March 21 Math 3260 sec. 52 Spring 2022

Section 4.1: Vector Spaces and Subspaces

Recall that we had defined \mathbb{R}^{n} as the set of all n-tuples of real numbers. We defined two operations, vector addition and scalar multiplication, and said that the following algebraic properties hold:

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $)^{1} \mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} \quad$ (viii) $\quad \mathbf{u}=\mathbf{u}$
${ }^{1}$ The term $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $\mathbf{1 u}=\mathbf{u}$

Remarks

- V is more accurately called a real vector space when we assume that the relevant scalars are the real numbers.
- Property 1 . is that V is closed under (a.k.a. with respect to) vector addition.
- Property 6. is that V is closed under scalar multiplication.
- A vector space has the same basic structure as \mathbb{R}^{n}
- These are axioms. We assume (not "prove") that they hold for vector space V. However, they can be used to prove or disprove that a given set (with operations) is actually a vector space.

Examples of Vector Spaces

For an integer $n \geq 0, \mathbb{P}_{n}$ denotes the set of all polynomials with real coefficients of degree at most n. That is

$$
\mathbb{P}_{n}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \mid p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}\right\}
$$

where addition ${ }^{2}$ and scalar multiplication are defined by

$$
\begin{gathered}
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\cdots+\left(p_{n}+q_{n}\right) t^{n} \\
(c \mathbf{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+\cdots+c p_{n} t^{n}
\end{gathered}
$$

$$
{ }^{2} \mathbf{q}(t)=q_{0}+q_{1} t+\cdots+q_{n} t^{n}
$$

Example

What is the zero vector $\mathbf{0}$ in \mathbb{P}_{n} ?
Let $\mathbf{0}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}$. Find the values of a_{0}, \ldots, a_{n}.
We know that for any vector \vec{p} in \mathbb{P}_{n},

$$
\begin{aligned}
& \vec{O}+\vec{p}=\vec{p} \text {. } \\
& (\overrightarrow{0}+\vec{p})(t)=\overrightarrow{0}(t)+\vec{p}(t) \\
& =\left(a_{0}+p_{0}\right)+\left(a_{1}+p_{1}\right) t+\left(a_{2}+p_{2}\right) t^{2}+\ldots+\left(a_{n}+p_{n}\right) t^{n} \\
& =p_{0}+p_{1} t+p_{2} t^{2}+\cdots+p_{n} t^{n} \\
& \Rightarrow a_{0}+p_{0}=p_{0} \Rightarrow a_{0}=0 \\
& a_{1}+p_{1}=p_{1} \Rightarrow a_{1}=0
\end{aligned}
$$

$$
a_{n}+p_{n}=0 \Rightarrow a_{n}=0
$$

That is $a_{i}=0$ for al $i=0, \ldots, n$.

$$
\vec{O}(t)=0+O t+0 t^{2}+\cdots+0 t^{n}=0
$$

Example

If $\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n}$, what is the vector $-\mathbf{p}$?
Let $-\mathbf{p}(t)=c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n} t^{n}$. Find the values of c_{0}, \ldots, c_{n}.
We know that $(-\vec{p}+\vec{p})(t)=\vec{O}(t)$

$$
\begin{aligned}
(-\vec{p}+\vec{p})(t) & =-\vec{p}(t)+\vec{p}(t) \\
& =\left(c_{0}+p_{0}\right)+\left(c_{1}+p_{1}\right) t+\left(c_{2}+p_{2}\right) t^{2}+\ldots+\left(c_{n}+p_{n} \mid t^{n}\right. \\
& =0+0 t+O t^{2}+\cdots+O t^{n} \\
C_{0}+p_{0} & =0 \Rightarrow c_{0}=-p_{0} \\
C_{1}+p_{1} & =0 \Rightarrow c_{1}=-p_{1} \\
& :
\end{aligned}
$$

$$
\begin{aligned}
& c_{n}+p_{n}=0 \Rightarrow c_{n}=-p_{n} \\
& \Rightarrow-\vec{p}(t)=-p_{0}-p_{1} t-p_{2} t^{2}-\ldots-p_{n} t^{n}
\end{aligned}
$$

A set that is not a Vector Space
Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(1) Does property 1. hold for V ?

Let $\vec{u}=\left[\begin{array}{l}x \\ b\end{array}\right]$ and $\vec{V}=\left[\begin{array}{l}a \\ b\end{array}\right]$ be in V.

So $x, y, a, b \leq 0$.

$$
\vec{u}+\vec{v}=\left[\begin{array}{l}
x+a \\
y+b
\end{array}\right] . \quad x+a \leq 0 \text { and } y+b \leq 0 \quad \text { so }
$$

$\vec{u}+\vec{v}$ is in V.
V is Closed under vector addition.

A set that is not a Vector Space
Let $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], \mid x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}. Note V is the third quadrant in the $x y$-plane.
(2) Does property 6 . hold for V ?

Consider $\vec{u}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. This is in V.
consider $c \vec{u}$ for $c=-1$
$c \vec{h}=-1 \vec{u}=-1\left[\begin{array}{l}-1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. which is not in V.
V is not closed under scalar multiplication.
V is not a vector space.
March 18, $2022 \quad 10 / 19$

Theorem

Let V be a vector space. For each \mathbf{u} in V and scalar c

$$
\begin{aligned}
0 \mathbf{u} & =0 \\
c \mathbf{0} & =\mathbf{0} \\
-1 \mathbf{u} & =-\mathbf{u}
\end{aligned}
$$

Subspaces

Definition: A subspace of a vector space V is a subset H of V for which
a) The zero vector is $\mathrm{in}^{3} \mathrm{H}$
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies $c \mathbf{u}$ is in H)
${ }^{3}$ This is sometimes replaced with the condition that H is nonempty.

Example
Determine which of the following is a subspace of \mathbb{R}^{2}.
(a) The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 0\right)$.

Let's call this subset $H . H=\left\{\left(u, u_{2}\right)\right.$ in $\left.\mathbb{R}^{2} \backslash u_{2}=0\right\}$
we have to determine if
(2) \vec{O} is in H
(2) H is closed undo vector addition, and
(3) H is closed under scalar multiplication

Is $\overrightarrow{0}=(0,0)$ in $H ?$. Yes, its second component is zero.
Let $\vec{u}=(u, 0)$ and $\vec{v}=\left(v_{1}, 0\right)$ be in H.

$$
\vec{u}+\vec{v}=\left(u_{1}+v_{1}, 0+0\right)=\left(u_{1}+v_{1}, 0\right) .
$$

This has $2^{\text {nd }}$ component zero, so $\vec{u}+\vec{v}$ is in H. W is closed under vector addition.
Let c be any scalar, and consider

$$
c \vec{u}=c\left(u_{1}, 0\right)=\left(c u_{1}, c \cdot 0\right)=\left(c u_{1}, 0\right) .
$$

This has $2^{\text {nd }}$ component zero. hence it is in H. H is closed undo scalos mutiplic at ion
A has all three properties. It is a Subspace of \mathbb{R}^{2}.

* H is the x-axis in \mathbb{R}^{2} and

Example continued
(b) The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 1\right)$.

Let's call this G,

$$
G=\left\{\left(u_{1}, u_{2}\right) \text { in } \mathbb{R}^{2} \mid u_{2}=1\right\} .
$$

Is \vec{O} in G ? No, hence G is not a subspace of \mathbb{R}^{2}.
G doesit satisfy the other propaties either.

