March 20 Math 3260 sec. 52 Spring 2024

Section 4.2: Null \& Column Spaces, Row Space, Linear Transformations

In this section, we'll consider some subspaces (of \mathbb{R}^{n} or \mathbb{R}^{m}) associated with a matrix, and extend the notion of a linear transformation to functions between arbitrary vector spaces.

Definition

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

Example
Express $\operatorname{Nul}(A)$ in terms of a spanning set, where $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 1 & 2 & 7\end{array}\right]$.
(Note: a spanning set for $\operatorname{Nul}(A)$ is called an explicit description of it.)
Nub (A) is the sot of all vectors \vec{x} in \mathbb{R}^{3} such that $A \vec{x}=\vec{O}$. We con use an augmented matrix $\left[\begin{array}{ll}A & \vec{O}\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 2 & 7 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right]} \\
& \text { If } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text {, then } \quad \begin{array}{l}
x_{1}=-3 x_{3} \\
x_{2}=-2 x_{3} \\
x_{3} \text { is free }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x}= & {\left[\begin{array}{c}
-3 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
-3 \\
-2 \\
1
\end{array}\right] . } \\
& \text { So } \operatorname{Nel}(A)=\operatorname{Spon}\left\{\left[\begin{array}{r}
-3 \\
-2 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

The Null Space as a Subspace
Theorem:
If A is an $m \times n$ matrix, then $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{n}.
\vec{x} must be in \mathbb{R}^{n} for $A \vec{x}$ to be defined.

Nub (A) is a span, hence a subspace.
or refer to worksheet 11 .

Column Space

Definition:

The column space of an $m \times n$ matrix A, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If $A=$ $\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} .
$$

Theorem:

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.

Corollary

$\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.

Example
Find a matrix A such that $W=\operatorname{Col} A$ where

$$
W=\left\{\left.\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Lie con characterize on element of W as a linear combo of fixed vectors and then as a product $A \vec{x}$. Consider any vector from W.

$$
\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right]=\left[\begin{array}{c}
6 a \\
a \\
-7 a
\end{array}\right]+\left[\begin{array}{c}
-b \\
b \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& =a\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

Letting $A=\left[\begin{array}{cc}6 & -1 \\ 1 & 1 \\ -7 & 0\end{array}\right]$,

$$
\omega=\operatorname{col}(A) .
$$

Row Space

Definition:

The row space, denoted Row A, of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by the rows of A.

Theorem

If two matrices A and B are row equivalent, then their row spaces are the same.

Example
Find two spanning sets for $\operatorname{Row}(A)$ given

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right] \quad \xrightarrow{\text { ref }}\left[\begin{array}{rrrr}
1 & 0 & 9 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

By the last theorem, both matrices how the same row space (sing A is cow equivalent to its reef).

$$
\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
2 \\
4 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
-5 \\
7 \\
3
\end{array}\right],\left[\begin{array}{c}
3 \\
7 \\
-8 \\
6
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
9 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-5 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

Comparing $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right]
$$

(a) If $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k}, what is k ?

$$
\operatorname{Col}(A)=\operatorname{Spon}\{\text { columns of } A\} . \quad k=3
$$

(b) If $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k}, what is k ?
we need $A \vec{x}$ to be defined. $k=4$.

Example Continued...

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

(c) Is \mathbf{u} in Nul A ? Could \mathbf{u} be in $\operatorname{Col} A$?
\vec{u} is in Nue (A) if $A \vec{u}=\overrightarrow{0}$.

$$
A \vec{u}=\left[\begin{array}{c}
0 \\
-3 \\
3 .
\end{array}\right] \neq \overrightarrow{0} \Rightarrow \vec{u} \text { is not in Nue (A). }
$$

\vec{u}_{u} is in \mathbb{R}^{u} whereas $\operatorname{Col}(A)$ is a subspacu of \mathbb{R}^{3}. \vec{u} can't be in $\operatorname{Col}(A)$.

Example Continued...

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right]
$$

(d) Is \mathbf{v} in $\mathrm{Col} A$? Could \mathbf{v} be in Vul A ?
$A \vec{v}$ isnit defined, so \vec{v} cont be in Nul(A). \vec{V} is in Col(A) if $\quad A \vec{X}=\vec{V}$ is consistent.
we car use an aingmonted matrix.

$$
\left[\begin{array}{ll}
A & \vec{v}
\end{array}\right]=\left[\begin{array}{ccccc}
2 & 4 & -2 & 1 & 3 \\
-2 & -5 & 7 & 3 & -1 \\
3 & 7 & -8 & 6 & 3
\end{array}\right] \xrightarrow{\text { ref }}
$$

$A \vec{x}=\vec{V}$ is consistent. Hence \vec{v} is in $\operatorname{Col}(A)$.

Fundamental Subspaces

People often refer to four fundamental subspaces associated with an $m \times n$ matrix. The fourth one is the null space of A^{T}.

Remark: Since the rows of A are the columns of A^{T} and vice versa, it's not surprising that

$$
\operatorname{Col}(A)=\operatorname{Row}\left(A^{T}\right) \quad \text { and } \quad \operatorname{Row}(A)=\operatorname{Col}\left(A^{T}\right)
$$

Remark: We can summarize that for $m \times n$ matrix A
$\operatorname{Col}(A)$ and $\operatorname{Nul}\left(A^{T}\right)$ are subspaces of \mathbb{R}^{m},
and
$\operatorname{Row}(A)$ and $\operatorname{Nul}(A)$ are subspaces of \mathbb{R}^{n}.

Linear Transformation

Definition:

Let V and W be vector spaces. A linear transformation
$T: V \rightarrow W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in V, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Remark: The only difference between this definition and our previous one is that the domain and codomain spaces can be any vector spaces.

Example

Let $C^{1}(\mathbb{R})$ denote ${ }^{1}$ the set of all real valued functions that are differentiable and $C^{0}(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$
D: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}), \quad D(f)=f^{\prime}
$$

satisfies the two conditions in the previous definition.
We know from calculus that if f and g are differentiable and c is a scalar, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) \quad \text { and } \quad \frac{d}{d x}(c f(x))=c f^{\prime}(x) .
$$

Using the current notation, we can write these statements like

$$
D(f+g)=D(f)+D(g) \quad \text { and } \quad D(c f)=c D(f) .
$$

${ }^{1}$ This could also be written as $C^{1}(-\infty, \infty)$.

Example

Consider the derivative transformation on $C^{1}(\mathbb{R})$

$$
\begin{gathered}
D: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}) \\
f \mapsto f^{\prime}
\end{gathered}
$$

Characterize the subset of $C^{1}(\mathbb{R})$ such that $D(f)=0$.

$$
\begin{aligned}
& \text { This is the set of constant functions } \\
& \text { on } \mathbb{R} . f(x)=C \text { for all } x \text { when } \\
& C \text { is sone constant. }
\end{aligned}
$$

Note: The zero vector in $C^{0}(I R)$ is the function $f_{0}(x)=0$ for all real x.

Range and Kernel

Definition:

The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

A column space is a range.

Definition:

The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors \mathbf{x} in V such that $T(\mathbf{x})=\mathbf{0}$. (The analog of the null space of a matrix.)

A null space is a kernel.

Range \& Kernel as Subspaces

Theorem:

Given a linear transformation $T: V \longrightarrow W$,

- the range of T is a subspace of W,
- and the kernel of T is a subspace of V.

Remark: This generalizes the result for column and null spaces. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T(\mathbf{x})=A \mathbf{x}$. Then $\operatorname{Col}(A)$ is the range of T and is a subspace of \mathbb{R}^{m}. And $\operatorname{Nul}(A)$ is the kernel of T and is a subspace of \mathbb{R}^{n}.

Example

Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

$$
\begin{aligned}
& y \text { is in the kerne if } T(y)=0 . \\
& F(y)=\frac{d y}{d x}+\alpha y \\
& y \text { is in the kernel of } T \text { if } \\
& \frac{d y}{d x}+\alpha y=0
\end{aligned}
$$

$$
T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}), . \quad T(f)=\frac{d f}{d x}+\alpha f(x)
$$

(b) Show that for any scalar $c, y=c e^{-\alpha x}$ is in the kernel of T.

To be in the kernel, we need $\frac{d y}{d x}+\alpha y=0$.
If $y=c e^{-\alpha x}$, then $\frac{d y}{d x}=c e^{-\alpha x}(-\alpha)$

$$
=-\alpha c e^{-\alpha x}
$$

$$
\frac{d y}{d x}+\alpha y=-\alpha c e^{-\alpha x}+\alpha\left(c e^{-\alpha x}\right)=0
$$

so $y=c e^{-\alpha x}$ is in the Ke.snel of T.

