March 27 Math 3260 sec. 51 Spring 2024

Section 4.4: Coordinate Systems

Definition: Coordinate Vectors

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an **ordered** basis of the vector space V. For each \mathbf{x} in V we define the **coordinate vector of \mathbf{x} relative to the basis** \mathcal{B} to be the unique vector (c_1, \dots, c_n) in \mathbb{R}^n whose entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

We'll use the notation
$$[\mathbf{x}]_{\mathcal{B}}$$
; that is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$.

Different Coordinates on \mathbb{R}^n

We can use alternative coordinate systems to describe vectors in \mathbb{R}^n .

Definition

Given an ordered basis \mathcal{B} in \mathbb{R}^n , the matrix $P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$ is called the **change of coordinates matrix** for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the one to one linear transformation from \mathbb{R}^n onto \mathbb{R}^n defined by 4. 20(x)0

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

2/27

Theorem: Coordinate Mapping

Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one to one** mapping of V **onto** \mathbb{R}^n .

Remark:

- For a vector space V, if there exists a coordinate mapping from $V \to \mathbb{R}^n$, we say that V is **isomorphic** to \mathbb{R}^n .
- ▶ Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^n .

\mathbb{P}_3 is **Isomorphic** to \mathbb{R}^4

We saw that using the ordered basis $\mathcal{B} = \{1, t, t^2, t^3\}$ that any vector

$$\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2 + p_3 t^3$$

in \mathbb{P}_3 has coordinate vector

$$[\mathbf{p}]_{\mathcal{B}} = \left[egin{array}{c} p_0 \ p_1 \ p_2 \ p_3 \end{array}
ight]$$

in \mathbb{R}^4 .

Example

Use coordinate vectors to determine if the set $\{p,q,r\}$ is linearly dependent or independent in \mathbb{P}_2 .

$$\mathbf{p}(t) = 1 - 2t^2$$
, $\mathbf{q}(t) = 3t + t^2$, $\mathbf{r}(t) = 1 + t$

We need a basis for \mathbb{T}_2 to define the coordinate vectors. Using the basis $B=\{1, \xi, \xi^2\}$ in that order.

Then
$$\begin{bmatrix} \vec{p} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} \vec{q} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

we can use a matrix to determine if these

vector in IR3 are lin, independent.

6/27

Since det(A) = 0, the columns of A are lin. independent.

{ [\$]B, [\$]B, [\$]B} ir ha.

independent in R3.

So (p, q, r) on line independent.

in Pz.