March 22 Math 2306 sec. 52 Spring 2023

Section 11: Linear Mechanical Equations

Simple Harmonic Motion
We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.

$$
\begin{aligned}
& \uparrow x>0 \\
& \downarrow x<0
\end{aligned}
$$

Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law
Newton's Second Law: $F=$ ma (mass times acceleration)

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ (proportional to displacement)

$$
m x^{\prime \prime}=-k x \quad \Rightarrow \quad m x^{\prime \prime}+k x=0
$$

In standard form $x^{\prime \prime}+\omega^{2} x=0$
where $\omega^{2}=\frac{k}{m}$
$Z^{\text {nd }}$ arden, linear, homogeneous, constant coefficient ODE.

Displacment in Equilibrium

Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$
W=k \delta x
$$

The units for k in this system of measure are lb/ft.

$$
k=\frac{w}{\delta x} \frac{1 b}{f t}
$$

Obtaining the Mass (US Customary Units)

Note also that Weight $=$ mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$
W=m g
$$

We typically take the approximation $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. The units for mass are $\mathrm{lb} \mathrm{sec}^{2} / \mathrm{ft}$ which are called slugs.

$$
m=\frac{W}{g}
$$

Spring Constant and Mass (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N / m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

$$
W=m g \text { taking the approximation } g=9.8 \mathrm{~m} / \mathrm{sec}^{2} .
$$

The Circular Frequency ω

Applying Hooke's law with the weight as force, we have

$$
\frac{W=}{m \delta x}=\frac{m g}{m \delta x}=\frac{k \delta x .}{m \delta x} \Rightarrow \frac{\rho}{\delta x}=\frac{k}{m}
$$

We observe that the value ω can be deduced from δx by

$$
\omega^{2}=\frac{k}{m}=\frac{g}{\delta x}
$$

Provided that values for δx and g are used in appropriate units, ω is in units of per second.

Simple Harmonic Motion

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$
\begin{equation*}
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t) \tag{2}
\end{equation*}
$$

called the equation of motion.
Caution: The phrase equation of motion is used differently by different authors.

Some use this phrase to refer the IVP (1). Others use it to refer to the solution to the IVP such as (2).

Simple Harmonic Motion

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}^{1}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{1}$ Various authors call f the natural frequency and others use this term for ω.

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Amplitude and Phase Shift (alternative definition)

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \cos (\omega t-\hat{\phi})
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and this phase shift $\hat{\phi}$ must be defined by

$$
\cos \hat{\phi}=\frac{x_{0}}{A}, \quad \text { with } \quad \sin \hat{\phi}=\frac{x_{1}}{\omega A} .
$$

Example
An object stretches a spring 6 inches in equilibrium. Assuming no driving force and no damping, set up the differential equation describing this system.

The ODE for simple hern onic notion

$$
m x^{\prime \prime}+k x=0 \quad \text { or } \quad x^{\prime \prime}+\omega^{2} x=0
$$

we need to determine ω^{2}. Were given displacement in equilibrium
$\delta x=6 \mathrm{in}$. well use

$$
\omega^{2}=\frac{g}{\delta x} \omega / \quad g=32 \mathrm{ft} / \sec ^{2}
$$

Convert $\delta x, \quad \delta x=6 \mathrm{in} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=\frac{1}{2} \mathrm{ft}$

$$
\omega^{2}=\frac{32 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}}{\frac{1}{2} \mathrm{ft}}=64 \frac{1}{\mathrm{sec}^{2}}
$$

The ODE is $x^{\prime \prime}+64 x=0$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

The model is $m x^{\prime \prime}+k x=0$ or $x^{\prime \prime}+\omega^{2} x=0$
we know δx, but let's find m and K.

$$
\begin{array}{rlrl}
W & =m g & W & =k \delta x \quad \\
m=\frac{W}{g} & =\frac{4 l b}{32 \cdot \frac{f t}{5 e c^{2}}} & k=\frac{w}{\delta x}=\frac{41 b}{\frac{1}{2} f t}=8 \frac{1 b}{f t} \\
& =\frac{1}{8} \operatorname{sln} g &
\end{array}
$$

$$
\omega^{2}=\frac{k}{m}=\frac{8}{\frac{1}{8}}=64
$$

The ODE is $x^{\prime \prime}+64 x=0$
The initial conditions are
$x(0)=4$ (oft above equilibrium)
$x^{\prime}(0)=-24 \quad\left(24 \frac{\mathrm{ft}}{\mathrm{sec}}\right.$ downward $)$
Using r for the parameter, the characteristic $q_{q} n$ is

$$
r^{2}+64=0
$$

$$
r^{2}=-64 \Rightarrow r= \pm \sqrt{-64}= \pm 8 i
$$

complex $\alpha=0$

$$
\begin{aligned}
& x_{1}=e^{o t} \cos (8 t), x_{2}=e^{0 t} \sin (8 t) \\
& x(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t) .
\end{aligned}
$$

Appls $x(0)=4, \quad x^{\prime}(0)=-24$

$$
x^{\prime}(t)=-8 c_{1} \sin (8 t)+8 c_{2} \cos (8 t)
$$

$$
\begin{gathered}
x(0)=c_{1} \cos (0)+c_{2} \sin (0)=4 \Rightarrow c_{1}=4 \\
x^{\prime}(0)=-8 c_{1} \sin 0+8 c_{2} \cos 0=-24 \\
8 c_{2}=-24
\end{gathered}
$$

March 20, $2023 \quad 18 / 41$

$$
c_{2}=\frac{-24}{8}=-3
$$

The equation of motion is

$$
x(t)=4 \cos (8 t)-3 \sin (8 t)
$$

The period $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{8}=\frac{\pi}{4} \mathrm{sec}$
Liner frequency $f=\frac{1}{T}=\frac{4}{\pi} \frac{1}{\sec }$ Amplitude $A=\sqrt{x_{0}^{2}+\left(\frac{x_{1}}{\omega}\right)^{2}}$

$$
A=\sqrt{4^{2}+(-3)^{2}}=5
$$

If we set $X(t)=A \sin (\omega t+\phi)$

$$
x(t)=5 \sin (8 t+\phi)
$$

where $\sin \phi=\frac{x_{0}}{A}, \cos \phi=\frac{x_{1}}{\omega A}$

$$
\sin \phi=\frac{4}{5} \text { and } \cos \phi=\frac{-3}{5}
$$

The phase shift

$$
\phi=\cos ^{-1}\left(-\frac{3}{5}\right) \approx 2.21
$$

$$
0,100^{\gamma}<2^{0}
$$

