March 27 Math 3260 sec. 52 Spring 2024

Section 4.4: Coordinate Systems

Definition: Coordinate Vectors

Let $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_n}$ be an **ordered** basis of the vector space *V*. For each **x** in *V* we define the **coordinate vector of x relative to the basis** \mathcal{B} to be the unique vector $(c_1, ..., c_n)$ in \mathbb{R}^n whose entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

We'll use the notation $[\mathbf{x}]_{\mathcal{B}}$; that is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix}$.

March 26, 2024 1/27

Different Coordinates on \mathbb{R}^n

We can use alternative coordinate systems to describe vectors in \mathbb{R}^n .

Definition

Given an ordered basis \mathcal{B} in \mathbb{R}^n , the matrix $P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$ is called the change of coordinates matrix for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Theorem

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the one to one linear transformation from \mathbb{R}^n onto \mathbb{R}^n defined by ×= 80[x)0

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

Theorem: Coordinate Mapping

Theorem

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one to one** mapping of V **onto** \mathbb{R}^n .

Remark:

- For a vector space *V*, if there exists a coordinate mapping from $V \to \mathbb{R}^n$, we say that *V* is **isomorphic** to \mathbb{R}^n .
- Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in Rⁿ.

\mathbb{P}_3 is **Isomorphic** to \mathbb{R}^4

We saw that using the ordered basis $\mathcal{B} = \{1, t, t^2, t^3\}$ that any vector

$$\mathbf{p}(t) = \rho_0 + \rho_1 t + \rho_2 t^2 + \rho_3 t^3$$

in \mathbb{P}_3 has coordinate vector

$$[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

in \mathbb{R}^4 .

• • • • • • • • • • • •

Example

Use coordinate vectors to determine if the set $\{p, q, r\}$ is linearly dependent or independent in \mathbb{P}_2 .

$$\mathbf{p}(t) = 1 - 2t^{2}, \quad \mathbf{q}(t) = 3t + t^{2}, \quad \mathbf{r}(t) = 1 + t$$
We need a basis of \mathbb{P}_{z} to define coordinate
vectors. Let's use $\mathbb{B} = \{1, t, t^{2}\}$ in this
or det.
 $\begin{bmatrix} \vec{p} \end{bmatrix}_{\mathbb{B}} = \begin{bmatrix} 1 \\ 0 \\ -z \end{bmatrix}, \quad \begin{bmatrix} 2 \\ -z \end{bmatrix}_{\mathbb{B}} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} \vec{r} \end{bmatrix}_{\mathbb{B}} = \begin{bmatrix} 1 \\ 0 \\ -z \end{bmatrix}$
We can use a matrix to determine if
March 26, 2024 5/22

three vectors in
$$\mathbb{R}^3$$
 are lin, independent.
Let $A = \begin{bmatrix} 2p \\ p \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} q \\ p \\ q \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} 2p \\ p \\ p \end{bmatrix}_{\mathcal{B}}$
 $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$
We can use a determant. (across rows)
det(A) = 1 $\begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} - 0 \end{vmatrix} + 1 \begin{vmatrix} 0 & 3 \\ -2 & 1 \end{vmatrix}$
 $= 1(0-1) + 1(0+6) = -1 + 6 = 5$.
Since det(A) = 0, the columns of A

March 26, 2024 6/27

are lin. independent.

 $\{[\vec{p}]_{B}, [\vec{q}]_{B}, [\vec{r}]_{B}\}\$ is linearly independent in \mathbb{R}^{3} , so $\{\vec{p}, \vec{q}, \vec{r}\}\$ is line independent in \mathbb{P}_{2}^{2} .