November $\stackrel{10}{8}$ Math 2306 sec. 52 Spring 2023_{2}

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

Note that by definition

$$
e^{-s t} \cdot e^{t}=e^{-s t+t}
$$

$$
\begin{aligned}
\mathscr{L}\left\{e^{t} t^{2}\right\} & =\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t \\
& =\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t \quad \text { Let } w=s-1 \\
& =\int_{0}^{\infty} e^{-w t} t^{2} d t \\
& =\frac{2!}{w^{3}}=\frac{2}{(s-1) t}
\end{aligned}
$$

Shift (or translation) in s.

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

We call this a translation (or a shift) in s theorem.

Example:

Suppose $f(t)$ is a function whose Laplace transform ${ }^{1}$

$$
F(s)=\mathscr{L}\{f(t)\}=\frac{1}{\sqrt{s^{2}+9}}
$$

Evaluate

$$
\begin{aligned}
\mathscr{L}\left\{e^{-2 t} f(t)\right\} & =\frac{1}{\sqrt{(s+2)^{2}+9}} \\
\uparrow_{Q=2} \quad & F(s-(-2))=F(s+2)
\end{aligned}
$$

${ }^{1}$ It's not in our table, but this is an actual function known as a Bessel function.

Examples: Evaluate
(a) $\mathscr{L}\left\{t^{6} e^{3 t}\right\}=\frac{6!}{(s-3)^{7}}$
we need $\quad F(s)=\mathcal{L}\left\{t^{6}\right\}=\frac{6!}{s^{7}}$
ow answer will be $F(s-3)$

Examples: Evaluate
(b)

$$
\begin{aligned}
& \mathscr{L}\left\{e^{-t} \cos (t)\right\}=\frac{s+1}{(s+1)^{2}+1} \\
& F(s)=\mathscr{L}\{\cos t\}=\frac{s}{s^{2}+1^{2}} \\
& a=-1 \quad F(s-(-1))=F(s+1)
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathscr{L}\left\{e^{-t} \sin (t)\right\} & =\frac{1}{(s+1)^{2}+1} \\
F(s) & =\mathscr{L}\{\sin t\}=\frac{1}{s^{2}+1^{2}} \quad F(s+1)
\end{aligned}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$

Since $s^{2}+2 s+2$ doesn't factor, partial fractions is not useful. well complete the square.

$$
s^{2}+2 s+2=s^{2}+2 s+1-1+2=(s+1)^{2}+1
$$

$$
\frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1}
$$

we need $s+1$ everywhere s would be.

Use $s=s+1-1$

$$
\frac{s}{(s+1)^{2}+1}=\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} & =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =e^{-1 t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}-e^{-1 t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \\
& =e^{-t} \cos t-e^{-t} \sin t
\end{aligned}
$$

Inverse Laplace Transforms (repeated linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$
we need a partial fraction decamp.

$$
\begin{aligned}
s\left(s^{21}\right)^{2} \frac{-s^{2}+3 s+1}{s(s-1)^{2}} & =\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \\
-s^{2}+3 s+1 & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
-1 s^{2}+3 s+1 & =(A+B) s^{2}+(-2 A-B+C) s+A \\
A+B=-1 & \\
-2 A-B+C & =3
\end{aligned}
$$

clear

$$
\begin{array}{rl}
A=1 & B=-1-A=-2 \\
C & =3+B+2 A=3 \\
\mathcal{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left(\frac{1!}{(s-1)^{2}}\right) \\
& =1-2 e^{1 t}+3 e^{1 t} \mathcal{L}^{-1}\left\{\frac{11}{s^{2}}\right\} \\
& =1-2 e^{t}+3 t e^{t}
\end{array}
$$

