March 23 Math 3260 sec. 51 Spring 2022

Section 4.1: Vector Spaces and Subspaces

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $\mathbf{1 u}=\mathbf{u}$

Subspaces

Definition: A subspace of a vector space V is a subset H of V for which
a) The zero vector is in ${ }^{1} \mathrm{H}$
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies $c \mathbf{u}$ is in H)
${ }^{1}$ This is sometimes replaced with the condition that H is nonempty.

Definition: Linear Combination and Span

Definition Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ be a collection of vectors in V. A linear combination of the vectors is a vector \mathbf{u}

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{p}$.

Definition The span, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is the subset of V consisting of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$.

Example

On Monday, we looked at the set $H=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \mid u_{2}=0\right\}$-i.e. the set of all vectors ($u_{1}, 0$), and found it was a subspace of \mathbb{R}^{2}. Note that

$$
H=\operatorname{Span}\{(1,0)\} .
$$

Theorem

Theorem: If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$, for $p \geq 1$, are vectors in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is a subspace of V.

Remark 1: This is saying that a span is always a subspace.

Remark 2: $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is called the subspace of V spanned by (or generated by) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Remark 3: If H is any subspace of V, a spanning set for H is any set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ such that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Example
$M_{2 \times 2}$ denotes the set of all 2×2 matrices with real entries with regular addition and scalar multiplication of matrices. Consider the subset H of $M_{2 \times 2}$

$$
H=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Show that H is a subspace of $M_{2 \times 2}$ by finding a spanning set. That is, show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for some appropriate vectors.

We con do this by taking an arbitrary elemout of H and writing it as a linear combination of fixed vectors (2×2 matrices).

Consida $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ in H for any a, b in \mathbb{R}.

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]
$$

$$
=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

This is a limear cambo of $\left[\begin{array}{ll}1 & 0 \\ 00\end{array}\right] \mathrm{and}$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. So

$$
H=\operatorname{Span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
$$

As a spane, H is a subspace of $M_{2 \times 2}$.

Section 4.2: Null \& Column Spaces, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted ${ }^{2}$ by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} .
$$

We can say that $\mathrm{Nul} A$ is the subset of \mathbb{R}^{n} that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

[^0]Example
Determine Nu A where $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 1 & 2 & 7\end{array}\right]$.
we hove to choraderize all \vec{x} in \mathbb{R}^{3} such that $A \vec{x}=\overrightarrow{0}$. We con use the augmented $\operatorname{matix}\left[\begin{array}{ll}A & 0\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 3 & 0 \\ 1 & 2 & 7 & 0\end{array}\right] \quad-R_{1}+R_{2} \rightarrow R_{2}$

$$
\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 2 & 4 & 0
\end{array}\right] \quad \frac{1}{2} R_{2} \rightarrow R_{2}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=-3 x_{3} \\
& x_{2}=-2 x_{3}, x_{3} \text { is tree }
\end{aligned}
$$

For \vec{x} in $\operatorname{Nul}(A)$

$$
\vec{x}=x_{3}\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right] \text {. Note } \operatorname{Nre}(A)=S_{p} \text { an }\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right]\right\} \text {. }
$$

Theorem
Theorem: If A is an $m \times n$ matrix, then $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{n}.

Note
(1) Since $A \overrightarrow{0}=\overrightarrow{0}, \overrightarrow{0}$ is in Nae (A).
(2) If \vec{u} ind \vec{v} are in $\operatorname{Nul(A)}$ then

$$
A \vec{u}=\overrightarrow{0} \text { and } \quad A \vec{v}=\overrightarrow{0}
$$

Note that

$$
A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}
$$

$\Rightarrow \vec{u}+\vec{v}$ is in Nul(A).
(3) If c is cony scalar, note that

$$
A(c \vec{u})=c A \vec{u}=c \overrightarrow{0}=\overrightarrow{0}
$$

Hence $c \vec{h}$ is in $\operatorname{Nul}(A)$.

Nul(A) has all the necessary properties to be a subspace of \mathbb{R}^{n}.

Example
For a given matrix, a spanning set for Null gives an explicit description of this subspace. Find a spanning set for Vul A where

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
1 & 2 & 6 & -5
\end{array}\right]
$$

we need to solve $A \vec{x}=\overrightarrow{0}$, whence \vec{x} is in \mathbb{R}^{4}.
Using on augmented matrix

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & 0
\end{array}\right]=} & {\left[\begin{array}{lllll}
1 & 0 & 2 & -1 & 0 \\
1 & 2 & 6 & -5 & 0
\end{array}\right] \quad-R_{1}+R_{2} \rightarrow R_{2} } \\
& {\left[\begin{array}{lllll}
1 & 0 & 2 & -1 & 0 \\
0 & 2 & 4 & -6 & 0
\end{array}\right] \quad \frac{1}{2} R_{2} \rightarrow R_{2} } \\
& {\left[\begin{array}{lllll}
1 & 0 & 2 & -1 & 0 \\
0 & 1 & 2 & -3 & 0
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-2 x_{3}+x_{4} \\
& x_{2}=-2 x_{3}+3 x_{4} \\
& x_{3}, x_{4} \text { are free }
\end{aligned} \quad \vec{x}=\left[\begin{array}{c}
-2 x_{3}+x_{4} \\
-2 x_{3}+3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

$$
\vec{x}=x_{3}\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right]
$$

An explicit description of Noe (A) is

$$
\operatorname{Nue}(A)=\operatorname{Spon}\left\{\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right]\right\}
$$

Column Space

Definition: The column space of an $m \times n$ matrix A, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{CoI} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} .
$$

Remark: Note that this corresponds to the set of solutions b of linear equations of the form $A \mathbf{x}=\mathbf{b}$. That is

$$
\operatorname{Col} A=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

[^0]: ${ }^{2}$ Some authors will write $\operatorname{Null}(A) —$ I tend to write two ells.

