March 8 Math 3260 sec. 51 Spring 2024

Section 4.1: Vector Spaces and Subspaces

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $1 \mathbf{u}=\mathbf{u}$

An Example of a Vector Space: "P two"

"P two"

$$
\mathbb{P}_{2}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2} \mid p_{0}, p_{1}, p_{2} \in \mathbb{R}\right\}
$$

Consider t to be some real variable, and consider the scalars to be \mathbb{R}. Let \mathbb{P}_{2} be the set of all polynomials with real coefficients of degree at most two.

Examples of elements of \mathbb{P}_{2} include things like

$$
\mathbf{p}(t)=1+t-3 t^{2}, \quad \mathbf{q}(t)=-2+5 t+12 t^{2}, \quad \text { and } \quad \mathbf{r}(t)=\pi+\frac{1}{\pi} t
$$

Remark: It doesn't make sense to state that \mathbb{P}_{2} is a vector space until we define scalar multiplication and vector addition.

An Example of a Vector Space: "P two"

Let $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}$ and $\mathbf{q}(t)=q_{0}+q_{1} t+q_{2} t^{2}$ be polynomials in \mathbb{P}_{2} and c be a scalar. We define the two operations as follows:

Scalar Multiplication: $\quad(c \boldsymbol{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+c p_{2} t^{2}$.

$$
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)
$$

Vector Addition:

$$
=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\left(p_{2}+q_{2}\right) t^{2}
$$

Remark: It can be shown that \mathbb{P}_{2} with these operations satisfies the ten vector space axiom. Note, this means that the polynomials ARE vectors.

Example

$$
\mathbf{p}(t)=1+t-3 t^{2}, \quad \mathbf{q}(t)=-2+5 t+12 t^{2}, \quad \text { and } \quad \mathbf{r}(t)=\pi+\frac{1}{\pi} t
$$

Evaluate
1.

$$
\begin{aligned}
(\mathbf{p}+\mathbf{q})(t)=\vec{p}(t)+\vec{q}(t)=(1-2) & +(1+5) t+(-3+12) t^{2} \\
& =-1+6 t+9 t^{2}
\end{aligned}
$$

2. $(-\mathbf{1} \mathbf{r})(t)=-1 \vec{r}(t)=-1(\pi)+(-1) \frac{1}{\pi} t=-\pi-\frac{1}{\pi} t$
3.

$$
\begin{aligned}
(-1 \mathbf{r}+\mathbf{r})(t)=-1 \vec{r}(t)+\vec{r}(t) & =-\pi+\pi+\left(-\frac{1}{\pi}+\frac{1}{\pi}\right) t \\
& =0+0 t
\end{aligned}
$$

The Zero Vector in \mathbb{P}_{2}
Let $\mathbf{0}(t)=a_{0}+a_{1} t+a_{2} t^{2}$ be the zero vector in \mathbb{P}_{2}.
Use the property ${ }^{1}$ in Axiom 4 to identify the values of the coefficients a_{0}, a_{1}, and a_{2}.

$$
\text { Let } \begin{aligned}
& \vec{p}(t)=p_{0}+p_{1} t+p_{2} t^{2} \\
&(\overrightarrow{0}+\vec{p})(t)=\overrightarrow{0}(t)+\vec{p}(t)=\vec{p}(t) \\
&=\left(a_{0}+p_{0}\right)+\left(a_{1}+p_{1}\right) t+\left(a_{2}+p_{2}\right) t^{2} \\
&=p_{0}+p_{1} t+p_{2} t^{2} \\
& \Rightarrow a_{0}+p_{0}=p_{0} \quad \Rightarrow a_{0}=0
\end{aligned}
$$

${ }^{1}$ Axiom 4 says that $\mathbf{p}+\mathbf{0}=\mathbf{p}$ for every vector \mathbf{p} in \mathbb{P}_{2}.

$$
\begin{aligned}
& a_{1}+p_{1}=p_{1} \Rightarrow a_{1}=0 \\
& a_{2}+p_{2}=p_{2} \Rightarrow a_{2}=0
\end{aligned}
$$

That is, $a_{0}=a_{1}: a_{2}=0$ so

$$
\overrightarrow{0}(t)=0+0 t+0 t^{2}
$$

For an integer $n \geq 0$, let \mathbb{P}_{n} denote the set of all polynomials with real coefficients of degree at most n.

$$
\mathbb{P}_{n}=\left\{\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \mid p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{R}\right\}
$$

For \mathbf{p} and \mathbf{q} in \mathbb{P}_{n} and scalar c, define scalar multiplication and vector addition by

$$
(c \boldsymbol{p})(t)=c \mathbf{p}(t)=c p_{0}+c p_{1} t+\cdots+c p_{n} t^{n}
$$

$$
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) t+\cdots+\left(p_{n}+q_{n}\right) t^{n}
$$

Remark: It can readily be shown that the zero vector $\mathbf{0}(t)=0+0 t+\cdots+0 t^{n}$, and the additive inverse of $\mathbf{p}(t)=p_{0}+p_{1} t+\cdots+p_{n} t^{n}$ is

$$
-\mathbf{p}(t)=-p_{0}-p_{1} t-\cdots-p_{n} t^{n}
$$

A set that is not a Vector Space

Let $S=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \leq 0, y \leq 0\right\}$ with. regular vector addition and scalar multiplication in \mathbb{R}^{2}.

Geometrically, what is the set S ?

$$
\begin{aligned}
& \text { Sis the third } \\
& \text { quadrant including } \\
& \text { the neg atime } x \\
& \text { and } y \text { axes. }
\end{aligned}
$$

A set that is not a Vector Space

$S=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}.

Does Axiom ${ }^{2}$ 1. hold for S ?

$$
\begin{aligned}
& \text { s Axiom }{ }^{2} \text { 1. hold for } S \text { ? } \\
& \text { Let } \vec{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{u}=\left[\begin{array}{l}
y \\
v
\end{array}\right] \text { in } S . \\
& \begin{aligned}
\vec{x}+\vec{u}=\left[\begin{array}{l}
x+u \\
y+v
\end{array}\right] \quad & x+u \leq 0 \text { and } \\
& y+v \leq 0 \\
& \Rightarrow \vec{x}+\vec{u} \in S .
\end{aligned}
\end{aligned}
$$

${ }^{2}$ Axiom 1 is closure under vector addition.
S is closed under vector addition.

A set that is not a Vector Space

$S=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \leq 0, y \leq 0\right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^{2}.

Does Axiom ${ }^{3}$ 6. hold for S ?

$$
\begin{aligned}
& \text { Consider } \vec{u}=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] . \quad \vec{u} \text { is in } S . \\
& -2 \vec{u}=\left[\begin{array}{c}
2 \\
4
\end{array}\right]: \quad-2 \vec{u} \notin S \\
& S \text { is not closed under scalar nut. }
\end{aligned}
$$

[^0]

Some Algebraic Properties of Vector Spaces
Theorem
Let V be a vector space. For each \mathbf{u} in V and scalar c
(i) $\mathbf{0 u}=\mathbf{0}$
(ii) $\mathbf{c 0}=\mathbf{0}$
(iii) $-1 \mathbf{u}=-\mathbf{u}$

Proof of (i).
Let $\vec{u} \in V$ ben arbitrary. Note that the scalar $0=0+0$.

$$
\begin{aligned}
O \vec{u} & =(0+0) \vec{u} \\
& =0 \vec{u}+0 \vec{u}
\end{aligned}
$$

The ne exist a voc for $-0 \vec{u}$. Add this to both sides.

$$
\begin{aligned}
-O \vec{u}+O \vec{u} & =-O \vec{u}+O \vec{u}+O \vec{u} \\
\overrightarrow{0} & =\vec{O}+O \vec{u} \\
\overrightarrow{0} & =O \vec{u} .
\end{aligned}
$$

This is the required conclusion.

Subspaces

Definition:

A subspace of a vector space V is a subset H of V for which
a) The zero vector is in ${ }^{2} \mathrm{H}$
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies cu is in H)
${ }^{a}$ This is sometimes replaced with the condition that H is nonempty.

Remark: A subspace is a vector space. If these three properties hold, it inherits the structure from its parent space.

Example
Determine which of the following is a subspace of \mathbb{R}^{2}.

1. The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 0\right)$.

Call the set H.
Is $\overrightarrow{0}$ in H ? Doer $(0,0)=(u, 0)$ for some
red u_{1} ? Yes, if $u_{1}=0$, then we get $(0,0)$.

$$
\begin{aligned}
& \text { If } \vec{u}, \vec{v} \in H \quad \text { is } \vec{u}+\vec{v} \in H \geqslant \\
& \vec{u}=(u, 0), \vec{v}=\left(v_{1}, 0\right) .
\end{aligned}
$$

$$
\vec{u}+\vec{v}=\left(u_{1}+v_{1}, \quad 0+0\right)=\left(u_{1}+v_{1}, 0\right) .
$$

Yes, $\vec{u}+\vec{v} \in H$
ls $\quad c \vec{h} \in H . \quad c \vec{h}=(c h, c(0))=(c h, 0)$

Yes. H is closed under scalar multiplication.
N is a subspace of \mathbb{R}^{2}.

[^0]: ${ }^{3}$ Axiom 6 is closure under scalar multiplication.

