March 6 Math 3260 sec. 52 Spring 2024

Section 3.3: Cramer's Rule, Volume, and Linear Transformations

Notation:

For $n \times n$ matrix A and **b** in \mathbb{R}^n , let $A_i(\mathbf{b})$ be the matrix obtained from A by replacing the *i*th column with the vector **b**. That is

$$A_i(\mathbf{b}) = [\mathbf{a}_1 \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_n]$$

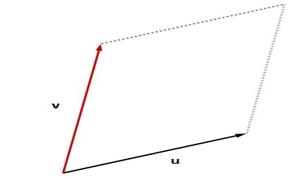
Theorem:

Let *A* be an $n \times n$ nonsingular matrix. Then for any vector **b** in \mathbb{R}^n , the unique solution of the system $A\mathbf{x} = \mathbf{b}$ is given by **x** where

$$x_i = rac{\det A_i(\mathbf{b})}{\det A}, \quad i = 1, \dots, n$$

< ロ > < 同 > < 回 > < 回 >

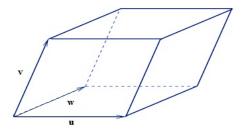
Area & Volume (Video)



Theorem:

If **u** and **v** are nonzero, nonparallel vectors in \mathbb{R}^2 , then the area of the parallelogram determined by these vectors is $|\det(A)|$ where $A = [\mathbf{u} \ \mathbf{v}]$.

Volume of a Parallelepiped

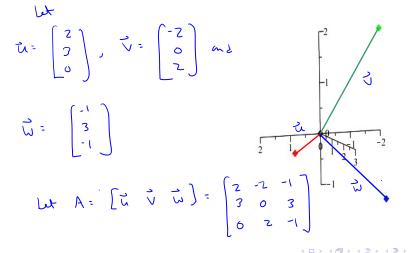


Theorem:

If **u**, **v**, and **w** are nonzero, non-collinear vectors in \mathbb{R}^3 , then the volume of the parallelepiped determined by these vectors is $|\det(A)|$ where $A = [\mathbf{u} \mathbf{v} \mathbf{w}]$.

Example

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (2,3,0), (-2,0,2) and (-1,3,-1).

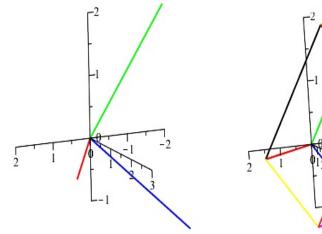


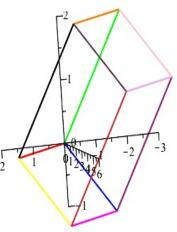
Doing a cofactor expansion doorn Glumm 2.

$$det(A) = -2(-1) \begin{vmatrix} 1+2 \\ 0 - 1 \end{vmatrix} + 0 \not R + 2(-1) \begin{vmatrix} 3+2 \\ 3 \end{vmatrix} = -2(-1) \begin{vmatrix} 1+2 \\ 0 - 1 \end{vmatrix}$$

$$=2(-3) - 2(6+3) = -6 - 18 = -24$$

< □ > < □ > < ■ > < ■ > < ■ > < ■ > = つへで March 5, 2024 5/36





《曰》《聞》《臣》《臣》 [] 臣

Section 4.1: Vector Spaces and Subspaces

Recall that we had defined \mathbb{R}^n as the set of all *n*-tuples of real numbers. We defined two operations, vector addition and scalar multiplication, and said that the following algebraic properties hold:

For every \mathbf{u}, \mathbf{v} , and \mathbf{w} in \mathbb{R}^n and scalars c and d

- (i) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- (ii) (u + v) + w = u + (v + w) (vi) (c + d)u = cu + du
- (iii) u + 0 = 0 + u = u (vii) c(du) = d(cu) = (cd)u
- (iv) u + (-u) = -u + u = 0 (viii) 1u = u

We later saw that a set of $m \times n$ matrices with scalar multiplication and matrix addition satisfies the same set of properties.

Question: Are there other sets of objects with operations that share this same structure?

Definition: Vector Space

A **vector space** is a nonempty set *V* of objects called *vectors* together with two operations called *vector addition* and *scalar multiplication* that satisfy the following ten axioms:

For all \mathbf{u}, \mathbf{v} , and \mathbf{w} in *V*, and for any scalars *c* and *d*

1. The sum $\mathbf{u} + \mathbf{v}$ is in V.

$$\mathbf{2.} \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$$

3.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

- 4. There exists a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar c, $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9.
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$
.

イロト イポト イヨト イヨト

Remarks:

- V is more accurately called a *real vector space* when we assume that the relevant scalars are the real numbers.
- Property 1., u + v ∈ V, is called being closed under (or with respect to) vector addition.
- Property 6., cu ∈ V, is called being closed under (or with respect to) scalar multiplication.
- A vector space has the same basic algebraic structure as Rⁿ
- These are axioms. That means they are assumed, not proven. However, we can use them to prove or disprove that some set with operations is actually a vector space.

An Example of a Vector Space: "P two"

"P two"

$$\mathbb{P}_2 = \left\{ \begin{array}{c|c} \mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \mathbf{p}_2 t^2 \end{array} \middle| \begin{array}{c} \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2 \in \mathbb{R} \end{array} \right\}$$

Consider *t* to be some real variable, and consider the scalars to be \mathbb{R} . Let \mathbb{P}_2 be the set of all polynomials with real coefficients of degree at most two.

Examples of elements of \mathbb{P}_2 include things like

$$\mathbf{p}(t) = 1 + t - 3t^2$$
, $\mathbf{q}(t) = -2 + 5t + 12t^2$, and $\mathbf{r}(t) = \pi + \frac{1}{\pi}t$.

Remark: It doesn't make sense to state that \mathbb{P}_2 is a vector space until we define scalar multiplication and vector addition.

March 5, 2024

10/36

An Example of a Vector Space: "P two" Let $\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2$ and $\mathbf{q}(t) = q_0 + q_1 t + q_2 t^2$ be polynomials in \mathbb{P}_2 and *c* be a scalar. We define the two operations as follows:

Scalar Multiplication:
$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + cp_2t^2$$
.

Vector Addition:

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$

$$= (p_0 + q_0) + (p_1 + q_1)t + (p_2 + q_2)t^2.$$

Remark: It can be shown that \mathbb{P}_2 with these operations satisfies the ten vector space axiom. Note, this means that

the polynomials ARE vectors.

March 5, 2024

11/36