March 23 Math 3260 sec. 51 Spring 2022

Section 4.1: Vector Spaces and Subspaces

A **vector space** is a nonempty set V of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms: For all \mathbf{u} , \mathbf{v} , and \mathbf{w} in V, and for any scalars c and d

- 1. The sum $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
- 2. u + v = v + u.
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$
- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u

Subspaces

Definition: A **subspace** of a vector space *V* is a subset *H* of *V* for which

- a) The zero vector is in 1 H
- b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u} + \mathbf{v}$ is in H)
- c) H is closed under scalar multiplication. (i.e. u in H implies cu is in H)

¹This is sometimes replaced with the condition that H is nonempty $\mathbb{R} \times \mathbb{R} \times$

Definition: Linear Combination and Span

Definition Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be a collection of vectors in V. A **linear combination** of the vectors is a vector \mathbf{u}

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

for some scalars c_1, c_2, \ldots, c_p .

Definition The **span**, Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$, is the subset of V consisting of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

3/27

On Monday, we looked at the set $H = \{(u_1, u_2) \in \mathbb{R}^2 \mid u_2 = 0\}$ —i.e. the set of all vectors $(u_1, 0)$, and found it was a subspace of \mathbb{R}^2 . Note that

$$H = Span\{(1,0)\}.$$

Theorem

Theorem: If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, for $p \ge 1$, are vectors in a vector space V, then $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$, is a subspace of V.

Remark 1: This is saying that a span is always a subspace.

Remark 2: Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is called the subspace of V spanned by (or generated by) $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

Remark 3: If H is any subspace of V, a **spanning set** for H is any set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ such that $H = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

 $M_{2\times2}$ denotes the set of all 2 × 2 matrices with real entries with regular addition and scalar multiplication of matrices. Consider the subset H of $M_{2\times2}$

$$H = \left\{ \left[egin{array}{cc} a & 0 \\ 0 & b \end{array}
ight] \mid a, \ b \in \mathbb{R}
ight\}.$$

Show that H is a subspace of $M_{2\times 2}$ by finding a spanning set. That is, show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ for some appropriate vectors.

March 23, 2022 6/27

Section 4.2: Null & Column Spaces, Linear **Transformations**

Definition: Let A be an $m \times n$ matrix. The **null space** of A, denoted² by Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\operatorname{\mathsf{Nul}} A = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$$

We can say that Nul A is the subset of \mathbb{R}^n that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.

²Some authors will write Null(A)—I tend to write two ells.

Determine Nul A where
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 7 \end{bmatrix}$$
.

We have to Chorederize all
$$\vec{X}$$
 in \vec{R}

Such that $\vec{A} \vec{X} = \vec{O}$. We can use the argumented matrix $\begin{bmatrix} \vec{A} & \vec{O} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 1 & 2 & 7 & 0 \end{bmatrix} - R_1 + R_2 + R_2$

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

For \vec{X} in Nul(A)

$$\vec{\chi} = \chi_3 \begin{bmatrix} -3 \\ -2 \end{bmatrix}$$
 Note Nul(A) = Span $\left\{ \begin{bmatrix} -3 \\ -2 \end{bmatrix} \right\}$.

Theorem

Theorem: If *A* is an $m \times n$ matrix, then Nul(A) is a subspace of \mathbb{R}^n .

Note:

② If
$$\vec{u}$$
 and \vec{v} are in Null(A) then

 $A\vec{v} = \vec{0}$ and $A\vec{v} = \vec{0}$.

Note that

 $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = \vec{0} + \vec{0} = \vec{0}$
 $\Rightarrow \vec{u} + \vec{v}$ is in Null(A).

March 23, 2022 10/27

(3) If c is ony scalar, note that $A(c\vec{u}) = cA\vec{u} = c\vec{0} = \vec{0}$ Hence $c\vec{u}$ is in Nul(A).

Nul(A) has all the necessary properties to be a subspace of TR".

For a given matrix, a spanning set for Nul A gives an explicit description of this subspace. Find a spanning set for Nul A where

$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 1 & 2 & 6 & -5 \end{bmatrix}.$$
We need to solve $AX = 0$ where X is in \mathbb{R}^4 .

Using an augmented matrix

$$\begin{bmatrix} A & 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & -1 & 0 \\ 1 & 2 & 6 & -5 & 0 \end{bmatrix} - R_1 + R_2 \Rightarrow R_2$$

$$\begin{bmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 2 & 4 & -6 & 0 \end{bmatrix} = 2 R_2 + R_2$$

$$\begin{bmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 2 & 4 & -6 & 0 \end{bmatrix} = 2 R_2 + R_2$$

$$X_1 = -7 \times 3 + X_1$$

 $X_2 = -7 \times 3 + 3 \times 4$
 $X_3 = -7 \times 3 + 3 \times 4$
 $X_4 = -7 \times 3 + 3 \times 4$
 $X_3 = -7 \times 3 + 3 \times 4$
 $X_4 = -7 \times 3 + 3 \times 4$
 $X_3 = -7 \times 3 + 3 \times 4$
 $X_4 = -7 \times 3 + 3 \times 4$
 $X_4 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 = -7 \times 3 + 3 \times 4$
 $X_5 =$

$$\vec{X} = X_3 \begin{bmatrix} -2 \\ -2 \\ 0 \end{bmatrix} + X_7 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

Column Space

Definition: The **column space** of an $m \times n$ matrix A, denoted Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

$$ColA = Span\{a_1, \ldots, a_n\}.$$

Remark: Note that this corresponds to the set of solutions **b** of linear equations of the form $A\mathbf{x} = \mathbf{b}$. That is

$$ColA = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$$

