March 6 Math 3260 sec. 51 Spring 2024

Section 3.3: Cramer's Rule, Volume, and Linear Transformations

Notation:

For $n \times n$ matrix A and \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing the $i^{\text {th }}$ column with the vector \mathbf{b}. That is

$$
A_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_{n}\right]
$$

Theorem:

Let A be an $n \times n$ nonsingular matrix. Then for any vector \mathbf{b} in \mathbb{R}^{n}, the unique solution of the system $A \mathbf{x}=\mathbf{b}$ is given by \mathbf{x} where

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

Area \& Volume

Theorem:

If \mathbf{u} and \mathbf{v} are nonzero, nonparallel vectors in \mathbb{R}^{2}, then the area of the parallelogram determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v}]$.

Volume of a Parallelepiped

Theorem:

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are nonzero, non-collinear vectors in \mathbb{R}^{3}, then the volume of the parallelepiped determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$.

Example
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(2,3,0),(-2,0,2)$ and $(-1,3,-1)$.

$$
\begin{aligned}
& \vec{u}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right] \\
& \vec{w}=\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right]
\end{aligned}
$$

Let $A=\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & -2 & -1 \\
3 & 0 & 3 \\
0 & 2 & -1
\end{array}\right] \cdot \text { Going down column } \\
1 \\
\operatorname{det}(A)=2(-1)^{1+1}\left|\begin{array}{cc}
0 & 3 \\
2 & -1
\end{array}\right|+3(-1)^{2+1}\left|\begin{array}{cc}
-2 & -1 \\
2 & -1
\end{array}\right|+0 \\
=2(0-6)-3(2+2)=-12-12=-24 \\
\text { Volume }=|-24|=24
\end{gathered}
$$

Section 4.1: Vector Spaces and Subspaces

Recall that we had defined \mathbb{R}^{n} as the set of all n-tuples of real numbers. We defined two operations, vector addition and scalar multiplication, and said that the following algebraic properties hold:

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
(viii) $\mathbf{1 u}=\mathbf{u}$

We later saw that a set of $m \times n$ matrices with scalar multiplication and matrix addition satisfies the same set of properties.

Question: Are there other sets of objects with operations that share this same structure?

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $1 \mathbf{u}=\mathbf{u}$

Remarks:

- V is more accurately called a real vector space when we assume that the relevant scalars are the real numbers.
- Property $1 ., \mathbf{u}+\mathbf{v} \in V$, is called being closed under (or with respect to) vector addition.
- Property 6., cu $\in V$, is called being closed under (or with respect to) scalar multiplication.
- A vector space has the same basic algebraic structure as \mathbb{R}^{n}
- These are axioms. That means they are assumed, not proven. However, we can use them to prove or disprove that some set with operations is actually a vector space.

An Example of a Vector Space: "P two"

"P two"

$$
\mathbb{P}_{2}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2} \mid p_{0}, p_{1}, p_{2} \in \mathbb{R}\right\}
$$

Consider t to be some real variable, and consider the scalars to be \mathbb{R}. Let \mathbb{P}_{2} be the set of all polynomials with real coefficients of degree at most two.

Examples of elements of \mathbb{P}_{2} include things like

$$
\mathbf{p}(t)=1+t-3 t^{2}, \quad \mathbf{q}(t)=-2+5 t+12 t^{2}, \quad \text { and } \quad \mathbf{r}(t)=\pi+\frac{1}{\pi} t
$$

Remark: It doesn't make sense to state that \mathbb{P}_{2} is a vector space until we define scalar multiplication and vector addition.

An Example of a Vector Space: "P two"

Let $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}$ and $\mathbf{q}(t)=q_{0}+q_{1} t+q_{2} t^{2}$ be polynomials in \mathbb{P}_{2} and c be a scalar. We define the two operations as follows:

Scalar Multiplication: $\quad(c \boldsymbol{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+c p_{2} t^{2}$.

$$
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)
$$

Vector Addition:

$$
=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\left(p_{2}+q_{2}\right) t^{2}
$$

Remark: It can be shown that \mathbb{P}_{2} with these operations satisfies the ten vector space axiom. Note, this means that the polynomials ARE vectors.

