March 27 Math 3260 sec. 52 Spring 2024

Section 4.4: Coordinate Systems

Definition: Coordinate Vectors

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} whose entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$.
We'll use the notation $[\mathbf{x}]_{\mathcal{B}}$; that is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$.

Different Coordinates on \mathbb{R}^{n}

We can use alternative coordinate systems to describe vectors in \mathbb{R}^{n}.

Definition

Given an ordered basis \mathcal{B} in \mathbb{R}^{n}, the matrix $P_{\mathcal{B}}=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}\end{array}\right]$ is called the change of coordinates matrix for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the one to one linear transformation from \mathbb{R}^{n} onto \mathbb{R}^{n} defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

Theorem: Coordinate Mapping

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark:

- For a vector space V, if there exists a coordinate mapping from $V \rightarrow \mathbb{R}^{n}$, we say that V is isomorphic to \mathbb{R}^{n}.
- Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

\mathbb{P}_{3} is Isomorphic to \mathbb{R}^{4}

We saw that using the ordered basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ that any vector

$$
\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}
$$

in \mathbb{P}_{3} has coordinate vector

$$
[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

in \mathbb{R}^{4}.

Example
Use coordinate vectors to determine if the set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ is linearly dependent or independent in \mathbb{P}_{2}.

$$
\mathbf{p}(t)=1-2 t^{2}, \quad \mathbf{q}(t)=3 t+t^{2}, \quad \mathbf{r}(t)=1+t
$$

We need a basis of \mathbb{P}_{2} to define coordinate vectors. Let's use $B=\left\{1, t, t^{2}\right\}$ in this or den

$$
[\vec{p}]_{B}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right],[\vec{q}]_{B}=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right], \quad[\vec{r}]_{B}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

We can use a matrix to determine if
these vectors in \mathbb{R}^{3} are lin. independent.
Let $A=\left[\begin{array}{lll}{[\vec{p}]_{B}} & {[\vec{q}]_{B}} & {[\vec{r}]_{B}}\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 1 \\
-2 & 1 & 0
\end{array}\right]
$$

we can use a detorminant. (across rood)

$$
\begin{aligned}
\operatorname{det}(A) & =1\left|\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right|-0|\cdots|+1\left|\begin{array}{cc}
0 & 3 \\
-2 & 1
\end{array}\right| \\
& =1(0-1)+1(0+6)=-1+6=5
\end{aligned}
$$

Since $\operatorname{det}(A) \neq 0$, the column of A
are lin. independent.

$$
\left\{[\vec{p}]_{B},[\vec{q}]_{B},[\vec{r}]_{B}\right\} \text { is }
$$

lineearlis independent in \mathbb{R}^{3}, so $\{\vec{p}, \vec{q}, \vec{r}\}$ is lin, independent in \mathbb{P}_{2}.

