Mechanical and Circuit Formulas Math 2306

Sping-Mass-Damping: For an object of mass m attached to a spring with spring constant k subject to linear damping (i.e. proportional to velocity) with damping coefficient b, the displacement x relative to equilibrium satisfies

$$
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=f(t)
$$

where f is the external driving force. If there is no external force, then the right side is zero. In the absence of damping, $b=0$.

Simple Harmonic Motion: In the absence of damping or driving, we have

$$
x^{\prime \prime}+\omega^{2} x=0 \quad \text { where } \quad \omega=\sqrt{\frac{k}{m}} .
$$

If the initial displacement $x(0)=x_{0}$ and initial velocity is $x^{\prime}(0)=x_{1}$, then the motion has

- Period $T=\frac{2 \pi}{\omega}$ and frequency $f=1 / T$
- Amplitude $A=\sqrt{x_{0}^{2}+x_{1}^{2} / \omega^{2}}$
- Circular (and resonance frequency) ω

Hooke's Law: If an object of mass m displaces a spring δx units, the force imparted by the spring is

$$
W=k \delta x \quad \text { where weight } \quad W=m g
$$

Displacement in Equilibrium: If an object displaces a spring δx units in equilibrium, then

$$
\omega^{2}=\frac{k}{m}=\frac{g}{\delta x} .
$$

LRC-series Circuit: For inductance L henries, resistance R ohms, capacitance C farads, and applied force E volts, the charge on the capacitor q satisfies

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E, \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0}
$$

Current i is rate of change of charge, $i=\frac{d q}{d t}$. The steady state and transient charges are the particular solution $\left(q_{p}\right)$ and the complementary solution $\left(q_{c}\right)$, respectively.

Damping types: Overdamped $=$ two distince real roots, Critically damped $=$ one repeated real root, Underdamped = complex conjugate roots. (For both mechanical and circuits without external applied force.)

Damping Ratio: Relative to the differential equation

$$
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0
$$

the ratio

$$
\zeta=\frac{b}{2 \sqrt{m k}}
$$

is called the damping ratio.

The damping type can be determined from this value as follows:

$\zeta<1$	under damped
$\zeta=1$	critically damped
$\zeta>1$	over damped

This criterion is identical to the one I'm using. In particular, note that this is related to the roots of the characteristic equation as follows.

ζ value	b, m, k values	Discriminant	Characteristic Root Case	Damping Type
$\zeta<1$	$b<2 \sqrt{m k}$	$b^{2}-4 m k<0$	complex roots	under damped
$\zeta=1$	$b=2 \sqrt{m k}$	$b^{2}-4 m k=0$	1 repeated real root	critically damped
$\zeta>1$	$b>2 \sqrt{m k}$	$b^{2}-4 m k>0$	2 distinct real roots	over damped

