March 23 Math 3260 sec. 52 Spring 2022

Section 4.1: Vector Spaces and Subspaces

A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms: For all \mathbf{u} , \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

- 1. The sum $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is in V.
- $\textbf{2.} \quad \textbf{u} + \textbf{v} = \textbf{v} + \textbf{u}.$
- 3. (u + v) + w = u + (v + w).
- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9.
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$
.

イロト イポト イラト イラト

Definition: A **subspace** of a vector space V is a subset H of V for which

- a) The zero vector is $in^1 H$
- b) *H* is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in *H* implies $\mathbf{u} + \mathbf{v}$ is in *H*)
- c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

¹This is sometimes replaced with the condition that *H* is nonempty. A = A = A

Definition: Linear Combination and Span

Definition Let *V* be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be a collection of vectors in *V*. A **linear combination** of the vectors is a vector \mathbf{u}

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

for some scalars c_1, c_2, \ldots, c_p .

Definition The **span**, Span{ $v_1, v_2, ..., v_p$ }, is the subset of *V* consisting of all linear combinations of the vectors $v_1, v_2, ..., v_p$.

March 23, 2022 3/27

Example

On Monday, we looked at the set $H = \{(u_1, u_2) \in \mathbb{R}^2 \mid u_2 = 0\}$ —i.e. the set of all vectors $(u_1, 0)$, and found it was a subspace of \mathbb{R}^2 . Note that

 $H = \mathsf{Span}\{(1,0)\}.$

Theorem

Theorem: If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, for $p \ge 1$, are vectors in a vector space *V*, then Span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ }, is a subspace of *V*.

Remark 1: This is saying that a span is always a subspace.

Remark 2: Span{ $v_1, v_2, ..., v_p$ } is called the subspace of *V* spanned by (or generated by) { $v_1, ..., v_p$ }.

Remark 3: If *H* is any subspace of *V*, a **spanning set** for *H* is any set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ such that $H = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

Example

 $M_{2\times 2}$ denotes the set of all 2 × 2 matrices with real entries with regular addition and scalar multiplication of matrices. Consider the subset *H* of $M_{2\times 2}$

$$\mathcal{H} = \left\{ \left[egin{array}{cc} m{a} & m{0} \\ m{0} & m{b} \end{array}
ight] \mid m{a}, \ m{b} \in \mathbb{R}
ight\}.$$

Show that *H* is a subspace of $M_{2\times 2}$ by finding a spanning set. That is, show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ for some appropriate vectors.

We wont to express an arbitrary element of
H as a linear combination of fixed vectors.
Consider the vector
$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
 in H for some
 a, b in \mathbb{R} .
 $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix}$ is the vector $\begin{bmatrix} a &$

$$= a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

March 23, 2022 7/27

୬ବଙ

▲口> ▲圖> ▲豆> ▲豆> 三豆

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let *A* be an $m \times n$ matrix. The **null space** of *A*, denoted² by Nul *A*, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\mathsf{Nul}\, A = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$$

We can say that Nul *A* is the subset of \mathbb{R}^n that gets mapped to the zero vector under the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.

²Some authors will write Null(A)—I tend to write two ells.

Example

Determine Nul A where
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 7 \end{bmatrix}$$
.
We need to find all \vec{X} in \mathbb{R}^3 such that $A\vec{X} = \vec{O}$.
We can use the anymented matrix $(A \vec{O})^2 = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 1 & 2 & 7 & 0 \end{bmatrix}$.
Get a ref. $-R_1 + R_2 + R_2$
 $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 4 & 0 \end{bmatrix} \stackrel{!}{=} K_2 + R_2$ $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \Rightarrow \begin{array}{c} X_1 = -3X_3 \\ X_1 = -3X_3 \\ X_1 = -2X_3 \\ W_3 \text{ is free} \end{array}$
So for \vec{X} in Nul(A)
 $\vec{X} = \begin{bmatrix} -3X_2 \\ -2X_2 \\ X_3 \end{bmatrix} = X_3 \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix}$. \Rightarrow Nul(A) = Span $\left\{ \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix} \right\}$

Theorem

Theorem: If A is an $m \times n$ matrix, then Nul(A) is a subspace of \mathbb{R}^n .

Note that for
$$\vec{O} \in \mathbb{R}^n$$

 $O = \vec{O}$. Hence \vec{O} is in Nul(A).
 $O = \vec{O}$. Hence \vec{O} is in Nul(A). Then
 $A\vec{u} = \vec{O}$ and \vec{V} are in Nul(A). Then
 $A\vec{u} = \vec{O}$ and $A\vec{v} = \vec{O}$, Note that
 $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = \vec{O} + \vec{O} = \vec{O}$
Hence $\vec{u} + \vec{v}$ is in Nul(A). Nul(A) is
Closed under vector addition.

э

3 Consider Ch for any scalar C. A(ct) = c At - c 0 = 0So ch is in Nul (A). Nul (A) is Closed under scalar mult.plication. Nul (A) satisfies all three proputies, so it's a subspace of TR".

> ▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙ March 23, 2022

11/27

Column Space

Definition: The **column space** of an $m \times n$ matrix *A*, denoted Col *A*, is the set of all linear combinations of the columns of *A*. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

 $ColA = Span\{a_1, \ldots, a_n\}.$

Remark: Note that this corresponds to the set of solutions **b** of linear equations of the form $A\mathbf{x} = \mathbf{b}$. That is

$$\operatorname{Col} A = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$$

March 23, 2022 14/27