March 27 Math 2306 sec. 52 Spring 2023

Section 11: Linear Mechanical Equations

Driven Motion

We can consider the application of an external driving force (with or without damping). Assume a time dependent force f(t) is applied to the system. The ODE governing displacement becomes

$$m\frac{d^2x}{dt^2}=-\beta\frac{dx}{dt}-kx+f(t), \quad \beta\geq 0.$$

Divide out m and let F(t) = f(t)/m to obtain the nonhomogeneous equation

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = F(t)$$

Forced Undamped Motion and Resonance

Consider the case $F(t) = F_0 \cos(\gamma t)$ or $F(t) = F_0 \sin(\gamma t)$, and $\lambda = 0$. Two cases arise

(1)
$$\gamma \neq \omega$$
, and (2) $\gamma = \omega$.

Taking the sine case, the DE is

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$

with complementary solution

$$x_c = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$

Note that

$$x_c = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

Using the method of undetermined coefficients, the **first guess** to the particular solution is

$$x_p = A\cos(\gamma t) + B\sin(\gamma t)$$
 Suppose $\forall \neq \omega$

This is correct

The position

$$x'' + \omega^2 x = F_0 \sin(\gamma t)$$

Note that

$$x_c = c_1 \cos(\omega t) + c_2 \sin(\omega t).$$

Using the method of undetermined coefficients, the **first guess** to the particular solution is

$$x_p = A\cos(\gamma t) + B\sin(\gamma t)$$
 Suppose $\gamma = \omega$
This is not correct
 $x_p = (A\cos(\omega t) + B\sin(\omega t)) t$
 $= At\cos(\omega t) + Bt\sin(\omega t)$

The position

X(t)= c, cos(wt) + cz Sin(wt) + At Cos(wt) + Bt Sin(wt)

Forced Undamped Motion and Resonance

For $F(t) = F_0 \sin(\gamma t)$ starting from rest at equilibrium:

Case (1):
$$x'' + \omega^2 x = F_0 \sin(\gamma t), \quad x(0) = 0, \quad x'(0) = 0$$

$$x(t) = \frac{F_0}{\omega^2 - \gamma^2} \left(\sin(\gamma t) - \frac{\gamma}{\omega} \sin(\omega t) \right)$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance

Case (2):
$$x'' + \omega^2 x = F_0 \sin(\omega t)$$
, $x(0) = 0$, $x'(0) = 0$

$$x(t) = \frac{F_0}{2\omega^2}\sin(\omega t) - \frac{F_0}{2\omega}t\cos(\omega t)$$

Note that the amplitude, α , of the second term is a function of t:

$$\alpha(t) = \frac{F_0 t}{2\omega}$$

which grows without bound!

► Forced Motion and Resonance Applet

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω .

Section 12: LRC Series Circuits

Potential Drops Across Components:

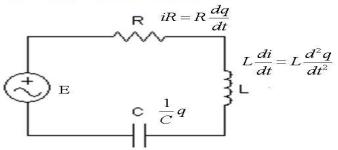


Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $Lq'' + Rq' + \frac{1}{C}q = E(t)$.

This is a second order, linear, constant coefficient nonhomogeneous (if $E \neq 0$) equation.

LRC Series Circuit (Free Electrical Vibrations)

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$$

If the applied force E(t) = 0, then the **electrical vibrations** of the circuit are said to be **free**. These are categorized as

overdamped if $R^2 - 4L/C > 0$, (2 real roots) critically damped if $R^2 - 4L/C = 0$, (1 real root)

underdamped if

←□▶←□▶←□▶←□▶ □ 900

 $R^2 - 4L/C < 0$. (complex roots)

Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with nonhomogeneous ODE for the charge q

$$Lq'' + Rq' + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0.$$

From our basic theory of linear equations we know that the solution will take the form

$$q(t) = q_c(t) + q_p(t)$$
.

The function of q_c is influenced by the initial state $(q_0 \text{ and } i_0)$ and will decay exponentially as $t \to \infty$. Hence q_c is called the **transient state charge** of the system.

Steady and Transient States

Given a nonzero applied voltage E(t), we obtain an IVP with nonhomogeneous ODE for the charge q

$$Lq'' + Rq' + \frac{1}{C}q = E(t), \quad q(0) = q_0, \quad q'(0) = i_0.$$

From our basic theory of linear equations we know that the solution will take the form

$$q(t) = q_c(t) + q_p(t)$$

The function q_p is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_p is called the **steady state charge** of the system.

Example

An LRC series circuit has inductance 0.5 h, resistance 10 ohms, and capacitance $4 \cdot 10^{-3}$ f. Find the steady state current of the system if the applied force is $E(t) = 5\cos(10t)$.

The model is
$$L_{q}'' + R_{q}' + L_{q} = 1$$
 $L = \frac{1}{2}h$
 $R = 10\Omega$
 $C = 4.10^{3}f$

we want $L_{p} = \frac{d_{q}r}{dt}$

$$\frac{1}{4.10^{-3}} = \frac{10}{4} = \frac{1000}{4} = 250$$

Standard form: 9" +209' +5009 = 10 Gs (10+)

Find gc: Charac. egn m2 + 20 M + 500 = 0

$$M^2 + 20 + 160 - 100 + 500 = 0$$

 $(m+10)^2 + 400 = 0$

$$(m+10)^2 = -400$$

 $m+10 = \pm \sqrt{-400} = \pm 20i$

12/16

$$q_1 = e^{-10t}$$
 Cos (20t), $q_2 = e^{-10t}$ Syn (20t)

March 24, 2023 12/16

q" +20q' + Soog = 10 Gs (10+)

Find ge using undetermined coef.

soo gr = A Gr (101) + B Sin (10t)

3p" +20gp +500gp=10 Cos (10t)
Cor(10t) (-100A + 200B + 500A) + Sin (10t) (-100B-200A+500B)

= 10 Cos (10t) + O. Sin (10t)

Matching:

$$400A + 700B = 10$$
 $40A + 70B = 1$
 $-200A + 400B = 0$ $-20A + 40B = 0$

$$40A + 20B = 1$$

$$-40A + 80B = 0$$

$$100B = 1 \implies B = \frac{2}{100}$$

$$20A = 40B \implies A = 2B = \frac{2}{100}$$

$$2p = \frac{2}{100} Cos(10t) + \frac{1}{100} Sin(10t)$$

The steady state current
$$i_{p} = \frac{-2}{10} \sin(10t) + \frac{1}{10} \cos(10t)$$