + D(g)$$
 and $D(cf) = cD(f)$.

¹This could also be written as $C^1(-\infty,\infty)$.

Consider the derivative transformation on $C^1(\mathbb{R})$

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$$
$$f \mapsto f'$$

Characterize the subset of $C^1(\mathbb{R})$ such that D(f) = 0.

These are the constant functions
$$f(x) = C \quad \text{for all } x$$
where C is any constant.

Note: The zero vector in $C^{\circ}(IR)$ is the function $f_{\circ}(x) = 0$ for all real x.

Range and Kernel

Definition:

The **range** of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

A column space is a **range**.

Definition:

The **kernel** of a linear transformation $T: V \longrightarrow W$ is the set of all vectors **x** in V such that $T(\mathbf{x}) = \mathbf{0}$. (The analog of the null space of a matrix.)

A null space is a kernel.

Range & Kernel as Subspaces

Theorem:

Given a linear transformation $T: V \longrightarrow W$,

- ightharpoonup the range of T is a subspace of W,
- and the kernel of T is a subspace of V.

Remark: This generalizes the result for column and null spaces. If $T: \mathbb{R}^n \to \mathbb{R}^m$, $T(\mathbf{x}) = A\mathbf{x}$. Then Col(A) is the range of T and is a subspace of \mathbb{R}^m . And Nul(A) is the kernel of T and is a subspace of \mathbb{R}^n .

Consider $T:C^1(\mathbb{R})\longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x)$$
, α a fixed constant.

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

The karnel contains all functions
$$y$$
 in $C'(\mathbb{R})$ such that $T(y) = 0$.

If y is in the kernel of T , then
$$\frac{dy}{dx} + dy = 0$$

$$T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad T(f) = \frac{df}{dx} + \alpha f(x)$$

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

To be in the kornel, y has to satisfy
$$\frac{dy}{dx} + \alpha y = 0$$
.

If $y = ce^{-\alpha x}$, then $\frac{dy}{dx} = ce^{-\alpha x}$

$$= -\alpha ce^{-\alpha x}$$

Hence y= ceax is in the karnel.