November 10 Math 2306 sec. 52 Fall 2021
Section 16: Laplace Transforms of Derivatives and IVPs
Use the Laplace transform to solve the system of equations
X'(t) = y, x(0)=1, X (0)=0
y(t) = x, y(0)=1
We took the transform and used Crammer’s Rule to get to the solution
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Section 17: Fourier Series: Trigonometric Series

Consider the following problem:

An undamped spring mass system has a mass of 2 kg attached to a
spring with spring constant 128 N/m. The mass is driven by an
external force f(t) = 2t for —1 < t < 1 that is 2-periodic so that

f(t+2) = f(t) forall t > 0.
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Figure: d2 +128x = (1)
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Common Models of Periodic Sources (e.g. Voltage)

1V V(sine)
v V(square)
OV-

1V V(triangular)

ov-

I

Figure: We'd like to solve, or at least approximate solutions, to ODEs and
PDEs with periodic right hand sides.
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Series Representations for Functions
The goal is to represent a function by a series

o
f(x) = ) _ (some simple functions)
n=1
i o0
In calculus, you saw power series f(x) = > an(x — ¢)" where the
n=0
simple functions were powers (x — ¢)".
Here, you will see how some functions can be written as series of
trigonometric functions

o0

f(x) = Z (an cos nx + by sin nx)
n=0

We’'ll move the n = 0 to the front before the rest of the sum.
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Some Preliminary Concepts

Suppose two functions f and g are integrable on the interval [a, b]. We

define the inner product of f and g on [a, b] as

A b
NS Q; ok < fg>= / f(x)g(x) dx.
v a
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We say that f and g are orthogonal on [a, b] if

<f,g>=0.

The product depends on the interval, so the orthogonality of two
functions depends on the interval.
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Properties of an Inner Product

Let f, g, and h be integrable functions on the appropriate interval and
let ¢ be any real number. The following hold

(i) <f,g>=<g,f>
(i) <f,g+h>=<f,g>+<f h>

(i) <cf,g>=c< f,g>

(iv) < f,f>>0and < f,f>=0ifand onlyif f =0
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Orthogonal Set

A set of functions {¢o(x), ¢1(x), ¢2(x), ...} is said to be orthogonal on
an interval [a, b] if

b
< Om, op >= / dm(X)dn(x)dx =0 whenever m# n.

Note that any function ¢(x) that is not identically zero will satisfy
b
<P >= / $?(x) dx > 0.
a

Hence we define the square norm of ¢ (on [a, b]) to be

b
Il = / 62(x) dx.
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An Orthogonal Set of Functions

Consider the set of functions

{1,cos x,cos2x,cos 3X, ...,sinX,sin2x,sin3x,...} on [-m, 7]
: J
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An Orthogonal Set of Functions
Consider the set of functions

{1,cos x,cos2x, cos 3X, ...,sin X,sin2x,sin3x,...} on [—m, 7.

It can easily be verified that

/ cosnxdx =0 and sinmxdx=0 forall nm>1,

—Tr —Tr

T
/cosnXSinmxdx:O forall mn>1, and

—Tr

0, m#n

T vy
cos NX cos Mx dx = sin NX sin mx dx =
T, n=m
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An Orthogonal Set of Functions on [—m, 7]

These integral values indicated that the set of functions
{1, cos x, cos 2x, cos 3x, . .., sin X,sin 2x,sin 3x, ...}

is an orthogonal set on the interval [, 7].

Key Point: This means that if we take any two functions f and g from
this set, then

™

f(x)g(x)dx =0 if fand g are different functions!
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Fourier Series

Suppose f(x) is defined for —r < x < 7. We would like to know how to
write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) ag, ai, a», ... and by, bo, ... such
that!

o0
?0 z_: ap cos NX + bpsin nx) .

"We'll write 2 as opposed to a purely for convenience.
2
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Fourier Series

oo
o ,
=5 + n§1 an cos NX + bpsin nx) .

The question of convergence naturally arises when we wish to work
with infinite series. To highlight convergence considerations, some
authors prefer not to use the equal sign when expressing a Fourier
series and instead write

a
f(X)N?°+...

Herein, we’ll use the equal sign with the understanding that equality
may not hold at each point.

Convergence will be address later.
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Finding an Example Coefficient

Let’s find the coefficient by.

Start with the series f(x) = ?O Z (an cos nx + bpsin nx), and
multiply both sides by sin(4x).

f(x) sin(4x) = % sin(4x) + i (ancos nx sin(4x) + bpsin nx sin(4x)).

n=1
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