March 8 Math 3260 sec. 51 Spring 2024

Section 4.1: Vector Spaces and Subspaces

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all **u**, **v**, and **w** in *V*, and for any scalars *c* and *d*

1. The sum $\mathbf{u} + \mathbf{v}$ is in V.

2.
$$u + v = v + u$$
.

3.
$$(u + v) + w = u + (v + w)$$
.

- 4. There exists a **zero** vector **0** in *V* such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar *c*, *c***u** is in *V*.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9. c(du) = d(cu) = (cd)u.

An Example of a Vector Space: "P two"

"P two"

$$\mathbb{P}_2 = \left\{ \begin{array}{c|c} \mathbf{p}(t) = \mathbf{p}_0 + \mathbf{p}_1 t + \mathbf{p}_2 t^2 \end{array} \middle| \begin{array}{c} \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2 \in \mathbb{R} \end{array} \right\}$$

Consider *t* to be some real variable, and consider the scalars to be \mathbb{R} . Let \mathbb{P}_2 be the set of all polynomials with real coefficients of degree at most two.

Examples of elements of \mathbb{P}_2 include things like

$$\mathbf{p}(t) = 1 + t - 3t^2$$
, $\mathbf{q}(t) = -2 + 5t + 12t^2$, and $\mathbf{r}(t) = \pi + \frac{1}{\pi}t$.

Remark: It doesn't make sense to state that \mathbb{P}_2 is a vector space until we define scalar multiplication and vector addition.

An Example of a Vector Space: "P two" Let $\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2$ and $\mathbf{q}(t) = q_0 + q_1 t + q_2 t^2$ be polynomials in \mathbb{P}_2 and *c* be a scalar. We define the two operations as follows:

Scalar Multiplication:
$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + cp_2t^2$$
.

Vector Addition:

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$

$$= (p_0 + q_0) + (p_1 + q_1)t + (p_2 + q_2)t^2.$$

Remark: It can be shown that \mathbb{P}_2 with these operations satisfies the ten vector space axiom. Note, this means that

the polynomials ARE vectors.

March 6, 2024

3/48

Example

$$\mathbf{p}(t) = 1 + t - 3t^2$$
, $\mathbf{q}(t) = -2 + 5t + 12t^2$, and $\mathbf{r}(t) = \pi + \frac{1}{\pi}t$.

Evaluate

1.
$$(\mathbf{p} + \mathbf{q})(t) = \vec{p}(t_{3} + \vec{q}(t_{3}) = (1 - 2) + (1 + 5) + (-3 + 12) + t^{2}$$

= -1 + 6+ + 9+ t²

2.
$$(-1\mathbf{r})(t) = -1\vec{v}(t) = -1(\pi s + (-1) + t = -\pi - + t)$$

3.
$$(-1\mathbf{r} + \mathbf{r})(t) = -1\vec{r}(t) + \vec{r}(t) = -\pi + \pi + (-\frac{1}{2} - \frac{1}{2})t$$

= 0 + 0 t

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ○ Q (* March 6, 2024 4/48

The Zero Vector in \mathbb{P}_2

Let $\mathbf{0}(t) = a_0 + a_1t + a_2t^2$ be the zero vector in \mathbb{P}_2 .

Use the property¹ in Axiom 4 to identify the values of the coefficients a_0, a_1 , and a_2 .

Let $\vec{p}(t) = p_0 + p_1 t + p_2 t^2$ $(\vec{0} + \vec{p})(t) = \vec{0}(t) + \vec{p}(t) = \vec{p}(t)$ $= (a_0 + p_0) + (a_1 + p_1)t + (a_2 + p_2)t^2$ $= p_0 + p_1 t + p_2 t^2$ $\Rightarrow a_0 + p_0 = p_0 \Rightarrow a_0 = 0$

¹Axiom 4 says that $\mathbf{p} + \mathbf{0} = \mathbf{p}$ for every vector \mathbf{p} in \mathbb{P}_2 .

 $a_{1+} P_{1-} = P_{1-} \implies a_{1-} = 0$ $a_{2+} P_{2-} P_{2-} \implies a_{2-} = 0$ $That is, \quad a_{0-} = a_{1-} = a_{2-} = 0$ $\delta(t) = 0 + 0t + 0t^{2}$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで March 6, 2024 6/48

\mathbb{P}_n

For an integer $n \ge 0$, let \mathbb{P}_n denote the set of all polynomials with real coefficients of degree at most *n*.

$$\mathbb{P}_n = \left\{ \left| \mathbf{p}(t) = p_0 + p_1 t + \dots + p_n t^n \right| p_0, p_1, \dots, p_n \in \mathbb{R} \right\}$$

For **p** and **q** in \mathbb{P}_n and scalar *c*, define scalar multiplication and vector addition by

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = cp_0 + cp_1t + \cdots + cp_nt^n$$

 $(\mathbf{p}+\mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t) = (p_0 + q_0) + (p_1 + q_1)t + \dots + (p_n + q_n)t^n.$

Remark: It can readily be shown that the zero vector $\mathbf{0}(t) = 0 + 0t + \dots + 0t^n$, and the additive inverse of $\mathbf{p}(t) = p_0 + p_1 t + \dots + p_n t^n$ is $-\mathbf{p}(t) = -p_0 - p_1 t - \dots - p_n t^n$.

A set that is not a Vector Space Let $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 .

Geometrically, what is the set S?

A set that is not a Vector Space $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 .

²Axiom 1 is closure under vector addition.

March 6, 2024 9/48

S is closed under vector addition.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □

A set that is not a Vector Space $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \le 0, y \le 0 \right\}$ with regular vector addition and scalar multiplication in \mathbb{R}^2 .

Does Axiom³ 6. hold for S?

Consider
$$\ddot{u} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$
. \ddot{u} is in \dot{S} .
 $-z\ddot{u} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$: $-z\ddot{u} \notin S$
S is not closed under scelar mult.

³Axiom 6 is closure under scalar multiplication.

A D > A B > A B > A

< ロ > < 書 > < 書 > < 書 > 書 の Q () March 6, 2024 12/48

Some Algebraic Properties of Vector Spaces

Theorem

Let *V* be a vector space. For each **u** in *V* and scalar *c*

(ii)
$$c\mathbf{0} = \mathbf{0}$$

(iii)
$$-\mathbf{1}\mathbf{u} = -\mathbf{u}$$

Proof of (i).
Let
$$U \in V$$
 be arbitrary. Note that
the scalar $0 = 0 + 0$.

March 6, 2024 13/48

- 34

イロト イポト イヨト イヨト

$$O\ddot{u} = (0+0)\ddot{u}$$

$$= O\ddot{u} + O\ddot{u}$$
There exist a vector $-O\ddot{u}$. Add this to
beth sider.
 $-O\ddot{u} + O\ddot{u} = -O\ddot{u} + O\ddot{u} + O\ddot{u}$
 $\ddot{o} = \ddot{o} + O\ddot{u}$
 $\ddot{o} = O\vec{u}$.
This is the required conclusion.

March 6, 2024 14/48

・ロト・西ト・ヨト・ヨー つくぐ

Subspaces

Definition:

A subspace of a vector space V is a subset H of V for which

- a) The zero vector is in^a H
- b) *H* is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in *H* implies $\mathbf{u} + \mathbf{v}$ is in *H*)

c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

^aThis is sometimes replaced with the condition that H is nonempty.

Remark: A subspace is a vector space. If these three properties hold, it inherits the structure from its parent space.

March 6, 2024

15/48

Example

Determine which of the following is a subspace of \mathbb{R}^2 .

1. The set of all vectors of the form $\mathbf{u} = (u_1, 0)$.

Call the sat H. 15 0 in H? Doer (0,0) = (u, 0) for some real 4,? Yes, if u.= 0, then we get (0,0). IF J, J CH is J+J CH? $\vec{u} = (u_1, o)$, $\vec{v} = (v_1, o)$. (I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) - 31

March 6, 2024

16/48

 $\vec{u} + \vec{v} = (u, + V_{1}, 0 + 0) = (u, + V_{1}, 0).$ Yes, L+JEH ls che H. ch = (ch, c(n)) = (ch, o)Yes. His closed under Scalor metiplication. His a subspace of R.

March 6, 2024 17/48

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙