March 21 Math 3260 sec. 52 Spring 2022

Section 4.1: Vector Spaces and Subspaces

Recall that we had defined \mathbb{R}^n as the set of all *n*-tuples of real numbers. We defined two operations, vector addition and scalar multiplication, and said that the following algebraic properties hold:

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and *d*

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(iii)
$$\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$$
 (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$

 $(iv)^1$ u + (-u) = -u + u = 0 (viii) 1u = u

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

March 18, 2022 1/19

Definition: Vector Space

A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms: For all \mathbf{u}, \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

- 1. The sum $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
- $2. \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$.

10. 1**u** = **u**

Remarks

- V is more accurately called a *real vector space* when we assume that the relevant scalars are the real numbers.
- Property 1. is that V is closed under (a.k.a. with respect to) vector addition.
- Property 6. is that V is closed under scalar multiplication.
- A vector space has the same basic *structure* as \mathbb{R}^n
- These are axioms. We assume (not "prove") that they hold for vector space V. However, they can be used to prove or disprove that a given set (with operations) is actually a vector space.

Examples of Vector Spaces

For an integer $n \ge 0$, \mathbb{P}_n denotes the set of all polynomials with real coefficients of degree at most *n*. That is

$$\mathbb{P}_n = \{\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \dots + \mathbf{p}_n t^n \mid \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{R}\},\$$

where addition² and scalar multiplication are defined by

$$(\mathbf{p}+\mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t) = (p_0 + q_0) + (p_1 + q_1)t + \dots + (p_n + q_n)t^n$$

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + \cdots + cp_nt^n.$$

 ${}^{2}\mathbf{q}(t) = q_0 + q_1t + \cdots + q_nt^n$

March 18, 2022 4/19

Example

What is the zero vector **0** in \mathbb{P}_n ? Let $\mathbf{0}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$. Find the values of a_0, \dots, a_n . We know that for any vector p in IPm, 0+ P = P . $(\bar{0}+\bar{p})(t) = \bar{0}(t) + \bar{p}(t)$ = $(a_0+p_0) + (a_1+p_1) t + (a_2+p_2)t^2 + \dots + (a_n+p_n)t^n$ = po + pit + pit + ... + pnt * (Call Rice hans $\Rightarrow \quad a_{0} + p_{0} = p_{0} \Rightarrow \quad a_{0} = 0$ $a_1 + p_1 = p_1 \Rightarrow a_1 = 0$ March 18, 2022 5/19 $interpreter = 0 \implies a_n = 0$ That is $a_i = 0$ for all $i = 0, \dots, n$. $\vec{O}(t) = 0 + 0t + 0t^2 + \dots + 0t^n = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

If $\mathbf{p}(t) = p_0 + p_1 t + \dots + p_n t^n$, what is the vector $-\mathbf{p}$? Let $-\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n$. Find the values of c_0, \dots, c_n .

We know that $(-\vec{p}+\vec{p})(t)=\vec{O}(t)$ (-p+p)(E) = -p(E)+p(E) = (G+Po)+ (C,+P,)t+ (C+P)t2+...+ (C+PAIt $= 0 + 6t + 6t^{2} + ... + 6t^{2}$ $C_0 + P_0 = 0 \implies C_0 = -P_0$ $C_1 + P_1 = 0 \implies C_1 = -P_1$ <ロ> <同> <同> <同> <同> <同> <同> <同> <同> < March 18, 2022 7/19

 $C_n + p_n = 0 \Rightarrow C_n = -p_n$

 $\Rightarrow -\vec{p}(t) = -p_0 - p_1 t - p_1 t^2 - \dots - p_n t^n$

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(1) Does property 1. note for
$$V$$
?
Let $\vec{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ and $\vec{V} = \begin{bmatrix} a \\ b \end{bmatrix}$ be in V .
So $X, y, a, b \leq 0$.
 $\vec{u} + \vec{v} = \begin{bmatrix} x + a \\ y + b \end{bmatrix}$.
 $\vec{u} + \vec{v} = \begin{bmatrix} x + a \\ y + b \end{bmatrix}$.
 $\vec{u} + \vec{v}$ is in V .
 V is Closed under vector
addition.

March 18, 2022 9/19

A set that is not a Vector Space Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, | x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 . Note *V* is the third quadrant in the *xy*-plane.

(2) Does property 6. hold for V?

Consider $u = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. This is in V. Consider CT for c = -1 $Ch = -1h = -1\left(-1\right) = \left(-1\right) \cdot hich is not in V.$ V is not closed under scalar multiplication. V is not a vector space. March 18, 2022 10/19

Let *V* be a vector space. For each **u** in *V* and scalar *c*

$$0\mathbf{u} = \mathbf{0}$$
$$c\mathbf{0} = \mathbf{0}$$
$$-1\mathbf{u} = -\mathbf{u}$$

< □ → < □ → < 三 → < 三 → 三 の へ () March 18, 2022 11/19

Definition: A **subspace** of a vector space V is a subset H of V for which

- a) The zero vector is $in^3 H$
- b) *H* is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in *H* implies $\mathbf{u} + \mathbf{v}$ is in *H*)
- c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

³This is sometimes replaced with the condition that *H* is nonempty.

Example

Determine which of the following is a subspace of \mathbb{R}^2 .

(a) The set of all vectors of the form $\mathbf{u} = (u_1, 0)$.

Let's call this subset H. H = {(u, u) in TR² | u₂ = 0} We have to determine if O O is in H O H is closed under vector addition, and O H is closed under scaler multiplication.

Is 0= (0,0) in H? Yes, its second component

is zero

Let $\vec{u} = (u_1, o) \rightarrow \vec{v} = (v_1, o)$ be in \vec{H} .

 $\vec{u} + \vec{v} = (u_1 + v_1, 0 + 0) = (u_1 + v_2, 0).$ This has 2nd component zero, so util is in H. H is closed under vector addition. het c be any scalar, and consider $C\hat{u} = C(u_{1,0}) = (Cu_{1,0}) = (Cu_{1,0}).$ This has 2nd component zero, honce it is in H. His closed under scalor multiplication. H has all three properties. It is a Subspace of R². * H is the x-axis in R2. (D> (B) (E) (E) E DOG

Example continued

(b) The set of all vectors of the form $\mathbf{u} = (u_1, 1)$.

Let's call this
$$G_{1}$$
,
 $G = \{(u_{1}, u_{2}) \in \mathbb{R}^{2} \mid u_{2} = 1\}$.

ls Õ in G? No, hence G is not a subspace of R².

G doesn't satisfy the other properties either.

March 18, 2022 15/19