March 22 Math 2306 sec. 51 Spring 2023

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in **free**, **undamped motion**–a.k.a. **simple harmonic motion**.

▶ Harmonic Motion gif

March 20, 2023

1/41

Building an Equation: Hooke's Law

At equilibrium, displacement x(t) = 0.

Hooke's Law: $F_{spring} = k x$

Figure: In the absence of any displacement, the system is at equilibrium. Displacement x(t) is measured from equilibrium x = 0.

Building an Equation: Hooke's Law

Newton's Second Law: F = ma (mass times acceleration)

$$a = \frac{d^2 x}{dt^2} \implies F = m \frac{d^2 x}{dt^2}$$

Hooke's Law: F = kx (proportional to displacement)

$$mx'' = -kx \implies mx'' + kx = 0$$

In standard form $x'' + w^2 x = 0$
where $w^2 = \frac{k}{m}$
and order, linear, homogeneous, constant
coef. GDE.

March 20, 2023 3/41

Displacment in Equilibrium

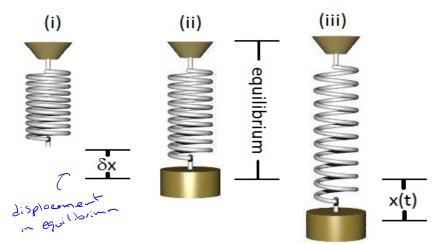


Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$W = k \delta x.$$

The units for *k* in this system of measure are lb/ft.

$$W = k\delta x \Rightarrow k = \frac{W}{\delta x} + \frac{1}{2}$$

イロト 不得 トイヨト イヨト 二日

Obtaining the Mass (US Customary Units)

Note also that Weight = mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$W = mg.$$

We typically take the approximation g = 32 ft/sec². The units for mass are lb sec²/ft which are called slugs.

イロト イポト イヨト イヨト 一日

March 20, 2023

6/41

$$W = mg \implies m = \frac{W}{g}$$

Spring Constant and Mass (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N/m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

W = mg taking the approximation $g = 9.8 \,\mathrm{m/sec^2}$.

The Circular Frequency ω

Applying Hooke's law with the weight as force, we have

$$\frac{\bigcup}{n \cdot \delta x} = \frac{mg}{n \cdot \delta x} = \frac{k \cdot \delta x}{n \cdot \delta x} \implies \frac{\partial}{\partial x} = \frac{k}{m}$$

イロト イポト イラト イラ

March 20, 2023

8/41

We observe that the value ω can be deduced from δx by

$$\omega^2 = \frac{k}{m} = \frac{g}{\delta x}.$$

Provided that values for δx and g are used in appropriate units, ω is in units of per second.

Simple Harmonic Motion

$$x'' + \omega^2 x = 0, \quad x(0) = x_0, \quad x'(0) = x_1$$
 (1)

Here, x_0 and x_1 are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t)$$
(2)

4 D K 4 B K 4 B K 4 B K

March 20, 2023

9/41

called the equation of motion.

Caution: The phrase **equation of motion** is used differently by different authors.

Some use this phrase to refer the IVP (1). Others use it to refer to the **solution** to the IVP such as (2).

Simple Harmonic Motion

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t)$$

Characteristics of the system include

• the period
$$T = \frac{2\pi}{\omega}$$
,

- the frequency $f = \frac{1}{T} = \frac{\omega}{2\pi}^{1}$
- the circular (or angular) frequency ω , and
- the amplitude or maximum displacement $A = \sqrt{x_0^2 + (x_1/\omega)^2}$

¹Various authors call *f* the natural frequency and others use this term for ω . \mathbb{R} $\mathfrak{I}_{\mathcal{A}}$

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t) = A \sin(\omega t + \phi)$$

requires

$$\mathbf{A}=\sqrt{x_0^2+(x_1/\omega)^2},$$

and the **phase shift** ϕ must be defined by

$$\sin \phi = \frac{x_0}{A}, \quad \text{with} \quad \cos \phi = \frac{x_1}{\omega A}.$$

March 20, 2023 11/41

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Amplitude and Phase Shift (alternative definition)

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t) = A \cos(\omega t - \hat{\phi})$$

requires

$$\boldsymbol{A} = \sqrt{\boldsymbol{x}_0^2 + (\boldsymbol{x}_1/\omega)^2},$$

and this **phase shift** $\hat{\phi}$ must be defined by

$$\cos \hat{\phi} = \frac{x_0}{A}$$
, with $\sin \hat{\phi} = \frac{x_1}{\omega A}$

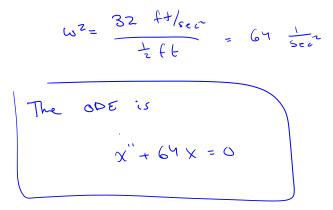
March 20, 2023 12/41

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

An object stretches a spring 6 inches in equilibrium. Assuming no driving force and no damping, set up the differential equation describing this system.

The ODE is
$$x'' + w^2 x = 0$$
 or $mx'' + kx = 0$
We need m, h or w^2 . We knows
displacement in equilibrium $\delta x = 6$ in
We can use $w^2 = \frac{3}{\delta x}$ with
 $g = 32 \frac{ft}{sec^2}$
Since $\delta x = 6$ in $= 6\pi \left(\frac{1ft}{12in}\right) = \frac{1}{2} ft$



<ロ> <四> <四> <四> <四> <四</p>

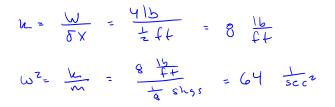
Example

A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of 24 ft/sec. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take g = 32 ft/sec².)

The model is
$$mx'' + kx = 0$$
 i.e. $x'' + w^2x = 0$
We know that $\delta x = 6$ in so $w^2 = 64$, but
let's find, k and m. The weight $W = 41b$.
 $W = mg$ ad $U = k\delta x$
 $m = \frac{W}{g} = \frac{41b}{32 + t/sec^2} = \frac{1}{8} ships$

March 20, 2023

16/41



The ODE is x"+64 x = 0

Using r as the parameter, the Characteristic equ is

 $r^{2} + 64 = 0$

March 20, 2023 17/41

$$r^{2} = -64 \implies r = \pm \int -64 = \pm 82$$

$$complex \quad cosze \quad wl \quad d = 0, \quad \beta = 8$$

$$x_{1} = e^{0t} C_{0s}(8t), \quad x_{2} = e^{0t} S_{1n}(8t)$$

$$x = c, \quad Cos(8t) + c_{2} S_{1n}(8t)$$

$$Apply \quad I.c \qquad \chi' = -8c, \quad S_{1n}(8t) + 8c_{2} C_{0s}(8t)$$

$$x(0) = c_{1} C_{0}(0) + c_{2} S_{1n}(0) = 4$$

$$c_{1} = 4$$

$$\chi'(0) = -8c, \quad S_{1n}(0) + 8c_{2} C_{0} (0) = -24$$

$$8c_{2} = -24 \implies c_{2} = -3$$

March 20, 2023 18/41

The period
$$T = \frac{2\pi}{10} = \frac{2\pi}{8} = \frac{\pi}{4}$$
 sec
Lineer frequency $f = \frac{1}{4} = \frac{4}{\pi}$ sec
Amplitude $A = \int \chi_0^2 + (\frac{\chi_1}{10})^2$
 $= \int 4^2 + (-3)^2 = 5$
If $\chi(4) = A \sin(\omega t + \Phi)$

March 20, 2023 19/41

◆□> ◆◎> ◆注> ◆注> 二注:

 $\chi(t) = 5 \sin (8t + \phi)$ where $\sin \phi = \frac{\chi_0}{A} = \frac{4}{5}$ and $\cos \phi = \frac{\chi_1}{\omega A} = \frac{-3}{5}$

 $\phi = C_{05}^{-3} \left(\frac{-3}{5}\right) \approx 2.21$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <