March 25 Math 3260 sec. 52 Spring 2022

Section 4.2: Null \& Column Spaces, Row Space, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted by $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}
$$

Theorem: If A is an $m \times n$ matrix, then $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{n}.

Column Space

Definition: The column space of an $m \times n$ matrix A, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{CoI} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} .
$$

Theorem: The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.

Corollary: $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.

Example
Find a matrix A such that $W=\operatorname{Col} A$ where

$$
W=\left\{\left.\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

we need to recognize elements of W in the form $A \vec{x}$ for some matrix A.

$$
\begin{aligned}
{\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] } & =\left[\begin{array}{c}
6 a \\
a \\
-7 a
\end{array}\right]+\left[\begin{array}{c}
-b \\
b \\
0
\end{array}\right] \\
& =a\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right]+b\left[\begin{array}{c}
1 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Hence $W=\operatorname{Col}(A)$ where $A=\left[\begin{array}{cc}6 & -1 \\ 1 & 1 \\ -7 & 0\end{array}\right]$.

Row Space

Definition: The row space, denoted Row A, of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by the rows of A.

Theorem If two matrices A and B are row equivalent, then their row spaces are the same.

$$
\begin{aligned}
& \text { This says that row operations dort } \\
& \text { Charge the row space. }
\end{aligned}
$$

Example
Row (A)
Find two spanning sets for A given

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{rrrr}
1 & 0 & 9 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

we con take on set from A and ane from

$$
\text { the ref } \quad \operatorname{Row}(A)=\operatorname{spon}\left\{\left[\begin{array}{c}
2 \\
4 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
-5 \\
7 \\
3
\end{array}\right],\left[\begin{array}{c}
3 \\
7 \\
-8 \\
6
\end{array}\right]\right\}
$$

and

$$
\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
9 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-5 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Example: Comparing $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right]
$$

(a) If $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k}, what is k ?

The columns one in \mathbb{R}^{3}, so $k=3$.
(b) If $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k}, what is k ?
\vec{x} is in Null(A) if $A \vec{x}=\overrightarrow{0}$ this requires \vec{X} to be in \mathbb{R}^{4} so $k=4$.

Example Continued...

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

(c) Is \mathbf{u} in $\operatorname{Nul} A$? Could \mathbf{u} be in $\mathrm{Col} A$?
\vec{u} is in $\operatorname{Nul}(A)$ if $A \vec{u}=\overrightarrow{0}$.

$$
A \vec{u}=\left[\begin{array}{c}
0 \\
-3 \\
3
\end{array}\right] \neq \overrightarrow{0} \text { so } \vec{h} \text { is not in } \operatorname{Nul}(A) \text {. }
$$

\vec{u} could not be in $\operatorname{Col}(A)$. $\operatorname{Col}(A)$ is a subspace. of $\mathbb{R}^{3} ; \vec{u}$ is in \mathbb{R}^{4}.

Example Continued...

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right]
$$

(d) Is \mathbf{v} in $\mathrm{Col} A$? Could \mathbf{v} be in Vul A ?
\vec{v} is in \mathbb{R}^{3} so it cont be in Nul(A).
\vec{V} is in $\operatorname{Col}(A)$ if $A \vec{x}=\vec{V}$ is
consistent. Using the augmented matrix

$$
\left[\begin{array}{ll}
A & \vec{v}
\end{array}\right], \xrightarrow{\text { ref }}\left[\begin{array}{ccccc}
1 & 0 & 9 & 0 & 5 \\
0 & 1 & -5 & 0 & -30 / 17 \\
0 & 0 & 0 & 1 & 1 / 17
\end{array}\right]
$$

The last column is not a pivot column, hence $A \vec{x}=\vec{V}$ is consistent.

So \vec{V} is in $\operatorname{Col}(A)$.

Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in V, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Example

Let $C^{1}(\mathbb{R})$ denote the set of all real valued functions that are differentiable and $C^{0}(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$
D: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}), \quad D(f)=f^{\prime}
$$

satisfies the two conditions in the previous definition.
We know from calculus that if f and g are differentiable and c is a scalar, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) \quad \text { and } \quad \frac{d}{d x}(c f(x))=c f^{\prime}(x)
$$

Characterize the subset of $C^{1}(\mathbb{R})$ such that $D f=0$.
Thir is the set of constant functions

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

A column space is a range.
Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors \mathbf{x} in V such that $T(\mathbf{x})=\mathbf{0}$. (The analog of the null space of a matrix.)

A null space is a kernel.

Range \& Kernel as Subspaces

Theorem: Given linear transformation $T: V \longrightarrow W$,

- the range of T is a subspace of W,
- and the kernel of T is a subspace of V.

Example

Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

$$
\begin{aligned}
& y \text { is in the kernel of } T \text { if } \\
& T(y)=0 \text {. Well, } T(y)=\frac{d y}{d x}+\alpha y . \\
& \text { The equation is } \frac{d y}{d x}+\alpha y=0 \text {. }
\end{aligned}
$$

Example: $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$
(b) Show that for any scalar $c, y=c e^{-\alpha x}$ is in the kernel of T.

If y is in the kernel, then

$$
\frac{d y}{d x}+\alpha y=0 .
$$

If $y=c e^{-\alpha x}$ then $\frac{d y}{d x}=c\left(-\alpha e^{-\alpha x}\right)=-\alpha c e^{-\alpha x}$

$$
\begin{aligned}
\frac{d y}{d x}+\alpha y & =-\alpha c e^{-\alpha x}+\alpha\left(c e^{-\alpha x}\right) \\
& =-\alpha c e^{-\alpha x}+\alpha c e^{-\alpha x}=0
\end{aligned}
$$

$\Rightarrow y=c e^{-\alpha x}$ is in the kernel of T. March 25, $2022 \quad 16 / 38$

