March 25 Math 3260 sec. 52 Spring 2022

Section 4.2: Null & Column Spaces, Row Space, Linear Transformations

Definition: Let *A* be an $m \times n$ matrix. The **null space** of *A*, denoted by Nul *A*, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\mathsf{Nul}\, A = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}.$$

Theorem: If A is an $m \times n$ matrix, then Nul(A) is a subspace of \mathbb{R}^n .

4 D K 4 B K 4 B K 4 B K

March 25, 2022

1/38

Column Space

Definition: The **column space** of an $m \times n$ matrix *A*, denoted Col *A*, is the set of all linear combinations of the columns of *A*. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

 $ColA = Span\{a_1, \ldots, a_n\}.$

Theorem: The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Corollary: Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every **b** in \mathbb{R}^m .

イロト 不得 トイヨト イヨト ヨー ろくの

Example

Find a matrix A such that W = Col A where

$$W = \left\{ \left[egin{array}{c} 6a-b\ a+b\ -7a \end{array}
ight] \mid a,b\in \mathbb{R}
ight\}.$$

$$\begin{bmatrix} 6a & -b \\ a+b \\ -7a \end{bmatrix} = \begin{bmatrix} 6a \\ a \\ -7a \end{bmatrix} + \begin{bmatrix} -b \\ b \\ 0 \end{bmatrix}$$
$$= a \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

≣▶ ◀ ≣ ▶ ≡ ∽ Q (? March 25, 2022 3/38

$$= \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ b \end{bmatrix}$$

Idence $W = Col(A)$ where $A = \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix}$.

▲ロト ◆ ● ト ◆ ● ト ◆ ● ト ● ● 今 ○ ○
March 25, 2022 4/38

- **Definition:** The **row space**, denoted Row *A*, of an $m \times n$ matrix *A* is the subspace of \mathbb{R}^n spanned by the rows of *A*.
- **Theorem** If two matrices *A* and *B* are row equivalent, then their row spaces are the same.

March 25, 2022

5/38

Example Row^(A)

Find two spanning sets for A given

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 9 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We can take one set from A and one from
the rief:
Row(A) = Span
$$\left\{ \begin{bmatrix} 2\\ 4\\ -2\\ 1 \end{bmatrix}, \begin{bmatrix} -2\\ -3\\ 7\\ 7\\ 3 \end{bmatrix}, \begin{bmatrix} 3\\ 7\\ -8\\ 6 \end{bmatrix} \right\}$$

and
Row(A) = Span $\left\{ \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -5\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix} \right\}$.

March 25, 2022 6/38

2

イロン イ団 とく ヨン ・ ヨン …

Example: Comparing Col(A) and Nul(A)

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$

(a) If Col A is a subspace of \mathbb{R}^k , what is k?

The column are in TR3, so k=3.

(b) If Nul A is a subspace of \mathbb{R}^k , what is k? \vec{X} is in Nul(A) if $A \vec{X} = \vec{O}$ this requires \vec{X} to be in \mathbb{R}^4 . So k = 4.

March 25, 2022 7/38

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

(c) Is **u** in Nul A? Could **u** be in Col A?

 \vec{u} is in NullA) if $\vec{A} \vec{u} = \vec{0}$. $\vec{A} \vec{u} = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix} \neq \vec{0}$ so \vec{u} is not in Null(A).

à cult not be in Col(A). Col(A) is a subspace. of \mathbb{R}^3 ; à is m \mathbb{R}^4 . Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(d) Is **v** in Col A? Could **v** be in Nul A?

$$\vec{v}$$
 is in \mathbb{R}^3 so it could be in Null(A).
 \vec{v} is in Col(A) if $A\vec{x} = \vec{v}$ is
consistent. Using the augmented matrix
 $\begin{bmatrix} A \vec{v} \end{bmatrix}$, fref
 $\begin{bmatrix} 1 & 0 & q & 0 & 5 \\ 0 & 1 - 5 & 0 & -30/17 \\ 0 & 0 & 0 & 1 & 1/17 \end{bmatrix}$

э

イロト イヨト イヨト イヨト

The last column is not a pivot column, hence $A \vec{x} = \vec{V}$ is consistent. So \vec{V} is in Col(A).

1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Linear Transformation

Definition: Let *V* and *W* be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector **x** in *V* a unique vector $T(\mathbf{x})$ in *W* such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for every \mathbf{u}, \mathbf{v} in V, and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every **u** in *V* and scalar *c*.

イロト イポト イラト イラト

Example

Let $C^1(\mathbb{R})$ denote the set of all real valued functions that are differentiable and $C^0(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

satisfies the two conditions in the previous definition.

We know from calculus that if f and g are differentiable and c is a scalar, then

$$\frac{d}{dx}(f(x)+g(x))=f'(x)+g'(x)$$
 and $\frac{d}{dx}(cf(x))=cf'(x).$

Characterize the subset of $C^1(\mathbb{R})$ such that Df = 0.

March 25, 2022 12/38

Range and Kernel

Definition: The **range** of a linear transformation $T : V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.)

A column space is a range.

Definition: The **kernel** of a linear transformation $T : V \longrightarrow W$ is the set of all vectors **x** in *V* such that $T(\mathbf{x}) = \mathbf{0}$. (The analog of the null space of a matrix.)

A null space is a kernel.

March 25, 2022 13/38

イロト 不得 トイヨト イヨト ヨー ろくの

Range & Kernel as Subspaces

Theorem: Given linear transformation $T: V \longrightarrow W$,

- 3

14/38

March 25, 2022

• the range of T is a subspace of W,

▶ and the kernel of *T* is a subspace of *V*.

Example

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

y is in the kernel of T if

$$T(y) = 0$$
, well, $T(y) = \frac{dy}{dx} + \alpha y$.
The equation is $\frac{dy}{dx} + \alpha y = 0$.

March 25, 2022 15/38

イロト 不得 トイヨト イヨト 二日

Example: $T : C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

If y is in the kernel, then

$$\frac{dy}{dx} + ay = 0.$$
If $y = Ce^{ax}$ then $\frac{dy}{dx} = C(-ae^{ax}) - ace^{ax}$

$$\frac{dy}{dx} + ay = -ace^{ax} + a(ce^{ax})$$

$$= -ace^{ax} + ace^{ax} = 0$$

$$\Rightarrow y - ce^{ax}$$
 is in the kernel of $a^{(x)} = a^{(x)} = a^{(x)}$

March 25, 2022 16/38