March 4 Math 3260 sec. 52 Spring 2024

Section 3.2: Properties of Determinants

Theorem:

Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A) .
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A)
$$

Results on Determinants

Theorem

The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem

For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem

For $n \times n$ matrices A and B, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Remark: We showed last time that this last theorem implies $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$ for any invertible matrix A.

Example

Let A be an $n \times n$ matrix, and suppose there exists invertible matrix P such that ${ }^{1}$

$$
B=P^{-1} A P
$$

Show that

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(P^{-1} A P\right) \\
& =\operatorname{det}\left(P^{-i}\right) \operatorname{det}(A) \operatorname{det}(P) \\
& =\operatorname{det}(A) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \\
& =\operatorname{det}(A)(\operatorname{det}(-))^{-1} \operatorname{det}(P)
\end{aligned}
$$

[^0] similarly transform. The matrices A and B are said to be similar.
\[

$$
\begin{aligned}
& =\operatorname{det}(A) \cdot 1 \\
& =\operatorname{det}(A) .
\end{aligned}
$$
\]

Section 3.3: Cramer's Rule, Volume, and Linear Transformations

Cramer's Rule is a method for solving some small linear systems of equations.

Notation:

For $n \times n$ matrix A and \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing the $i^{\text {th }}$ column with the vector \mathbf{b}. That is

$$
A_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_{n}\right]
$$

Example Suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, then

$$
A_{3}(\mathbf{b})=\left[\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right]
$$

Cramer's Rule

Theorem:

Let A be an $n \times n$ nonsingular matrix. Then for any vector \mathbf{b} in \mathbb{R}^{n}, the unique solution of the system $A \mathbf{x}=\mathbf{b}$ is given by \mathbf{x} where

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

Remark: The condition $\operatorname{det}(A) \neq 0$ is necessary for Cramer's rule to be a viable method. This allows for the solution to be given in terms of ratios of determinants.

Remark: If $\operatorname{det}(A)=0$, the system may be consistent, but another method is required to make a determination.

Example
Determine whether Crammer's rule can be used to solve the system. If so, use it to solve the system.
$2 x_{1}+x_{2}=9$ restate in the form
$-x_{1}+7 x_{2}=-3$

$$
A \vec{x}=\vec{b}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 1 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
9 \\
-3
\end{array}\right]} \\
& A \quad \vec{x}=\vec{b} \\
& \operatorname{det}(A)=2(7)-(-1)(1)=14+1=15 \quad d t(A) \neq 0 \\
& A_{1}(\vec{b})=\left[\begin{array}{cc}
9 & 1 \\
-3 & 7
\end{array}\right], A_{2}(\vec{b})=\left[\begin{array}{cc}
2 & 9 \\
-1 & -3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}\left(A_{1}(\vec{b})\right) & =9(7)-(-3)(1)=66 \\
\operatorname{det}\left(A_{2}(\vec{b})\right) & =2(-3)-(-1)(9)=3 \\
x_{1} & =\frac{\operatorname{det}\left(A_{1}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{66}{15}=\frac{22}{5} \\
x_{2} & =\frac{\operatorname{det}\left(A_{2}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{3}{15}=\frac{1}{5}
\end{aligned}
$$

The solution is $\left(\frac{22}{5}, \frac{1}{5}\right)$.

Example
Determine whether Cramer's rule can be used to solve the system. If so, use it to solve the system.

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=3 \text { restate as } A \vec{x}=\vec{b} \\
& x_{2}+4 x_{3}=3 \\
& 5 x_{1}+6 x_{2}=4, \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right]} \\
& A \quad \vec{x}=\vec{b} \\
& \mathrm{O}_{\mathrm{O}_{3} \mathrm{l} 2} \\
& d t(A)=a_{21}^{\prime \prime} C_{21}+a_{22} C_{22}+a_{23} C_{23} \\
& =1(-1)^{2+2}\left|\begin{array}{cc}
1 & 3 \\
5 & 0
\end{array}\right|+4(-1)^{2+3}\left|\begin{array}{cc}
1 & 2 \\
5 & 6
\end{array}\right|
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
=(-15) \quad 1(6-10) & =-15+16=1 \\
A_{1}(\vec{b})=\left[\begin{array}{lll}
3 & 2 & 3 \\
3 & 1 & 4 \\
4 & 6 & 0
\end{array}\right] \quad \operatorname{det}\left(A_{1}(\vec{b})\right) & =4\left|\begin{array}{cc}
2 & 3 \\
1 & 4
\end{array}\right|-6\left|\begin{array}{cc}
3 & 3 \\
3 & 4
\end{array}\right| \\
=4(5)-6(3)=20-3 \\
(-1)
\end{array}\right] \begin{array}{rl}
20-18=2 \\
& =\left[\begin{array}{lll}
1 & 3 & 3 \\
0 & 3 & 4 \\
5 & 4 & 0
\end{array}\right] \operatorname{det}\left(A_{2}(\vec{b})\right)
\end{array}\right)=3\left|\begin{array}{cc}
1 & 3 \\
5 & 0
\end{array}\right|-4\left|\begin{array}{ll}
1 & 3 \\
5 & 4
\end{array}\right|
$$

$$
\begin{array}{r}
A_{3}(\vec{b})=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 3 \\
5 & 6 & 4
\end{array}\right] \quad \operatorname{dtt}\left(A_{3}(\vec{b})\right)=1\left|\begin{array}{ll}
1 & 3 \\
5 & 4
\end{array}\right|-3\left|\begin{array}{cc}
1 & 2 \\
5 & 6
\end{array}\right| \\
=(4-15)-3(6-10) \\
=-11-3(-4)=1
\end{array}
$$

The solution

$$
x_{1}=\frac{2}{1}, x_{2}=\frac{-1}{1}, x_{3}=\frac{7}{1}
$$

as a point it's $(2,-1,1)$.

Application: Laplace Transforms

In various engineering applications, electrical or mechanical components are often chosen to try to control the long term behavior of a system (e.g. adding a damper to kill off oscillatory behavior). Using Laplace Transforms, differential equations are converted into algebraic equations containing a parameter s. These give rise to systems of the form

$$
\begin{aligned}
3 s X-2 Y & =4 \\
-6 X+s Y & =1
\end{aligned}
$$

Determine the values of s for which the system is uniquely solvable. For such s, find the solution (X, Y) using Cramer's rule.

$$
\begin{aligned}
3 s X-2 Y & =4 \\
-6 X+s Y & =1 .
\end{aligned} \quad \text { Restate as } A \vec{x}=\vec{b}
$$

$$
\operatorname{det}(A)=3 s(s)-(-6)(-2)=3 s^{2}-12=3\left(s^{2}-4\right)
$$

The system is uniquely solvable when $\operatorname{det}(A) \neq 0$.

$$
\begin{gathered}
\operatorname{det}(A)=3\left(s^{2}-4\right)=3(s-2)(s+2)=0 \\
\text { if } s=2 \text { or } s=-2 .
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{dit}(A) \neq 0 \text { for } s \neq \pm 2 . \\
& {\left[\begin{array}{cc}
3 s & -2 \\
-6 & s
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \quad \text { For } s \neq \pm 2} \\
& A_{1}(\vec{b})=\left[\begin{array}{cc}
4 & -2 \\
1 & s
\end{array}\right] \quad \operatorname{det}\left(A_{1}(\vec{b})\right)=4 s+2 \\
& A_{2}(\vec{b})=\left[\begin{array}{cc}
3 s & 4 \\
-6 & 1
\end{array}\right] \quad \operatorname{det}\left(A_{2}(\vec{b})\right)=3 s+24 \\
& \text { For } s \neq \pm 2, \quad \text { the sol aton } \\
& X=\frac{4 s+2}{3\left(s^{2}-4\right)}, Y=\frac{3 s+24}{3\left(s^{2}-4\right)}
\end{aligned}
$$

Area \& Volume

Theorem:

If \mathbf{u} and \mathbf{v} are nonzero, nonparallel vectors in \mathbb{R}^{2}, then the area of the parallelogram determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v}]$.

Example

Find the area of the parallelogram with vertices $(0,0),(-2,4),(4,-5)$, and $(2,-1)$.

$$
\begin{aligned}
& \text { We } \vec{u}=\left[\begin{array}{c}
-2 \\
4
\end{array}\right] \\
& \vec{v}=\left[\begin{array}{c}
4 \\
-5
\end{array}\right] \\
& A=[\vec{u} \vec{v}] \\
& \operatorname{dt}(A)=-6 \\
& \text { Ara }=6
\end{aligned}
$$

[^0]: ${ }^{1}$ The process of multiplying by P^{-1} on the left and P on the right is called a

