March 28 Math 3260 sec. 51 Spring 2022

Section 4.3: Linearly Independent Sets and Bases
Definition: A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V is said to be linearly independent if the equation

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{1}
\end{equation*}
$$

has only the trivial solutions $c_{1}=c_{2}=\cdots=c_{p}=0$.

The set is linearly dependent if there exist a nontrivial solution (at least one of the weights c_{i} is nonzero).

If there is a nontrivial solution c_{1}, \ldots, c_{p}, then equation (1) is called a linear dependence relation.

Theorem

Theorem: Consider the ordered set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V, where $p \geq 2$ and $\mathbf{v}_{1} \neq \mathbf{0}$. This set is linearly dependent if and only if there is some $j>1$ such that \mathbf{v}_{j} is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

This says that

- If one of the vectors, say \mathbf{v}_{j} can be written as a linear combo of the ones that come before it, the set is linearly dependent, and
- if the set is linearly dependent, it must be possible to write one of the vectors as a linear combo of the others.

Example
Determine if the set is linearly dependent or independent in \mathbb{P}_{2}.
$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ where $\mathbf{p}_{1}=1, \mathbf{p}_{2}=2 t, \mathbf{p}_{3}=t-3$.
Note that $\vec{p}_{3}=\frac{1}{2} \vec{p}_{2}-3 \vec{p}_{1}$
Hence the set is Dinearly dependent.
A linear dependence relation is

$$
3 \vec{p}_{1}-\frac{1}{2} \vec{p}_{2}+\vec{p}_{3}=\overrightarrow{0}
$$

Definition (Basis)

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis of H provided
(i) \mathcal{B} is linearly independent, and
(ii) $H=\operatorname{Span}(\mathcal{B})$.

We can think of a basis as a minimal spanning set. All of the information needed to construct vectors in H is contained in the basis, and none of this information is repeated.

Prelude to a Spanning Set Theorem
Example: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be vectors in a vector space V, and suppose that
(1) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and
(2) $\mathbf{v}_{3}=\mathbf{v}_{1}-2 \mathbf{v}_{2}$.

Show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
we just need to show that any vector in H con be written as a line er conntination of \vec{v}_{1} and \vec{v}_{2}. Let \vec{h} be a vector in H.
Since $H=$ span $\left\{\vec{v}_{1}, \bar{v}_{2}, \vec{v}_{3}\right\}$ there are scalars
c_{1}, c_{2}, c_{3} such that

$$
\vec{h}=c_{1} \vec{V}_{1}+c_{2} \bar{V}_{2}+c_{3} \vec{V}_{3}
$$

March 25, $2022 \quad 5 / 22$
using $\vec{v}_{3}=\vec{v}_{1}-2 \vec{v}_{2}$,

$$
\begin{aligned}
\vec{h} & =c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3}\left(\vec{v}_{1}-2 \vec{v}_{2}\right) \\
& =\left(c_{1}+c_{3}\right) \vec{v}_{1}+\left(c_{2}-2 c_{3}\right) \vec{v}_{2} \\
& =k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}
\end{aligned}
$$

where $k_{1}=c_{1}+c_{3}$ and $k_{2}=c_{2}-2 c_{3}$.
Hence \vec{h}_{h} is in $\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}\right\}$.
That is, $H=\operatorname{Span}\left\{\vec{v}, \vec{v}_{2}\right\}$.

Theorem:

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V and $H=\operatorname{Span}(S)$.
(a.) If one of the vectors in S, say \mathbf{v}_{k} is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.
(b) If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive at a basis.

Column Space
Find a basis for the column space matrix B that is in reduced row echelon form
$B=\left[\begin{array}{ccccc}1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Call the Column \vec{b}_{i}
so $T . B=\left[\begin{array}{llll}\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} & \vec{b}_{4} \\ \vec{b}_{5}\end{array}\right]$
$\vec{b}_{1} \vec{b}_{2} \vec{b}_{3} \quad \vec{b}_{n} \quad \vec{b}_{5}$
B_{y} detention $\operatorname{Col}(B)=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4}, \vec{b}_{5}\right\}$.
Note $\vec{b}_{2}=4 \vec{b}_{1} \rightarrow$ throw out \vec{b}_{2}
$\vec{b}_{4}=2 \vec{b}_{1}-\vec{b}_{3} \rightarrow$ throw out \vec{b}_{n}
A basis for $\operatorname{Col}(B)$ is $\left\{\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}\right\}$.

Note that this basis consists of the pivot columns of B.
we con write

$$
\operatorname{Col}(B)=\operatorname{Span}\left\{\vec{b}, \vec{b}_{2}, \vec{b},\right\}
$$

Using the rref

Theorem: If $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$ and $B=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right]$ are row equivalent matrices, then Nul $A=\mathrm{Nul} B$. That is, the equations

$$
A \mathbf{x}=\mathbf{0} \quad \text { and } B \mathbf{x}=\mathbf{0}
$$

have the same solution set.

Remark: This means that $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ and $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ have exactly the same linear dependence relationships!

Theorem:

The pivot columns of a matrix A form a basis of $\operatorname{Col} A$.

Caveat: This means we can use row reduction to identify a basis, but the vectors we obtain will be from the original matrix A. (As illustrated in the following example.)

Find a basis for $\operatorname{Col} A$

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right]
$$

we need to find out which columns are the pivot columns. Those will be our basis vectors.

Find a basis for $\operatorname{Col} A$

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right] . \xrightarrow{\text { rref }}\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From the ret, the pilot columns are columns 1, 3 , and S. So the basis vectors are \vec{a}_{1}, \vec{a}_{3} and \vec{a}_{5}.

A basis is $\left\{\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 5 \\ 2 \\ 8\end{array}\right]\right\}$

Basis for a Row Space

Theorem: If two matrices A and B are row equivalent, then their row spaces are the same.

This tells us that a basis for the row space of an $m \times n$ matrix A is the nonzero rows of its rref.

Find a basis for $\operatorname{Row}(A)$

$A=\left[\begin{array}{ccccc}1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccccc}1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
From the ref, a basis for Row (A)
is

$$
\left\{\left[\begin{array}{l}
1 \\
4 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$
$A=\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ 2 & 1 & 5 & 1\end{array}\right]$ we find both using the

$$
\left[\begin{array}{rrrr}
1 & 0 & 3 & -2 \\
2 & 1 & 5 & 1
\end{array}\right]-2 R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 1 & -1 & 5
\end{array}\right]
$$

Columns 1 and 2 are pivot columns, so a basis for $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.

For the Null Space, we need to solve $A \vec{x}=\overrightarrow{0}$. The ref for $\left[\begin{array}{ll}A & \vec{O}\end{array}\right]$ is

$$
\left[\begin{array}{rrrrr}
1 & 0 & 3 & -2 & 0 \\
0 & 1 & -1 & 5 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=-3 x_{3}+2 x_{4} \\
& x_{2}=x_{3}-5 x_{4} \\
& x_{3}, x_{4}-\text { free }
\end{aligned}
$$

A solution

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-3 x_{3}+2 x_{4} \\
x_{3}-5 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-5 \\
0 \\
1
\end{array}\right]
$$

A basis for Nul (A) is $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -5 \\ 0 \\ 1\end{array}\right]\right\}$.

$$
\begin{array}{ll}
\operatorname{Col}(A)= & \operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} . \\
\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{c}
2 \\
-5 \\
0 \\
1
\end{array}\right]\right\} \quad \text { Nost ses } \operatorname{ser}^{s^{s}}
\end{array}
$$

Bases for $\operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Nul}(A)$

Given a matrix A, find the rref. Then

- The pivot columns of the original matrix A give a basis for $\operatorname{Col}(A)$.
- The nonzero rows of $\operatorname{rref}(A)$ give a basis for $\operatorname{Row}(A)$.
- Use the rref to solve $A \mathbf{x}=\mathbf{0}$ to identify a basis for $\operatorname{Nul}(A)$.

Example

If A is an invertible $n \times n$ matrix, then we know ${ }^{1}$ that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^{n}. Use this to determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3} where

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
3 \\
0 \\
-6
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
1 \\
7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-2 \\
1 \\
5
\end{array}\right] .
$$

Let $A=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$. then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
is a basis if and only if A is nonsingulae

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]=3\left|\begin{array}{ll}
1 & 1 \\
7 & 5
\end{array}\right|-6\left|\begin{array}{cc}
-4 & -2 \\
1 & 1
\end{array}\right|
$$

$$
=3(-2)-6(-2)=6
$$

$\operatorname{det}(A) \neq 0$ s. A is inverthee. Hence $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Standard Basis in \mathbb{R}^{n}

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^{n}. This is called the standard basis for \mathbb{R}^{n}. For example, the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3} are

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \quad \text { and } \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { respectively. }
$$

Other Vector Spaces

The set $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis ${ }^{2}$ for \mathbb{P}_{3}.
Notice that for any vector \mathbf{p} in \mathbb{P}_{3},

$$
\mathbf{p}(t)=p_{0} 1+p_{1} t+p_{2} t^{2}+p_{3} t^{3} .
$$

This is a linear combination of $1, t, t^{2}$, and t^{3}. We already know that the zero polynomial

$$
\mathbf{0}(t)=01+0 t+0 t^{2}+0 t^{3} .
$$

That is, the equation

$$
c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}=0 \quad \Leftrightarrow \quad c_{0}=c_{1}=c_{2}=c_{3}=0
$$

${ }^{2}$ The set $\left\{1, t, \ldots, t^{n}\right\}$ is called the standard basis for \mathbb{P}_{n}

Other Vector Spaces

The set $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis for $M_{2 \times 2}$.

The exercise is left to the reader. It must be shown that

- every matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ can be written as a linear combination of these vectors and
- this is a linearly independent set.

